Reference Counting of Cyclic Graphs for Functional Programs
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A simple method of reference counting applicable to graphs of functional language programs is described. The graph
contains strong and weak pointers, but only the strong pointers are counted in the reference counts and by the graph

deletion algorithms.

It is shown that graphs of functional programs can be constructed in such a way that the sub-graph got by removing
all weak pointers is connected and acyclic. The weak pointers are used only for those recursive references which create
cycles in an otherwise acyclic graph. Explicit recursive definitions of functions and data structures may be represented

in the graph.

The usual graph reduction rules can be implemented so that they do not destroy the required properties of the graph:
the sub-graph of strong pointers always remains connected and acyclic. Thus, simple reference counting can be used

safely with cyclic graphs of functional programs.

This method of storage management has the advantage that it incurs little overhead in either storage space or
execution time of beta reduction. Nor is there any excessive increase in the complexity of the algorithm needed for
graph reduction. It is less suitable, however, for combinator and supercombinator reduction.
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1. INTRODUCTION
1.1 Reference Counting

When dynamically changing graphical structures occur
in a program, one of the most complex aspects of
devising a suitable representation for them is in organ-
ising the dynamic allocation of memory space. The
problem is to identify those parts of the memory which
are no longer in use and can be reallocated.

There are two main categories of algorithms for doing
this: mark-scan garbage collection and reference count-
ing. In mark-scan algorithms, all accessible structures are
fully traversed in the first stage and each memory cell in
use is marked; then, in the second stage, the whole
available memory is traversed and all unmarked cells are
collected and become available for reallocation. Refer-
ence counting algorithms, on the other hand, maintain in
each memory cell a count of the number of pointers to
that cell. These reference counts are updated whenever
the structure is changed. If the count in a cell becomes
zero, that cell is immediately made available for
reallocation.

A large number of algorithms are known in both
categories, both for traditional sequential computation
and for parallel processing.>”®* While mark-scan tech-
niques are probably the more common, the balance of
advantage is moving in favour of reference counting as
machines with very large virtual memories become the
norm and as parallel processing becomes more wide-
spread.

Firstly, in mark-scan algorithms, the time taken by the
marking phase increases with the size of the structures,
and the time taken by the scanning phase increases with
the size of the available memory. In contrast, reference
counting algorithms work only on the part of the
structure currently undergoing change and are generally
mdependent of the size of the whole structure and of the
size of available memory.

Secondly, mark-scan algorithms do not identify in-
accessible parts of the structure for reallocation until the
next mark-scan cycle is complete. This cycle can take an

appreciable time, and, on sequential machines, it is usual
to invoke the garbage collector only when the available £
space begins to run out. On the other hand, reference
counting systems immediately make inaccessible space o
available for reallocation. On a virtual memory system,
this permits newly created parts of a structure to be
allocated the same memory locations as recently deleted g
parts of the structure, thus avoiding excessive pagmg
demands.

Thirdly, mark-scan algorithms require at least two
distinct phases, each operating on the whole structure,
which must be carried out in sequence. They are,
therefore, not so easily adapted for highly parallel
operation as reference counting algorithms, which
operate on localised parts of the structure only.

1.2 Graphical Representation of Functional Programs

Modern functional programming languages are often
implemented by graph reduction, a technique in which
the complete program is represented as a graph.®-810.12
In simple terms, a functional program can be thought of
as a single mathematical expression. There is no
assignment as pure functional languages have no
variables in the conventional programming language
sense, and no concept of state. The effect of a loop in a
conventional language is achieved through the use of
recursive functions.

As a simple example, consider the following functional
program for computing y®, where x is a non-negative
integer:

power(x,y) =

if x=0

then 1

else
if even x
then square(power(x/2,y))
else y*power(x—1,y)
fi

fi
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REFERENCE COUNTING OF CYCLIC GRAPHS

The language used for this program is a pseudo-code
which should be clear enough to most programmers. We
have assumed two predefined functions are available:
even tests whether its argument is an even number, and
square simply squares its argument. The symbol fi is used
simply as a terminator in the

if a then b else ¢ fi

construct, which is considered to be semantically equiva-
lent to a function of three arguments, say if{a,b,c), which
takes the value b if a is true, and c if a is false.

Various slightly different forms of graphical represen-
tation have been used in practice, but the differences
are not of concern here. Consider, for instance, the graph
in Fig. 1, which is a possible representation of the first
part of the program for the function power.

Figure 1. Graph of power.

