Continuations Implement Generators and Streams

L.ALLISON

Department of Computer Science, Monash University, Clayton, Victoria 3168, Australia

Continuations are used to program generators and a variation on stream functions. The generators allow backtracking
or non-deterministic search. The streams process sequences of values in stages without the creation of intermediate data
structures (lists). Both are programmed in a functional language without special extensions. This brings two useful

problem solving models into pure functional programming.

Received February 1988, revised July 1988

1. INTRODUCTION

A continuation is a function used to represent a following
computation. Here, continuations are used to implement
generators and a variation on streams. The aim is to
explore the continuation style of programming while
bringing two important problem solving models into
pure functional programming. Generators enable com-
pact backtracking or non-deterministic programs to be
written. They are a central feature of some symbolic
processing languages such as Icon® and greatly simplify
the writing of combinatorial programs. A stream
processes a sequence of values. Conventionally a
sequence is represented by a list; it is often natural to
process a sequence in stages and this can lead to the
creation of intermediate lists which are eventually
garbage collected. The streams in this paper are
collections of functions. A function produces values one
at a time which are processed and eventually consumed
by other functions. At no stage does an intermediate list
exist, in this sense the stream functions are listless.® 1
Often the collection of functions can, in principle, be
implemented as a set of coroutines or as processes and
can operate in small or even fixed space.

The language of choice for implementing generators
and streams by continuations is a lazy functional
language. For both generators and streams a set of basic
operators is defined. Some operators only achieve full
generality in a lazy language but all can be used in a strict
functional language. Most operators can even be used
with benefit in an imperative language. The definition of
some operators is difficult but it is only done once; their
use is simpler and leads to compact and readable
programs. The n—queens problem is used to illustrate
generators and the sieve of Eratosthenese to illustrate
streams. In previous work,' continuations were used to
parse non-deterministic grammars and to merge two sort
trees.

A pure functional language is all that is required to use
the techniques described in this paper. In contrast, at
least one language, Scheme,® supports a special type, also
called continuations, as first class values. A (Scheme)
continuation is passed to a function by the call/cc
operation or call with current continuation:

e.g. f(call/cc g)
where fun g k = ...k(h)...

(Scheme uses different syntax.) Scheme is a dialect of
Lisp that uses applicative-order evaluation (call by

value) and has side-effects via set! In the example above
g is called and k is bound to g’s continuation. K appears
to be a function but if it is called control returns
apparently from the call/cc with value h; g is not resumed
later unless special steps are taken. Scheme continuations
have equivalent power to regular continuations and
Haynes et al® use them to define coroutines. The
continuations used in this paper are ordinary, pure
functions used in a particular way.

Continuations arose in denotational semantics to
define the meaning of sequencers. They were first used in
this way by Strachey and Wadsworth!* and by Milne. '°
Strachey and Wadsworth attribute the origin of the idea
to Mazurkiewicz’s tail functions® which were used in the
proof of programs. Strachey, Wadsworth and Milne
demonstrated that continuations could define arbitrary
control mechanisms in programming languages; the aim
here is to use continuations in regular programming tasks.

1.1. Continuations

A continuation is a function 4 given to another function
f to continue or to follow on from f:

datatype Cont =u—v {—>denotes a function type}

funf h x=h(g x) {define f}
f:Cont>t—>v {types of f, h, g, x}
h :Cont
g:t>u
x:t {for some types t, u, v}
In this particular example, ‘fh’ is a rather complex way
of expressing h o g. Informally, we call g the body of f and
can read ‘fh’ as ‘do the body of f and then do h’ or just
as ‘do fand then do h’. Note that the use of continuations
is strictly more powerful than composition as f can be
defined so as not to call h at all or to call it several times.
This versatility is used in the applications of continuations
in the following sections.
In many cases the types t and u are equal and then

datatype Cont =t—v

f:Cont—-t—v = Cont— Cont
h :Cont
fh :Cont

Note that a continuation is just a function. No new
language mechanism is needed for its use.

