Short Note

VLSI Binary-Residue Converters for Pipelined
Processing

Residue Number Systems (RNS) are suited for
high-speed applications and VLSI implemen-
tations, because of the modular and parallel
nature of their arithmetic. In this paper a new
solution is provided to the problem of designing
VLSI structures for converting integers to and
from residue number systems in the area of
pipelined applications, with the constraint that
the layout width is comparable with the data
stream width. The proposed structure is suited
for both direct and reverse conversion and has
complexity figures better than previously known
results, evaluated under several hypotheses on
the RNS parameters.

Received March 1989, revised October 1989

1. Introduction

Residue Number Systems (RNS) appear par-
ticularly suited for special-purpose hardware
implementations, such as signal processing,
because of the parallel nature of their arith-
metic. The VLSI technology increased the bias
towards RNS-based systems, since regular
and modular layouts can be designed. How-
ever, the problem of converting data from the
weighted system to the residue system and vice
versa must be dealt with accurately in order to
keep a high processing rate for the overall
structure. The problem of designing VLSI
systems for such conversions has been con-
sidered by some authors, in an attempt to
optimise the area-time complexity of the
devices'#3* or, more generally, of VLSI
implementations of RNS architectures.? ¢

In this paper a new solution is provided,
which exploits the same structure for the two
conversion problems and which exhibits VLSI
complexity figures better than previously pro-
posed ones in the area of pipelined appli-
cations. In particular, the asymptotic value of
the area of the VLSI pipeline structure
proposed in Ref. 3 is reduced, while the same
pipeline interval is asymptotically kept, to-
gether with the constraint that the layout
width is comparable with the data stream
width. Such a constraint allows the structure
to be easily embedded in layouts of RNS-
based systems along data paths. Complexity
figures are provided under several hypotheses
on the relation between the number of moduli
and the range of integers represented in residue
notation.

Given two functions f(n) and g(n) in this
paper we write f(n) = 9(g(n)) to mean k,g(n)
< f(n) < k,g(n), for k,, k, >0 and all suffi-
ciently large n. Similarly f(n) = Q(g(#)) means
Sf(n) = kg(n), for k > 0 and all sufficiently large
n.

Moreover, to derive complexity figures, the
generally accepted VLSI model of compu-
tation introduced in Refs 7-9 has been
adopted in this paper.

2. Residue number systems
We recall that any integer X in the range

p
0<KX<IIm =M<2" n=llogM]

i=1

that is the smallest integer larger than or equal
to log M, can be represented in a residue
number system by the expression X = {x,,
Xyron X}, Where x; = |X|,, = X—|X/m,|m, is
the ith residue digit, | X/m,| denotes the largest
integer not exceeding X/m,, and {m,} is a set of
p integers, called moduli. It can also be shown
that if the moduli are relatively prime numbers,
this is a unique representation.® In this paper
all moduli are assumed of the same order, i.e.
m; = 3(m), 1 < i< p, and consequently

14
M= TI m; = 9(mP)- §(const?),
i=1

log M = 3(n) = $(plogm),
p= 3(n/logm).

3. The conversion from the weighted to the
residue representation

The algorithm used for converting an integer
X from the weighted to the residue number
system is a generalisation of the algorithm
explained in Ref. 1, and is based on the
following considerations.

Let r} be the powers of 2 modulo m,, that is
’;=|2j|m,» 0<j<n—1,1<i<p, and let b,
be the value of the jth bit of the binary
representation of X. Then the residue rep-
resentation of X is given by X = {x, x,, ..., x

2 Ay

s Xph where
n-1
x;=|Zrb| , 1<i<p.
=0 m

In order to perform this summation, the
ordered set {b,} can be partitioned into n/q
groups of ¢ adjacent bits; n/q can be assumed
to be an integer, without loss of generality:

n/q  hg-1
— i,
x=|TI = rib),
h=1 j=(h-1)q my

All possible values resulting from the inner
summation, each depending on the values of
the Ath group of ¢ bits, can be stored in ROMs
having 2? words of [logm,] bits. Then the n/q
values read from ROMs are added by means
of n/q processing elements (PE’s); to im-
plement a modulo m, addition, each PE is
supplied with an accumulator register and is
able to perform binary addition and sub-
traction and to test the sign of the result. In
Fig. 1 the layout of the proposed VLSI
structure is drawn.

