Design of the Kernel Language for the Parallel Inference

Machine

KAZUNORI UEDA anpD TAKASHI CHIKAYAMA

Institute for New Generation Computer Technology, Mita Kokusai building 21F, 4-28, Mita I-chome, Minato-ku, Tokyo 108, Japan

We review the design of the concurrent logic language GHC, the basis of the kernel language for the Parallel Inference
Machine being developed in the Japanese Fifth Generation Computer Systems project, and the design of the parallel
language KL1, the actual kernel language being implemented and used. The key idea in the design of these languages is
the separation of concurrency and parallelism. Clarification of concepts of this kind seems to play an important role in
bridging the gap between parallel inference systems and knowledge information processing in a coherent manner. In
particular, design of a new kernel language has always encouraged us to re-examine and reorganise various existing

notions related to programming and to invent new ones.
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1. INTRODUCTION

The Japanese FGCS (Fifth Generation Computer
Systems) Project,™ which is a ten-year project started in
1982, aims at developing methodologies and technologies
for supporting knowledge information processing with
highly parallel inference machines.

The outstanding feature of the FGCS project is that it
takes the middle-out approach, which means designing a
novel kernel language that bridges the enormous semantic
gap between parallel hardware and application software.
Years ago, many people hoped that this gap would be
narrowed gradually, but instead it seems to be widening,
because applications are becoming more and more
sophisticated, while recent development of computer
architecture (such as RISC and parallel architectures)
requires us to exploit the physical characteristics of
programs such as communication locality better. This is
not necessarily an undesirable phenomenon for very
efficient processing and the understanding of compu-
tation, though it incurs more difficulty in bridging the
gap.

The approach adopted by the FGCS project is to use
the logic programming paradigm as the bridge. Of
course, merely proposing a single paradigm does not
suffice; that was simply a starting point and we had to
materialise the paradigm in the form of a kernel language.
One reason why logic programming seemed appropriate
as a starting point is that it has no sequentiality concept.
Prolog, the most successful outcome from the logic
programming paradigm so far, relies more or less on
sequentiality, but the basic framework of logic pro-
gramming seemed to provide us with a good basis for
research on parallelism.

Indeed, much work has been done on parallelism in
logic programming. This can be classified into two major
directions: parallel execution of logic programs without
explicit specification of concurrency (which we call
ordinary logic programs henceforth), and the design of
concurrent logic programming languages. The former
direction is concerned with exploiting the power of
parallel computers in a way transparent to programmers
(the most notable example of which is the OR-parallel
execution of Prolog), while the latter direction is

concerned with parallelism at the logical level, which we
usually refer to as concurrency. We will henceforth use
the term parallelism only to mean parallelism at the
physical level.

The FGCS project decided to follow the latter direction
in principle. We felt that parallel execution of ordinary
logic programs was not sufficient to cover all the levels of
abstraction between the applications layer and hardware
layer. A good concurrency formalism is needed to write
reactive systems elegantly,’® and we decided to design a
kernel language based on the concurrent logic pro-
gramming paradigm. We know that not all applications
require the concurrency formalism, but we were quite
confident that different program paradigms can be
implemented on top of the concurrency framework.
Also, concurrent languages provide us with a natural
construct through which to consider parallel execution
and to design parallel algorithms, namely concurrent
processes.

One way to design a concurrent language would be to
augment a sequential language with the primitives for
communication and concurrency. However, we chose to
design our kernel language independently of existing
sequential languages. We had long felt that concurrent
programming could be made much easier and thus be
promoted by finding a simple formalism of concurrency
and a good concurrent language. Finding a simple
formalism seemed to be useful also for clarifying various
concepts related to concurrency and parallelism. The
concurrent language we designed is called Guarded Horn

Clauses (GHC),?*”*® which is described in Section 2.

In designing GHC, we completely separated the notion
of concurrency and the notion of parallelism, and
included only the former in the language constructs. This
is because the specification of how a concurrent program
should run on a parallel computer tends to be imple-
mentation-dependent. To make effective use of parallel
computers, however, we should be able to specify how a
program should most desirably be executed on them at
least when we wish. One may claim that automatic
parallelisation is clearly more desirable than explicit
control of parallelism from programmers’ point of
view. However, in order to develop good automatic
parallelisation schemes, we should carry out our research
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using languages with explicit control of parallelism. Our
kernel language, called KL1,® is based on GHC, but
takes the above issue of parallel execution into account
among other things. So KL1 can be called a parallel
language, while GHC is a concurrent language. The
design of KL1 will be described in Section 3.