460 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

CONTINUATIONS IMPLEMENT GENERATORS AND STREAMS

2. GENERATORS

A non-deterministic program may generate many
answers. A non-deterministic computation is a function
from partial answers to lists of answers. To keep faith
with denotational semantics, such a computation is called
a continuation or a Cont:

datatype Cont = Answer — Answer list

A generator processes a (partial) answer in some way, for
example by extending it, modifying it or testing it; the
new answer may then be passed on to the following
computation. Formally, a generator takes a continuation
and produces a continuation; equivalently it takes a
continuation and an answer and produces a list of
answers:

datatype Generator = Cont - Cont
= Cont - Answer — Answer list

Many symbolic processing languages use generators.
Icon® possesses explicit generators. The non-deterministic
generation of solutions is a feature of Prolog. Continua-
tions are present in denotational semantics of Prolog® 2
and in the implementation of Prolog in functional
programming.® The use of continuations is also implicit
in the organisation of Prolog’s trail stack.

2.1. Standard operators

Standard generators and operators on generators are
defined in this section to form a basic building kit. Where
possible familiar and meaningful names are chosen —
such as pipe to suggest a form of composition.

In many combinatorial problems, an answer is a list of
some kind of value:

datatype Answer =t list {for some type t}

Often an answer is built up element by element. A simple
example of a generator is literal which prepends a
constant to a partial answer:

fun literal c h a = h(c::a)
literal :t — Generator
=t— Cont— Cont
c:t
h :Cont
a :Answer

Note that *::” is the infix list constructor adopted from
ML. The extended answer c::a is passed to the
continuation h.

Some convenient operators on generators can be
defined. Pipe connects two generators together in
sequence :

fun pipe gl g2ha=g1(g2 h) a
pipe : Generator — Generator — Generator
g1, g2 :Generator

Reading informally, to do pipe gl g2 and then h do gl
and then do g2 h. Any answers generated by gl, given
a, are passed to g2 h. Note that simple functional
composition, o, cannot be used because gl may choose
not to call its continuation or to call it several times.

Sometimes it is necessary to connect several copies of
a generator together in sequence:

fundong=
if n =0 then success
else pipe (do (n—1) g) g
do :Int— Generator — Generator

fun successha=nha
success : Generator

Success is a restricted identity function introduced only
for the sake of its name.

The operator either takes two generators and produces
a generator which behaves as the non-deterministic
choice between them:

fun either g1 g2 ha =
append (g1 h a) (g2 h a)
either : Generator - Generator -~ Generator

Note that either passes h to gl and to g2 so that h may
be called multiple times or not at all. Any answers that
gl h and g2 h produce are collected together. This
implements left-to-right depth-first search. If imple-
mented in a strict language, either loops if gl loops or if
g2 loops. If implemented in a lazy language, either
produces infinitely many solutions if gl does or if g2
does.

It is often necessary to generate a choice from the
integers {1..n}:

fun choice n =
if n =0 then fail
else either (literal n) (choice (n—1))
choice :Int— Generator

funfailha=1[]
fail : Generator

Choice puts n, n—1 and so on down to 1 on the front of
each answer that it is given. Fail simply discards its
continuation and returns no solution which is represented
by the empty list. The non-deterministic operators choice
and fail were first proposed by Floyd.*

In order to run generators, it is convenient to define a
final continuation fin and a run operator:

fun fin a = [a&]
fin :Cont
funrun g =g fin []
run :Generator - Answer list

{excuse pun}

Using the operators defined above it is possible to
write some simple programs. The program

run(do 3 (choice 2))

produces all sequences of length 3 over the alphabet
{1,2}.

Many combinatorial backtracking programs involve
the generation and testing of answers. It is possible to
filter (partial) answers according to a predicate:

fun filter p h a =
if pathen ha
else []
filter : (Answer — Bool) - Generator

If an answer, a, fails the test, p, the empty list of solutions
is returned. If it passes the test it is given to the
continuation h.