4. The conversion from the residue to the
weighted representation

The weighted representation of X can be
obtained as
p
X=|zx,

i=1

M

where X, is the nbit weighted representation of
{0,0,..., x,, ..., 0}.
Moreover, X, can be obtained as
fog m,]
X,= I b Quw,

k=1

b being the value of the kth bit of x, and

‘Q%® the nbit number whose residue represen-

tation consists of all residue digits equal to

zero, but the ith digit, ¢**, which equals 2%,

that is QP = {0,0, ..., q%» = 21, ... 0,0}.
Then

p [logm]
Z E b;j)'Q“'k)

i=1 k=1

X =

M

This computation of $(n) sums can be
performed by means of a structure very similar
to the portion dedicated to a single module of
the structure used for the direct conversion and
shown in Fig. 1, the only difference being the
dimensions.

5. Design complexity evaluation

The layout area for direct conversion can be
evaluated by considering dimension values
shown in Fig. 1. Total vertical and horizontal
sizes respectively result in

p
L= 3(2 logml.) = 3(plogm) = 9(n)
i=1

L,= 3((27+loglog m)n/q).

According to the time performance of
parallel adders, that is T = $(log log m),*! and
assuming that the time needed to read a ROM
of 2¢ words is 9(g), the pipeline interval is
9(q +loglogm).

As the choice of p and consequently of m,
depends on the particular applicaticn which
requires the use of RNS arithmetic, the
complexity figures A(n) and T,(n) for the area
and the pipeline interval of the conversion
circuits and, in particular for our case, the
choice of the optimal value of ¢ are con-
veniently evaluated for several possible
hypotheses, as shown in Tables 1, 2. It
is worth noting that the proposed structure
exhibits the same pipeline interval as in
Ref. 3, which, however, was evaluated for log
m=9(logn) and p=39(n/logn). Never-
theless the area complexity is better for a
factor 9(1/logloglogn), and it can be
verified that an improvement in the area
complexity is reached for any given hypo-
thesis, but for the asymptotic hypothesis
p = 3(n) and logm = Y(const), for which the
two structures result of the same complexity.

As far as the inverse conversion structure is
concerned, referring again to Fig. 1 and
considering only the structure related to a single
module, with n bits of representation, it is easy
to obtain the following complexity figures

A= 3((2? + log n)n*1),
T,= (9 +logn).

In this case the area-time performance does
not depend on the RNS parameters p and
logm, but only on the partition parameter q.
Choosing ¢ = 3(loglogn) yields

A= 9(n*logn/loglogn),
T,= Ylogn).

The pipeline interval is the same as in Ref.
3, that is 9(logn), but, also in the inverse
conversion, the layout complexity is reduced,
namely for a factor 3(1/loglogn).

We note that the total vertical size of the
structure is independent of the value of
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Fig. 1. The layout of the weighted-to-residue convertor.
Table 1
P logm A T, 9opt
Y(const) 9(n) 3((2? +log n)n?/q) 3(g +logn) Y(loglogn)
I(log n) (n/logn) H(2?+log n)n?/q) g +logn) I(log log n)
$(n/logn) Y(logn) 8((2? +log log n)n?/q) g +loglogn)  I(loglogloglogn)
3(n/loglogn) Y(loglogn) 9((27+log loglogn)n®/q) 9(g+logloglogn) 9(logloglog logn)
3(n) Y(const) 3(2n%/q) 3(q) 9(const)
Table 2
p logm A Pont
ntlogn
Y(const) 9(n) 3 S(logn)
loglogn
2]
(log n) 3(n/logn) 3 ﬂ) %(logn)
loglogn
%logl
3(n/logn) $(log n) 9 M) (log logn)
logloglogn
%loglogl
3(n/loglog n) (loglog ) 9 M) S(logloglogn)
loglogloglogn
3(n) Y(const) 9(n?) I(const)
parameters m, p, g, and is of the same order as same problem discussed here, when a table