2. CONCURRENT LOGIC LANGUAGE GHC

The design of the kernel language for the Parallel
Inference Machine,'® the machine we are now building,
was started in 1982. The concurrent logic languages we
considered as the possible basis of the kernel language
include Relational Language,* Concurrent Prolog* and
PARLOG.>® In particular, we studied Concurrent
Prolog in detail, the most expressive of these languages,
and implemented it fully on a general-purpose sequential
computer.'” We had known through our experiences that
one of the most useful ways to understand and review a
programming language is to try to implement it.
Implementation compels us to clarify the details of a
language, and if successful, gives us a constructive
evidence (though not a complete proof) that the language
constructs are well and reasonably defined.

Guarded Horn Clauses (GHC) was born at the very
end of 1984 through these studies, the most direct clue
being the attempt to clarify the atomic operations of
Concurrent Prolog.

GHC shares its basic framework with other concurrent
logic languages. First, a GHC program is a set of
guarded clauses. Secondly, GHC features no don’t-
know nondeterminism (built-in search capability) but
features don’t-care nondeterminism, which allows us to
program reactive systems that interact with the outside
world. Reactive systems in concurrent logic languages
are based on the process interpretation of logic,® in which
a goal (or a multiset of subgoals derived from it) is
regarded as a process and processes communicate by
generating and observing bindings (between shared
logical variables and their values). Like most concurrent
logic languages, all bindings communicated between
GHC processes are determinate, that is, they are never
revoked once published to other processes. The deter-
minacy of bindings is essential in reactive systems,
because the bindings may be used for interacting with the
real outside world.

2.1 The key idea of GHC

What then is the key idea of GHC? As explained above,
one important aspect of concurrent logic languages is the
determinacy of bindings. In general, the execution of a
concurrent logic program proceeds using parallel input
resolution that allows parallel execution of different
goals, but under the following rules to guarantee the
determinacy of bindings.?®

(1) The guards (including the heads) of different
(guarded) clauses called by a goal g can be executed
concurrently, but they cannot instantiate g.

(2) The goal g commits to one of the clauses whose
guards have succeeded (see (4) below).

(3) The body of a clause to which g has committed can
instantiate g. The bodies of clauses to which g has not
committed cannot instantiate g or the guards of the

clauses (this can be achieved simply by not executing
them at all).

(4) A goal is said to succeed if it commits to some
clause and all its body goals succeed. (Note that the latter
half vacuously holds if the body is empty.)

That is, before commitment, a goal can pursue two or
more clauses but without generating bindings. After
commitment, it can generate bindings but only one
clause is left.

Another important aspect of concurrent logic lan-
guages is how synchronization is achieved. In general,
synchronisation is achieved by restricting information
flow caused by unification. Concurrent Prolog uses read-
only annotations, and PARLOG uses mode declarations
which are used for compiling the unification of input
arguments into a sequence of one-way unification and
test unification primitives. However, in these languages
additional mechanisms are necessary to guarantee re-
striction (1) above. In Concurrent Prolog, bindings
which are generated during the execution of a guard and
which would instantiate the caller side are recorded
locally, and are published upon commitment. In
PARLOG, the guard of a clause C containing a (guard)
goal that can instantiate the caller of C is called unsafe,
and an additional restriction is imposed that every guard
must be safe.!!

The key idea of GHC is quite simple. It uses restriction
(1) itself as a synchronisation construct. That is, any
piece of unification which is invoked directly or indirectly
from the guard of a clause C and which would instantiate
the caller of C is suspended until it can be executed
without instantiating the caller. Thus the safety condition
in the sense of PARLOG is automatically satisfied.
Moreover, unlike Concurrent Prolog, no bindings need
be recorded for later publication. In other words, GHC
has integrated two notions: the determinacy of bindings
and synchronisation. This conceptual simplification led
to GHC being adopted finally as the basis of our kernel
language.

Interestingly, the same synchronisation mechanism
had been invented independently in the functional
language Qute for different purposes.??

2.2 From GHC to Flat GHC

A kernel language must provide a common framework
for people working on various aspects of the project
including applications, implementation and theory. Be-
fore accepting GHC as the basis of our kernel language,
we had to convince ourselves that it satisfies the following
conditions.