Each circle represents a node of the graph, the symbol
inside the circle indicating the type of node. Leaf nodes
may be of three types: (i) integers, e.g. 0 and 1; (ii)
operators (functions), e.g. = and if; (iii) formal argu-
ments, denoted by V. Other nodes are of the following
types: (i) function definition nodes, denoted by A, for
which the left subgraph (below the node) is the formal
argument and the right subgraph (to the right of the
node) is the expression which forms the body of the
function definition; (ii) function application nodes,
denoted @, for which the left subgraph is the function
and the right subgraph is the actual argument to which
the function is applied; (iii) tuple nodes, denoted T, for
which the left subgraph is the first element of the tuple
and the right subgraph is the rest of the tuple.

In functional languages, following the lambda calculus,
it is common to require every function to have exactly
one argument. The effect of several arguments can be
achieved in a variety of ways, such as currying®, or, as in
the above example, by treating the single argument as a
structured object: in the case of the functions power and
* it is a 2-tuple, while for ifit is a 3-tuple. The i-th element
of a tuple can be obtained by ‘applying’ it to the integer
i, as if the tuple were a function. So, if z=(x,y), then
x=z(1) and y=2z(2).

Program and data are treated together in functional
languages. To compute 21°, we would simply evaluate
the program

answer = power(5,21)

where the function power has its previous definition. The
graph of this program is shown in Fig. 2, in which the
subgraph for the function power is omitted to save space,
but should be filled in exactly as it is in Fig. 1.

‘answer’
@—0—®
‘power” (5) @)
(as in Fig. 1)

Figure 2. Graph of power (5,21).

1.3 Partial evaluation

Interest has been increasing recently in the technique of
partial evaluation, although the idea itself is not new.> !
As a simple illustration of this technique, consider the
following program for the function z°:

sixthpower(z) = power(6,z)

using the function power defined earlier.
Substituting the definition of power gives:

sixthpower(z) =

if 6=0

then 1

else
if even 6
then square(power(6/2,z))
else z*power(6-1,z)
fi

fi

Partial evaluation consists of evaluating those parts of
the program which can be evaluated, e.g. 6=0 is false,
6/2 is 3 and 6-1 is 5. By pursuing this process and
making further substitutions of the definition of power,
the final result of this partial evaluation is

sixthpower(z) = square(z*square(z))

which is a much more concise and efficient program for
z® than the one we started with!

1.4 A new reference counting technique

Hughes® and Brownbridge® have described methods of
reference counting for cyclic graphs of functional
programs. Friedman and Wise? have described a method
applicable to pure Lisp and similar languages. The
methods of Hughes and of Brownbridge are both quite
general, but involve a considerable increase in overheads
over reference counting for acyclic graphs. The method
of Friedman and Wise, on the other hand, involves little
added overhead, but is much more limited in its
applicability.

The method proposed here is similar to that of
Friedman and Wise, but adapted and modified to suit
somewhat different and more general circumstances than
Friedman and Wise’s method. It has been used in the
construction of a partial evaluator for a functional
programming language.’

Partial evaluation, on its own, generally does not
succeed in producing the simplest or most efficient
program. It is often possible and desirable to carry out
further simplification or optimisation by hand. For this
reason, it is desirable to retain the original form of the
source program as much as possible, so that the partially
evaluated program is still recognisable to the pro-
grammer.

Hence, the usual technique of combinator reduction!?
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is inappropriate because, once the program has been
translated into combinator code, much of the original
program structure has been lost. Instead, graph reduction
is carried out directly on the graphical representation of
the source program, without any other transformations
being applied in advance. The reduction method must
include beta reduction because the graph contains
lambdas, and it must cope with cycles in the graph
(which represent recursive function definition). The
proposed method of reference counting is applicable and
efficient in these circumstances. It is much less efficient
for combinator reduction, which does not require beta
reduction (because lambdas do not occur in combinator
code).

2. THEORETICAL BASIS OF THE
METHOD

First, some definitions of terminology used.

Definition: A graph is strongly connected if, for any two
nodes, a and b, there is a path from a to b and a path
from b to a.

Definition : A strongly connected component of a graph is
a maximal strongly connected subgraph.

Definition : A node, a, of a strongly connected component,
C, is said to be an entry node of C if there exists
a node, b, not in C, such that there is an arc from b
to a.

The proposed method of reference counting involves
forcing all program graphs to have the following
properties.

1. There is exactly one entry node to each strongly
connected component. If the root of the graph is in a
strongly connected component, then the root is deemed
to be the entry node and there must be no other entry
nodes in that component.