THE COMPUTER JOURNAL, VOL. 33, NO. §, 1990 461

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

L.ALLISON

2.2. An example: n—Queens

Using the operators of the previous section, the n—queens
problem can be programmed. First, an auxiliary function,
valid, is needed to check a partial solution. A solution is
represented by a list of row numbers. Valid checks that
the last queen added to a solution does not threaten any
other queen. (Valid is a conventional predicate and does
not employ continuations.)

{ assuming datatype Answer = int list }

fun valid nil = true |
valid h::t=v 11t
where fun
v row nil = true |
V IOW X.iy =
if h=xor h+row = x or h—row = x
then false
else v (row+1) y

We are now in a position to write the n—-queens program
proper. An informal solution to the n—queens problem
might be given as follows: do the following n’ times,
choose a row on which to place the queen in the current
column and then check that it is consistent with the
previous choices made so far. Continue until all n queens
have been placed. This solution is directly implemented
in generators by continuations:

run (do n place_one_queen)
where fun
place_one_queen = (pipe (choice n) (filter
valid))

It resembles Floyd’s n—queens program,* which translates
into Pascal-like notation as:

for col:=1 to n do
begin row[col] : = choice (n);
{non-deterministic choice}
if not valid(row[1. .col]) then fail
{backtrack}
end;
{success}

Although Floyd’s program was given in an imperative,
non-deterministic language, the variables are each
assigned once only. (Arguably this is true even of col if
one considers the for loop to be a forall construct.) This
might have lead one to suspect the existence of the short
functional program given above.

2.3. Imperative languages

Itis possible to do some programming with continuations
in an imperative language. This brings some of the
benefits of functional programming to the imperative
programmer. The biggest inconvenience, and that is all it
is, in a stack-based language is the inability to return a
(local) function result and the lack of curried routines.
However the function types of the previous section can
be uncurried and programmed, even in Pascal.

{ choose:Int— Cont - Cont = Int— Generator }
procedure choose(n:integer;
procedure cont (L:list);
L:list);
var i:integer;

begin
fori:=1tondo

cont(cons(i, L))

end;

{ filter: predicate — > Generator }

procedure filter(function p(L:list) :boolean;
procedure cont(L:list);
L:list);

begin if p(L) then cont(L) {else fail}

end;

{ doo:Int— Generator - Generator }
procedure doo(n:integer;
procedure gen (procedure cont
(L:list); L:list);
procedure cont(L:list);
I:list);
procedure gencont(L:list);
begin gen(cont, L) end;
begin
if n = 0 then cont(L)
else doo(n—1, gen, gencont, L)
end;

function valid(L:list) :boolean;
... tests if partial solution L valid ...

procedure queen(n:integer);
procedure choosevalid(procedure cont(L:list);
L:list);
procedure validcont(L:list);
begin
filter(valid, cont, L)
end;
begin
choose(n, validcont, L)
end;
begin
doo(n, choosevalid, success, nil)
end;

The executable commands are compact; they form a
functional program coded in Pascal. The declarations
make the Pascal version longer than the functional
version but are added almost mechanically. Lacking
curried routines, it is necessary to introduce some
auxiliary routines such as choosevalid. Rather than
return a list of solutions, it is convenient to have the
solutions printed in the Pascal output file. This leads to
some minor programming differences, for example filter
does not return nil if the predicate fails, it simply does
not call its continuation.

3. STREAMS

The processing of a sequence of values in small stages is
a common occurrence. If a sequence is represented as a
list, intermediate lists are created and garbage collected
later. Burge® describes an alternative to lists called
streams which allow some infinite lists to be computed.
To Burge, a stream is a function which produces the
first value of a sequence and another stream; the latter
represents the rest of the sequence. In this section
another variation is described which uses source, agent
and sink functions, collectively called streams. A source
is a function which produces a first value, but it has a

462 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

CONTINUATIONS IMPLEMENT GENERATORS AND STREAMS

parameter, a sink, which uses that value. A sink is a
function which consumes a value and has a parameter, a
source, which produces some more values:

datatype source = sink —int list
and sink = int—source — int list

A source has a sink as a continuation and a sink has a
source as a continuation.

Agents perform intermediate steps and are defined in
the following section as are various standard stream
functions.