(1) It is expressive enough.

(2) It can eventually be implemented efficiently,
possibly by appropriate subsetting.

(3) Tt is simple enough to be understood and used by
programmers including novices. Also, it is simple enough
for theoretical treatment.

It is a social process that a programming language is
accepted by a community. It took considerable time and
effort until GHC was accepted even within ICOT. The
primary reason is that many of us considered GHC as an
unduly restrictive logic language rather than a flexible
concurrent language. We soon made sure that GHC was
expressive enough to write most concurrent algorithms
that had been written in other concurrent logic languages,
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but that was not enough. How to program search
problems was also important, because search problems
are a specialty of ordinary logic languages with which
our project was started. So we have developed a couple
of methods for programming search problems.!® 2628

For implementability, we quickly ascertained by rapid
prototyping that GHC can be implemented fairly
efficiently at least on sequential computers.3?

For simplicity, we continued to study the properties of
GHC and looked for a simpler explanation of the
language better suited to process interpretation. Now,
our interpretation is that a GHC process is an abstract
entity which observes and generates information (repre-
sented in the form of bindings) and which is implemented
by a multiset of body goals. The behaviour of each body
goal is defined by guarded clauses that can be regarded
as rewrite rules.

A problem with the original definition of GHC is that
guard goals do not fit well into the process interpretation.
They are most naturally regarded as auxiliary conditions
to be satisfied for the rewrite rule containing them to be
applied. From a practical point of view, we felt that the
expressive power of guard goals did not justify the
implementation effort even if it could be implemented
efficiently. In short, the generality of guard goals seemed
unnecessary.

These considerations led us to reduce GHC to a
subset, Flat GHC, a movement inspired by the reduction
of Concurrent Prolog to Flat Concurrent Prolog.?* Since
Flat GHC arose from rather practical requirements, it
did not have a rigorous definition for a long time. The
vague idea was that only certain predefined predicates
could be called from clause guards, but it was not defined
what properties should be satisfied by those predefined
predicates. Later on, we became convinced that the
sufficient conditions to be satisfied by a guard goal as an
auxiliary condition are that it is deterministic (that is,
whether it succeeds or not depends only on its arguments)
and that it does not produce any bindings. These
conditions can be obeyed by restricting predicates called
directly or indirectly from a guard to those defined by
unit clauses (possibly virtually in the case of predefined
predicates), namely clauses with empty bodies. This
restriction simplified the theoretical treatment of GHC
such as the operational semantics® and program trans-
formation rules.3?

To summarise, the basic idea of Flat GHC is as
follows. A program is a set of guarded clauses that can
be regarded as rewrite rules of goals. The guard of a
clause specifies what information should be observed
before applying the rewrite rule, and the body specifies
the multiset of goals replacing the original one. A body
goal is either a unification goal of the form ¢, = ¢,, whose
behaviour is language-defined, or a non-unification goal,
whose behaviour is user-defined. A unification body goal
generates information by unifying ¢, and ¢,, and a non-
unification body goal represents the rest of the work and
will be reduced further.

2.3 Understanding GHC better

When GHC was first proposed, we were not fully aware
of many good properties of the language; they were
clarified by later work inside and outside ICOT. One
example is the process interpretation of Flat GHC

programs. Another example is a logical characterisation
of communication and synchronisation due to Maher.!®
He showed that information communicated by processes
can be viewed as equality constraints over terms; that the
generation of information can be viewed as the pub-
lication of a constraint; and that the observation of
information can be modelled as the implication of a
constraint by the set of constraints published so far.

Thus we have acquired both algebraic and logical
characterisations of the communication mechanism used
in GHC, which indicates the robustness of the language
construct.

Also, we tried to characterise the atomic operations of
GHC. Unlike concurrent Prolog but like PARLOG, the
publication of bindings is not done atomically upon
commitment of a non-unification goal but eventually
after commitment, using a unification body goal that can
run in parallel with other goals. This means that
commitment in GHC is a smaller and simpler operation
than commitment in Concurrent Prolog. Moreover, in
GHC the information generated by a unification body
goal is not an atomic entity in general. It can be
transmitted in smaller pieces, possibly with communi-
cation delay.