2. Two types of pointers are distinguished : strong and
weak.

3. If all weak pointers are removed, the resultant
graph contains no cycles.

4. All nodes are reachable from the root via paths of

strong pointers only.
Provided these properties always hold, storage manage-
ment can be safely based on reference counting strong
pointers only. This follows because, by properties (2), (3)
and (4), if and only if there are no strong pointers to a
node, that node is not part of the graph and can be safely
returned to the free node pool.

Reference counts see only strong pointers, and graph
deletion algorithms see only strong pointers. For this
method to be completely safe, all permitted operations
on the graph must also preserve the four properties listed
above. For graphs representing functional language
programs, these constraints can be satisfied without
much inconvenience, as will be argued in detail in the
following sections.

Property (1) has not been used so far. It is not required
directly by the reference counting method, but is needed
later to ensure that the transformations used in graph
reduction do not destroy properties (3) and (4).

3. GRAPHS OF FUNCTIONAL PROGRAMS

The precise details of the graphical representation do not
concern us, but the following general structural properties

of the graph must hold. We take the lambda calculus as
the functional language for the purposes of illustration,
but allow expressions to be named and, hence, referred
to more than once.
So, the program f=E
simply means the expression E with the name f. Its graph
is a directed graph of the expression E, with the root
node named f. If and only if the expression E contains
the name x, there will be a path from node f to node x.
The program f=E;

g=H

in which the expression E contains free occurrences of
the name g, has a graph in which the subgraph for E
contains pointers to the root node of the subgraph for H.
For simplicity we will say that the expression E contains
free occurrences of a name x if H contains free
occurrences of x and E contains free occurrences of g. So,
in the graph of any program, there is a path from node
x to node y if and only if the expression for x contains
free occurrences of y.

Non-recursive programs are represented by acyclic
graphs and so no problems arise. All pointers are strong
pointers and reference counting is done in the usual
way.

3.1 Simple recursive definitions

The program for a recursive definition can be written:
f=4

where A is any expression which may contain free

occurrences of f.

For the graph of this expression (ignoring mutual
recursion for the moment) to satisfy the required
properties, all pointers from inside the definition to the
root (node f) must be weak pointers. If fis not mutually
recursive, there are no other names upon which f
depends and which, in turn, depend on f (except possibly
names local to the expression 4 which are not accessible
elsewhere). This means that fis the only entry node to the
strongly connected component through f.

We denote weak pointers textually by putting a prime
after the name being referenced; so, the textual rep-
resentation of the graph for fis:

f=U/f4
where [4/b]C is the usual lambda calculus notation,
meaning rewrite expression C by substituting 4 (an
expression) for b (a name) everywhere that b occurs free
in C.

Thus, all occurrences of the name fare replaced by the
name f”. Of course, if f'is part of a larger program, f may
be referenced elsewhere and these occurrences of f will
remain. They are not part of any recursion, however
(assuming f is not mutually recursive with another
function) and so do not lead to cycles in the graph of the
program.

3.2 Mutually recursive definitions

Consider the following program for two mutually
recursive functions:
f=4;

g=8
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where 4 and B are expressions which may contain free
occurrences of f and g. We transform this into the
following equivalent program which has a graph satis-
fying the required properties:

S=U/11h/g)A;

h=Uf" [ /8)B;

g=1[g'/glB
The subgraph for f no longer contains g (it has been
renamed as h) so the strongly connected component
through f has only one entry point, fitself. The function
g is now represented by a different node and its subgraph
may itself contain a strongly connected component (if
the expression B contains occurrences of g), but that
component will be distinct from the strongly connected
component through f (because the expression for f
contains no occurrences of g or g/, i.e. there is no path
from fto g).

This transformation is necessary, not because of the
mutual recursion per se, but because the two mutually
recursive functions, f and g, may both be referenced
elsewhere which means that f and g will both be entry
nodes to a single strongly connected component. The
transformation solves this problem by introducing an
auxiliary function, A, which is mutually recursive with f,
but not referenced elsewhere (% is simply a copy of g, and
f1s changed so that all references to g become references
to h). So there is now only a single entry node, f, to the
strongly connected component which is the mutually
recursive definition of f and 4. The function g remains
unchanged (including its references to /) but is no longer
mutually recursive because f contains no references to g.

This transformation is easily generalised to any
number of mutually recursive functions, but it is
inefficient as the number of auxiliary functions that must
be created is 2" —n—1 in the case of » mutually recursive
functions all of which depend upon all the others, and all
of which may be referenced elsewhere.