3.1. Standard operators

A simple example of a source produces a sequence of
ascending integers:

fun range lo hi outp =
if lo <= hi
then outp lo (range (lo+1) hi)
else nil
range :int— int— source
outp :sink

The first value, lo, is passed to the sink, outp. The source
(range (lo+1) hi) is also passed to outp which will
probably, but not necessarily, call it to produce lo+ 1
and so on up to hi.

The null source produces no values:

fun null_source outp = nil;
null_source :source

The simplest useful sink records its input:

fun print n ip = n:: (ip print)
print :sink
n rint
ip :source
The input, n, is put into the output list and the source, ip,
is invoked for more elements of the sequence.
The black_hole discards its input values:

fun black_hole n ip =
ip black_hole;
black_hole :sink

{alias /dev/null}

The black_hole does not return nil but calls the input
source ip because other functions may cause some output
later.

A source and a sink can be combined to produce a list
of values:

range 1 10 print { =[1,2,3,4,5,6,7,8,9,10] }

The source, range 1 10, and the sink, print, act as
coroutines. Range produces an integer and passes it to
print together with itself as parameter. Print adds the
integer to the output and resumes range and so on. The
program can be read as ‘generate integers in the range 1
to 10 and then print them’.

As well as sources and sinks there are intermediaries or
agents:

datatype agent = sink — int - source — int list
= sink — sink

An agent processes some input and may pass it on. An
agent can use its sink parameter or its source parameter
as the continuation to be called next. Note that not only

does agent = sink — sink but that, except for the order of
parameters, agent & int - source — source:

given a:agent, n:int, ip:source then
(4 outp. a outp n ip) :sink—int list = source

As examples, the agents even and odd pass on half of
their input. Odd passes on the first value, the third value
and so on. Even passes on the second value, the fourth
value and so on.

fun even outp nip =
ip (odd outp)
and odd outp n ip =
outp n (A outp’. ip (even outp’))
even, odd :agent

Even discards the first value, n, and asks for a second
value from the input source ip whereas odd outputs the
value immediately.

It is convenient to have an operator run to link a
source, an agent and a sink together:

fun run ip mid outp = ip (mid outp)
run :source - agent - sink - int list
= source — agent - source

run (range 1 10) odd print { = [1,3,5,7,9] }

Run overrides the default binding of application with
brackets () and its use improves readability in some
circumstances.

The operator pipe connects two agents together:

funpipe ab outp nip =
a (b outp) nip
pipe :agent - agent — agent

run (range 1 10) (pipe odd even) print { = [3,7] }

As was the case when connecting two generators, the
agents in the pipe, a and b, can behave more generally
than their composition.
A sequence can be filtered by an agent according to a
predicate:
funfilter p outp n ip =
ifpn
then outp n (run ip (filter p))
else run ip (filter p) outp
filter: (int - bool) - agent

If the value n passes the test p it is passed to the sink
outp. If n fails the test the source ip is called for the next
value. It can be seen that no list data structure is built to
contain the reduced sequence of values.

3.2. An example: Sieve of Eratosthenese

Once the building blocks of the previous section are
defined they can be used to write compact stream
processing programs. For example, a sieve of Eratos-
thenese can be programmed in this style:

funsieve outp n ip =
outp n (run ip (pipe (remove_multiples n)
sieve))
sieve:agent
where fun
remove_multiples n = filter (noto (mult n))
where fun
multab=(bmoda) =0

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 463

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

L.ALLISON

run (range 2 20) sieve print
{ =1[235711,13,17,19) }

Reading from left to right, the sieve is similar to its
English description. Sieve is given an output mechanism
outp, an integer n and an input mechanism ip. It first
outputs the integer (outp n) and then does some more
input (run ip). The results of this input have multiples of
n removed and are sieved again.