data stream width. As a consequence, any
structure defined according to our approach
can interface data represented in positional
notation and RNS-based processors without
increasing the complexity of data stream
width.

As a concluding remark, in Ref. 6 it was
stated that complexity figures better than those
we obtained in 1984 are achieved,! for the

look-up approach derived from Ref. § is used;
at the same time some lower bounds on
complexity were claimed. Actually, present
work extends the approach in Ref. 1, gaining
better results, whereas it cannot be affirmed
that the look-up table technique is superior to
ours, because, unfortunately, results in Ref. 6
are affected by some faults, as is shown in the
Appendix.
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Appendix

The expression derived for area complexity in
Ref. 6 is wrong because, using the same
notation, the term M log M has been rewritten
as Lmlog(Lm) instead of m“Llogm; in fact

L
M =TI m, = m").

i=1

Consequently, the final correct expression of
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the area complexity for the computational
graph should be

A = Q(Llogm(Llogm+m+m"))
= Q(Lm"logm).

Similarly, for time complexity it should be
T =Q(Llogm).

SHORT NOTE

Moreover, the lower bounds for VLSI
implementations of RNS architecture dis-
cussed in Ref. 6 do not refer to the global
problem (as is generally intended when lower
bounds are investigated), but only to the table
look-up approach; in this case the term
‘constructive upper bounds’ seems more ap-
propriate.

Finally, in the RNS-based computational
graph defined in Ref. 6, the scaling and
conversion section, which is implemented by
means of a table whose area is 3(M log M), is
so large that it is needless to use RNS-based
systems; in fact such a table can be directly
used to perform the whole computation in the
dynamic range M.

Correspondence

Dear Sir,

The nature of information, which has been the
subject of much recent correspondence, is
readily understood if it is accepted that the
probability terms in Shannon and Weaver’s
expression for negentropy can validly be
replaced by frequency terms.! Information is
then released from its conventional constraint
of being applicable to only a ‘message string’
in a single dimension (e.g. as propagated over
a wired link), to being a geometrical property
of the three dimensions of space. The justi-
fication for this change is to be found in
Concepts of Modern Mathematics, in which
book Ian Stewart reaches the conclusion that
probability is best defined as average frequency
of occurrence.?

The expression of negentropy in terms of
frequency then allows the introduction of
means of dealing with time. That is to say, as
a further dimension leading on to the concept

of spatiotemporal, or four-dimensional, in-
formation as required, for instance, in theories
of relativity.

However, the question of the effects of
relative phase then arises in systems of complex
signals containing a mixture of frequencies,
e.g. speech. While the technology of relative
phase between continuous, fixed-frequency
signals is well understood, that for apparently
random discrete pulses is not recognised as
being of such importance in information
technology as it is in radar, say. Yet the
electrical activity of nerves displays just such
characteristics.

Further consideration of the problem then
shows that single, otherwise indistinguishable
pulses can stand in representation of either of
the half cycles of a single cycle of oscillation.
Since the half cycles of a single oscillation of
electromagnetic radiation are in antiphase to
each other, it follows that phase must also be

quantised at the half-cycle level, thus not only
providing a means of resolving all the com-
ponents of a complex signal, but ultimately of
reconciling quantum mechanics with relativity
in the field of theoretical physics.

Yours sincerely

B. E. P. CLEMENT

Clement Neuronic Systems Limited,
15 Everest Drive,

Crickhowell,

Powys NP8 1DH
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