We have found that this liberal computational model
of (Flat) GHC is expressive enough to program co-
operating concurrent processes and leaves more freedom
to implementation. (Flat) GHC is unfortunately not
expressive enough to program processes that may not be
cooperative. However, the shoen construct of KLI1
(Section 3.1) takes care of such processes.

Another point to note is that GHC has included
control for the correct behaviour of processes but
excluded any control for efficient execution. GHC has
left the latter to KL1 in order to clearly distinguish
between the two notions. This contrasts with PARLOG,
which features sequential AND that can be used for
suppressing parallel execution of body goals. We believe
that it is important to learn that synchronisation based
on information flow is sufficient for writing correct
concurrent programs.

Important topics on theoretical aspects of Flat GHC
include the relationship with other theoretical models of
concurrency such as CCS!® and theoretical CSP.!*
Although concurrent logic languages differ from CCS
and CSP in that they are based on asynchronous
communication and can be used to program dynamically
reconfigurable processes, similar mathematical tech-
niques can be used to formalise them.® ?! In Flat GHC,
the notion of a transaction®® captures the externally
meaningful unit of communication that corresponds well
to an event in synchronous communication. We have not
yet obtained a completely satisfactory formal semantics,
but we are fairly confident that Flat GHC is theoretically
simple enough, while it can be used for practical
programming without any modification.

An issue that has always been of great interest since
various concurrent logic languages were proposed is how
to relate them to ordinary logic languages with don’t-
know nondeterminism. Our consistent position has been
to clarify the difference of these two families of languages
and to integrate them with a carefully designed inter-
face.** In developing a compilation method from
ordinary to concurrent logic languages,?® we tried to
clarify what it means to ‘collect’ all solutions of a search
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program, which is related to the semantics of all-
solutions predicates in Prolog such as bagof.

3. PARALLEL LANGUAGE KL1

As described above, we have designed a concurrent logic
language Flat GHC as the basis of the kernel language
for parallel inference systems. The descriptive power of
the language, however, is not sufficient when efficient
program execution is our concern. As Flat GHC
programs do not say anything about where (i.e. on which
processor) the atomic operations making up a com-
putation should be performed, there are many ways to
distribute the operations over available processors. As
Flat GHC programs only specify the partial ordering of
atomic operations, there are many possible total order-
ings conforming to it. Some distribution and ordering
may be more efficient than others. To make sure in all
cases that the distribution and the ordering employed are
not far from optimal, we must be able to specify physical
details of execution to some extent.

We thus designed a parallel programming language
based on the concurrent programming language Flat
GHC, in which we can specify in certain detail how a
program should be executed. This section describes the
outline of this language, named KL1.

3.1 Mapping of computation

Flat GHC programs implicitly express any potential
parallelism in the sense that no ordering between atomic
operations exists except for the ordering essential for
correctness. To faithfully exploit this parallelism might
be meaningful on an ideal parallel computer which has
an unlimited number of processors and in which inter-
processor communication has unlimited throughput and
no latency. However, any real hardware has a limited
number of processors and the cost of interprocessor
communication cannot be neglected. To achieve effici-
ency, control is required on when and where each atomic
operation should be performed. We call this control
mapping in what follows.

One way to solve the problem is to make a language
implementation fully responsible for mapping. The
current technology of parallel software, however, does
not provide an efficient mapping strategy applicable to
all application areas; establishing such technology
through experiences with diverse applications is one of
the principal goals of the research on parallel inference
systems in the FGCS project.

Mapping is often implicit in sequential systems.
Suppose there are two methods to solve a problem:
method 4 may fail to find a solution in rare cases, but
always terminates in a short period of time either with a
solution or with a failure signal; method B is less efficient
but always finds a solution. In such a case, the most
efficient sequential strategy is to try A first and to try B
only when 4 is unsuccessful. In sequential systems, such
strategic decisions for efficiency are usually not clearly
separated from the mandatory ordering for the correct-
ness of programs.

Trying B only after 4 may not be the best strategy,
however, for parallel systems. Method 4 may not require
all the computational resource (such as processors) for
its execution. In such a case, method B should be tried in

parallel with A, as long as it does not interfere with the
execution of method A. This can be realised by providing
an elastic guideline of mapping, namely giving 4 a higher
priority than B.