3.3 More operators

It is possible to imagine and to program a great many
other operators on sources, agents and sinks. As a few
examples consider the following:

The infix operator on lists, ‘?°, is defined by

nil?L=1L |
(h::t)? L=h::t
funzip (ip1,ip2) outp =
ip1 (A m,ip1’.outp m (zip (ip2,ip1’)))
{alternates values from ip1 and ip2}
zip :source x source - source
funmerge (ip1,ip2) outp =
ip1 (A m,ip1”.ip2(4 n,ip2’.switch m ip1’ n ip2’

outp)
? outp m ip1’)
? ip2 outp
where fun switch m ip1 n ip2 outp =
ifm<=n

then outp m (4 outp’.ip1 (A m’,ip1’.switch m’
ip1’ n ip2 outp’)
? outp’ n ip2)
else switch n ip2 m ip1 outp

merge :source X source - source

funT ip = (ip,ip)
T :source - source x source

funsplit ip =
((run ip odd), (run ip even))
split :source — source x source

Zip alternates from two sources to produce a new source.
It first calls ipl, passing it a sink to use the value, m,
produced by ipl and then zips ip2 and ipl. Split is zip’s
inverse. Merge merges the values, which are assumed to
be ascending, from two sources into one source. It is
complicated by the need to get the initial values, m and
n, produced by each source and by the need to copy the
tail of the last sequence when the first runs out. T makes
two copies of a source; it is named after a T-joint in
plumbing.

3.4. Implementation

There is a small, seemingly unavoidable, asymmetry
between sources and sinks. In the coding given, sources

REFERENCES

1. L. Allison, Some applications of continuations. The Com-
puter Journal 31 (1), 9-11 (1988).

2. W. Burge, Recursive Programming Techniques. Addison
Wesley (1975).

take the initiative in producting values which are ‘ pushed’
into the sinks — the programs are data driven. There is an
equivalent output-driven coding where the sinks demand
the values.

The sources, sinks and agents described in the previous
sections have been programmed in standard ML.! In
that language it is necessary to add type constructors to
the recursive datatypes source and sink; otherwise the
programs are as above. Algol-68 could be used if the
functions were uncurried although more local function
definitions would be necessary. Pascal cannot be used as
it does not support recursive function types.

Some of the simpler stream programs can be executed
in a fixed amount of space, consider:

range 1 10 print

This program needs only two environments. Range calls
a function as its last action — it is tail-recursive.!® Range’s
environment can be overwritten provided that there is no
other reference to it. Print is tail-recursive mod cons;
it can reserve a list cell, fill in the head of the cell and
then, as its final action, call a function to compute the tail
of the cell. Equivalently, range and print can act as
coroutines. Some functional language implementations
that are based on combinators, and so do not use
environments, exhibit correct tail-recursive behaviour.’

The primes program cannot be executed in fixed space
but it can be viewed as a number of filtering processes
each of which can be executed in a fixed amount of
storage. No intermediate lists are needed for passing
values between sieves.

4. CONCLUSIONS

Continuations allow the programmer to specify the flow
of control of a program (this is why they are useful in
denotational semantics). They allow backtracking pro-
grams such as the generators to be written. They also
allow the stream processing functions — sources, sinks
and agents —to pass control between each other as
coroutines or as processes. At first sight functional
languages seem to be poor in control mechanisms,
possessing only if, application, composition and recur-
sion. In reality this simplicity is richness and continua-
tions are one way of getting a desired control regime.

Generators and stream processing are important
models in solving certain types of problem. Continuations
bring them into pure functional programming without
the need for new language mechanisms.

Continuations involve a novel style of programming
but the programs that result (n—Queens, primes) are
often close to their English descriptions. They have
something of an imperative flavour — do this and then do
that — but they are functional and free of side effects. The
programs can be effectively implemented by optimisa-
tions such as tail-recursion.

3. M. Carlsson, On implementing Prolog in functional pro-
gramming. International Symposium on Logic Program-
ming, pp. 154-159 (1984).