In a functional language under development by the
author, only the trivial form of mutual recursion is
allowed, in which only one of the mutually recursive
definitions can be referenced elsewhere and so there is no
problem. This very restricted form of mutual recursion is
essentially no different from simple recursion. If general
mutual recursion is allowed then the transformation
described above must be applied to eliminate multiple
entry points from strongly connected components.

4. GRAPH REDUCTION

We assume that the only transformation operations
applied to the graph after it has been constructed are
those of graph reduction. The fundamental reduction
operation is beta reduction. In addition, most systems
include reduction operations for a number of built-in
predefined functions (e.g. arithmetic operators, com-
binators, etc.).

4.1 Beta reduction

Consider the program:
f=Ax.A;
z=fB

which we represent as:

f=2x.11"/f14;
z=fB

(assuming no mutual recursion). Beta reduction of this
program transforms it to:

f=2x.11"/114;
z=[B/x]A

Now, the reduced expression for z (i.e. [B/x]A4) is
represented graphically by an exact copy of the graph for
A, except that all pointers to the bound variable x are
replaced by pointers to the root of the graph for B (which
itself is unchanged). In the graph for z before reduction
there is a path from z to 4 and a path from z to B. Any
cycle in the reduced graph must be (a) completely within
A, or (b) completely within B, or (c) a path from node z
(the root of the new copy of A) through A, then through
B and back to z. Any cycle in categories (a) or (b) clearly
existed in the unreduced graph also. Any cycle in
category (c) requires that the expression for B contain a
free occurrence of z. A corresponding cycle exists in the
graph before reduction because z depends on B.

Hence, no new cycles can be created by beta reduction
(although an existing cycle can be enlarged by the
inclusion of new nodes which did not previously exist).
Nor can any new entry points be created to existing
cycles. This is easily seen by considering the three cases
above. Cycles in categories (a) and (b) are unchanged
and their entry points remain unchanged. For a cycle in
category (c) an entry point before reduction is z, and that
remains an entry point after reduction. The graph for B
is unchanged, and the new pointers to B (from within the
copy of A) are ali on paths from z, so no new entry points
are created here. There can be no external pointers into
the copy of A; simply because it is a copy and any
external pointers into 4 will still point to the original and
not to the copy.

The final property we need to show is that all nodes in
the reduced graph remain reachable from the root via a
path of strong pointers only. This follows simply from
the observations that all nodes in B are reachable from
the root of B by paths of strong pointers and all nodes in
A are reachable from the root of 4 by paths of strong
pointers. Hence all nodes in [B/x]A4 are reachable from
the root by paths of strong pointers.

4.2 Eta reduction

The program
f=Aix.Ax

can be reduced by eta conversion to
f=4
provided A contains no free occurrences of x.

The only change to the graph during eta reduction is
the removal of those nodes representing the lambda
abstraction, the application of 4 to x and the bound
variable x itself. No new cycles are created, nor are any
new entry points to existing cycles. The graph for 4 is

unchanged and hence all nodes in 4 remain reachable
from the root of 4 by paths of strong pointers only.
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4.3 Operators

Normal arithmetic operators and others which require
their arguments to be evaluated before reduction cause
no problems. The graph before reduction is of fixed
structure and contains no cycles. After reduction it is
replaced by a single node (its value). Cycles elsewhere in
the program graph are unaffected.

4.4 Combinators

All the combinators can be defined from first principles
in the lambda calculus, so combinator reduction is
completely equivalent to one or more applications of
beta or eta reduction. Hence, combinator reduction must
always preserve the required properties of the graph, and
there is no need to consider each combinator individually.

While it is possible to use this method of reference
counting with combinator reduction, it incurs a heavy
performance penalty. Combinator reduction is attractive
because it avoids the copying (of a potentially large
subgraph) which is required with ordinary beta reduction
when the body of the lambda expression is instantiated.
With the proposed method of reference counting,
however, combinator reduction of expressions containing
a recursive reference to themselves would involve making
a copy of the expression to enable the recursive references
to be changed to direct references. This additional
copying would negate the main advantage of using
combinators.

5. FACTORS AFFECTING PERFORMANCE

The reference counting method requires a little more
memory space for the graphical representation and a
little more processing time than would be required for
simple reference counting in a graphical representation
without cycles at all. The overhead in both space and
time is quite small in most circumstances, however.

To distinguish between strong and weak pointers
requires one additional bit per pointer. The number of
pointers per node is unchanged. An alternative way of
distinguishing strong and weak pointers is to represent a
weak pointer by a strong pointer to a special indirection
node which contains another pointer to the actual
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