Sometimes more sophisticated mapping is desirable.
Suppose that there are two methods to solve a problem
and that, although at least one is known to find a
solution efficiently, we cannot tell which beforehand. In
such a case, the best scheduling strategy may be to give
both methods approximately the same amount of
computational resource. Resource management is thus
an important part of an algorithm in parallel com-
putation.

In sequential computer systems and in parallel
computer systems as extensions of conventional sequen-
tial systems, operating systems are primarily responsible
for mapping. This is acceptable as far as application
programs are mostly sequential and the mapping strategy
is implicitly specified and executed using sequencing. In
parallel systems where explicit mapping operations are
much more frequently required, invoking the operating
system for each mapping operation will incur intolerable
overheads.

To solve this problem, we have introduced into KL1
the following features, which are intended to be efficiently
implemented.

Shoen. Shoen* represents a group of goals. This group
is used as the unit of execution control, namely the
initiation, the interruption, the resumption and the
abortion of execution. Exception handling and resource
consumption control mechanisms are also provided
through this shoen construct. The shoen construct is an
extension of the metacall construct proposed by Clark
and Gregory.®

Priority. A (body) goal of a KL1 program is the unit
of priority control. Each goal has an integer priority
associated with it. Each shoen keeps the maximum and
the minimum priorities allowed for goals belonging to it,
and the priority of each goal is specified relative to these.
The language provides a large number of logical priority
levels, which are translated to physically available priority
levels provided by each implementation. If no priority is
specified, the priority of the parent goal is inherited.

The priority mechanism can be used for programming
speculative computation.!-2?

Processor specification. Each (body) goal may have a
processor specification, which designates the number of
the processor on which to execute the goal. Without this,
the goal is executed on the same processor as its parent
goal.

This straightforward mechanism provides the basis of
research in more sophisticated load-distribution strate-
gies. Actually, several automatic load-distribution strate-
gies have been developed for diverse problems. As the
optimal load distribution depends heavily on each
problem, no single scheme works universally. Instead,
typical schemes are planned to be provided as libraries,
from which users can select the most appropriate ones
for their problems.

One of the most notable characteristics of the KL1
language is that these priority and processor specifica-
tions are separated from concurrency control. We call
these specifications pragmas. Pragmas are merely guide-

* Shoen is a Japanese word corresponding to ‘manor’ in English.
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lines for language implementations and may not be
precisely obeyed. The same is true of the controlling
mechanism of shoen; abortion of computation, for
example, may not happen immediately. This relaxation
makes distributed implementation much easier.
Pragmas are specified within the program but are
clearly distinguished syntactically from other language
constructs. Pragmas will never change the correctness of
the programs,* though the performance may change
drastically. As it is not uncommon that more than half of
the effort to develop a program is devoted to the
design of appropriate mapping, it is most advantageous
that the specification of mapping is syntactically isolated
from the rest of the program. In many parallel
programming languages, the specification of parallel
execution is often mixed up with other language
constructs, especially with constructs for concurrency
control. A major revision is often required for improving
efficiency or for running the program on a different
implementation, which is liable to introduce new bugs.

3.2 Keeping up with sequential languages

What criterion is appropriate for comparing parallel
algorithms? Assume that a parallel algorithm has
sequential execution time c¢(n) (n being the size of the
problem) and average potential parallelism p(n). Then
the total execution time by this algorithm on an ideal
parallel computer is given by c(n)/p(n). This means that
an algorithm with more sequential execution time but
with still more parallelism is considered to be a better
algorithm on an ideal parallel computer.

This, however, does not hold when the potential
parallelism, which may vary over time, can exceed the
physically available parallelism. With limited physical
parallelism, which is always the case in the real world, a
parallel algorithm whose sequential time complexity is
worse than that of a known sequential algorithm will be
beaten by that sequential algorithm running on a
sequential computer for sufficiently large n, no matter
what p(n) is.

Thus, when designing a parallel algorithm, we must
often consider a hybrid strategy that the algorithm
switches to a sequential algorithm when the physically
available parallelism is used up.

Pure languages such as pure Lisp and pure Prolog
cannot straightforwardly express certain kinds of efficient
algorithm due to the lack of the notion of destructive
assignment. To overcome this requires optimisation
techniques that enable an implementation to make use of
the destructive assignment of hardware memory. GHC
also is a pure language with the same inherent problem.
To write efficient algorithms in these pure languages, we
must be able to somehow mimic the efficiency of array
operations in conventional languages.