4. R. W. Floyd, Nondeterministic algorithms. Journal of the
ACM 14 (2), 636644 (1967).

464 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

CONTINUATIONS IMPLEMENT GENERATORS AND STREAMS

5. R. E. Griswold and M. T. Griswold, The Icon Program- 12. T. Nicholson and N. Foo, A denotational semantics for
ming Language. Prentice Hall (1983). Prolog. Basser Department of Computer Science, Uni-

6. C. T. Haynes, D. P. Friedmann and M. Wand, Obtaining versity of Sydney (1985).
coroutines with continuations. Computer Languages 11 13. G. L. Steele, Debunking the expensive procedure call
(3/4), 143-153 (1986). myth. Proc. Annual Conference ACM, pp. 153-162

7. T. Johnsson, Efficient compilation of lazy evaluation. Pro- 1977).
gramming Methodology Group, University of Goteborg 14. C. Strachey and C. P. Wadsworth, Continuations : a mathe-
and Chalmers University of Technology, TR40 (Feb. matical semantics for handling full jumps. PRG-11, Oxford
1987). University (1974).

8. N. D. Jones and A. Mycroft, Denotational semantics of 15. P. L. Wadler, Listlessness is better than laziness. CMU-CS-
Prolog. International Symposium on Logic Programming, 85-171 Computer Science Department, Carnegie-Mellon
pp. 281-288 (1984). University (Aug. 1984).

9. A. W. Mazurkiewicz, Proving algorithms by tail functions. 16. P. Wadler, Listlessness is better than laziness II: composing
Information and Control 18, 220-226 (1971). listless functions. Proc. Workshop on Programs as Data

10. R. Milne and C. Strachey, 4 Theory of Programming Objects. Lecture Notes in Computer Science, vol. 217.
Language Semantics. (2 vols). Chapman & Hall (1976). Springer Verlag (1985).

11. R. Milner, The standard ML core language. Department of
Computer Science, University of Edinburgh (1986).

Announcement

10-13 JunE 1991

Eindhoven, The Netherlands, Conference on
Parallel Architectures and Languages, Europe
Call for Papers

Conference objectives

The PARLE ’91 Conference will follow the
tradition of the previous two conferences,
PARLE °'87 and PARLE 89, in being
organised as a wide and representative in-
ternational meeting of researchers in the fields
of theory, design and application of parallel
computing.

The conference programme includes invited
presentations and contributed papers on cur-
rent research.

The conference initiative is taken by project
2427 (TROPICS) of the European Strategic
Programme for Research and Development in
Information Technology (ESPRIT) of the
Commission of the European Communities.

Submission of papers

Participants who wish to present papers are
invited to send 5 copies of a full draft paper

not exceeding 6000 words to the official
conference mailing address before 15 October
1990. The conference language is English.
Acceptance of papers will be notified to the
authors by 1 February 1991. Camera-ready
copies of accepted papers in final form are due
15 March 1991. Accepted papers will be
published by Springer Verlag in the series
Lecture Notes in Computer Science, and will be
available at the conference.

Conference scope

Parallel architectures and systems

o formal modelling

@ specification and verification

@ data flow, inference and
machines

@ interconnection networks

® multiprocessor design issues (VLSI, WSI,
RISC)

reduction

Parallel programming

o formal programming methodologies

@ specification and verification

@ constraint-based concurrent programming

Parallel languages
@ parallel programming primitives
@ semantics for parallelism

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 465

@ communication protocols
@ implementation models

Parallel algorithms and complexity

@ design and analysis of parallel algorithms
@ complexity of parallel computations

@ mappings of parallel algorithms

Applications of parallelism

@ systolic arrays and regular computations
@ neural networks and computing

@ parallel and distributed databases

@ parallelism in symbolic computing

Conference location and accommodation

The PARLE "91 Conference will be held at the
Congress and Meeting Centre ‘De
Koningshof”. Mailing address: P.O. Box 140,
5500 AC Veldhoven, The Netherlands. Tel:
+31 40 537475. Telefax: +31 40 545515.

The full fee for the conference is around Dfl
1000.

Official Conference mailing address

Mr F. Stoots, Philips Research Laboratories,
P.O. Box 80.000, 5600 JA Eindhoven, The
Netherlands. Fax: +31 40 744758; E-mail:
stoots@tropicsa.prl.philips.nl.

CPJ 33

20z Iudy 01 uo 1senb Aq L0S081/091/G/€E/81ome/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