For this reason, KL1 introduced a primitive for
updating an array element in constant time without
disturbing the single-assignment property of logical
variables. The primitive can be used as follows:

set_vector_element (Vect, Index, Elem,
NewElem, NewVect)

* To be precise, the priority specification may be used for
guaranteeing certain properties of diverging (i.e. autonomously non-
terminating) programs.

When an array Vect, an index value Index and a new
element value NewElem are given, the predicate binds
Elem to the value of the Index’th element of Vect, and
NewVect to a new array which is the same as Vect
except that the Index’th element is replaced by
NewElem.

Because some other goals may still have references to
the old array Vect, a naive implementation might
allocate a completely new array for NewVect and copy
all but one elements. However, when it is known that no
goals other than the above set_vector_element
goal have references to Vect, there will be no problem in
destructively updating it. In the actual implementation of
KL1, a simplified, efficient version of the reference
counting scheme? detects such a situation, in which event
the new array NewVect is obtained in constant time.

This means that any imperative algorithm can beY
rewritten in KL1 retaining the same computationals
complexity, as random access memory can always be3
emulated using a single-reference array. Of course@
allowing only one reference to a data structure canz
decrease the possibility of parallel execution consider-3
ably. However, as stated above, the requirement of the =
computational complexity must be considered only forﬁ.
the sequential parts of parallel algorithms which are®
invoked after physically available parallelism is used up.:%’

3.3 Implementation

The most advanced implementation of KL1 currently in
use is the one on the Multi-PSI system.?® This ex-
perimental parallel inference machine has up to 64_%_
processors of PSI-II'® connected in grid, attaining the =
peak performance of around 10 MRPS for list con-
catenation.t Several Multi-PSIs and the KL1 im-
plementation on them are used in the research and
development of parallel application software.

A new implementation under development is for a
higher-performance inference machine PIM,® which is
expected to have up to 512 processing elements and
attain more than 100 MRPS of peak performance.

9/wo2°dno-oIW

4. CONCLUSIONS

We have reviewed the design of the concurrent language
GHC, the basis of the kernel language for the FGCS
project, and the design of the parallel language KL1, the
actual kernel language we are implementing and using.
We have explained why we expose both concurrency and
parallelism. Both need to be accessible for some
programmers, though they may not have to be exposed
to all programmers. When a good amount of parallel
application software in KL1 has been accumulated, we
should try to find appropriate higher-level language
constructs for supporting application programmers,
together with their implementation techniques on KL1.

We have been careful in separating concurrency and
parallelism because they are separate, though closely
related, concepts. Concurrency has to do with correct-
ness, while parallelism has to do with efficiency. This
means that the semantics of GHC is independent of the
underlying model of implementation, while the semantics

20z Iudy 01 uo 1senb Aq 6960SE/761/9/EE/8101IE

t MRPS is for mega reductions per second. This roughly corresponds
to MLIPS (mega logical inferences per second) of Prolog.
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of KL1 assumes a particular model of implementation.
The formal semantics of KL1 is therefore difficult to
describe, but this separation has made GHC simpler
from a theoretical point of view.

To mention this separation from the programming
point of view, our experience shows that writing correct
concurrent programs is not difficult. What is still difficult
is to write efficient parallel programs. The operating
system PIMOS?® for Multi-PSI and PIM was first
developed using a KL1 implementation on a general-
purpose sequential machine, but almost no synchron-
isation bugs bothered us when it was installed on Multi-
PSI.

The purpose of our research on the kernel language is
not only to design a usable programming language, but
also to better understand various concepts related to
concurrent, parallel and logic programming. We started
our project with the logic programming paradigm and
then introduced concurrent logic programming, but we
must continue to find many good concepts that sys-
tematically bridge the semantic gap between parallel
computers and knowledge information processing.

Both GHC and KL1 have room for refinement. For
instance, recently we found that a simple mode system
based on the notion of constraints can be used for
simplifying Flat GHC further® both in terms of
programming and of impiementation. As this example
indicates, implementation, applications and theory in-
teract with one another in designing a programming
language. It is very important for the healthy de-
velopment of the kernel language that the language is
used and reviewed by people working on these diverse
areas.
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Announcements

3—6 SEPTEMBER 1991

VLDB ’91: 17th International Conference on
Very Large Databases

Barcelona, Catalonia, Spain
Call for Papers

The Conference

VLDB conferences are a truly international
forum for identifying, encouraging and ex-
changing ideas and experiences on research,
development and novel applications of data-
base management systems and techniques.
Like its predecessors, the seventeenth VLDB
Conference aims at bringing together re-
searchers, developers and users of database
management systems from academia and
industry to share this information and explore
new and challenging issues.

Topics

@ Logic, deductive and knowledge-based sys-
tems

o Extensible, temporal and multi-media data-

bases

Active and real-time database systems

Advanced applications and requirements

Object-oriented and semantic databases

Data models, languages and user interfaces

Data structure, access methods and com-

plex objects

Database theory and algorithms

Query optimisation, database design and

performance

@ Storage management, database machines
and parallelism

@ Database integrity and security

@ Concurrency control, transaction pro-
cessing and recovery

@ Distributed and heterogeneous databases

Papers

Original papers of up to 5,000 words in length
are invited on topics including, but not limited
to, those listed above. All submitted papers
will be read and carefully evaluated by the
Programme Committee. To submit papers,
send five (5) copies of the double-spaced
manuscript, including keywords, in English to
one of the Programme Co-Chairs by 15
February 1991:

Professor Dr Amilcar Sernadas, INESC,
Rua Alves Redol, 9, 70, Apartado
10105, P-1017 Lisboa Codex (Portugal).
Internet (US): inesclacs%solo@relay.EU.
net; (Europe): asc%solo@inesc.uucp or
acs@inesc.ctt.pt.

Dr Guy M. Lohman, IBM Almaden Research
Center, Department K55, Building 801, 650
Harry Road, San Jose, CA 95120-6099,
U.S.A. Internet: lohman@ibm.com; BITNet:
lohman@almaden.

Panels

Proposals for panel sessions should be sent by
30 March 1991 to:

Professor Alfonso F. Cardenas, University of
California at Los Angeles, Department of
Computer Science, 3731 Boelter Hall, Los
Angeles, CA 90024, U.S.A. Internet: car-
denas@cs. ucla.edu.

Tutorials

Proposals for tutorials should be sent by 6
January 1991 to:

Professor Antoni Olive, Facultat d’Infor-
matica, Universitat Politecnica de Catalunya,
Pau Gargallo, 5, E-08028 Barcelona, Cata-
lonia, Spain. Ean: olive@lsi.upc.es. From
BITNet: olive%fib. upc.es@cernvax.

Important dates

Tutorial deadline
Paper submission dead-
line

Panel session deadline
Notification of accep-

6 January 1991
15 February 1991

30 March 1991
29 April 1991

tance

31 May 1991 Camera-ready copies
deadline

3-6 September 1991 Conference in Barcel-
ona

The 17th International Conference on Very
Large Data Bases is organised by the Aso-
ciacion de Tecnicos de Informatica (ATI,
member of FESI) and the Universitat Poli-
tecnica de Catalunya on behalf of the VLDB
Endowment, in cooperation with the IEEE
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Computer Society. ACM cooperation pend-
ing.

General Conference Chair

Professor Felix Saltor, Universitat Politecnica
de Catalunya, Barcelona.

European Conference Chair

Dr Georges Gardarin, INRIA and Université
Paris VII, Le Chesnay and Paris.

U.S. Conference Chair

Dr David K. Hsiao, Naval Postgraduate
School, Monterey, California.

VLDB Endowment Representative

Dr Peter Lockemann, Universitit Karlsruhe,
Karlsruhe.

Local Organising Committee Chair

Dr Jordi Guinovart, IBM Spain, Barcelona.

The 17th VLDB Conference will be held in
Barcelona, Catalonia, Spain. Barcelona,
settled since the sixth century B.c., is the
capital city of Catalonia, a country established
in the tenth century. It has been selected to
host the next Olympic Games for good
reasons: its situation by the Mediterranean
Sea, its climate, communications, facilities
and cultural events. The Gothic quarter of
Barcelona and the Romanesque paintings at
the Museum of Catalan Art are world-famous,
but visitors to Catalonia can find works of art
of different cultures, from Iberian and Roman,
through Visigoth and Jewish, to Modern Style
—such as Gaudi’s Sagrada Familia church
featured in the Conference logo —and con-
temporary art: Picasso, Mird, Dali, Tapies.
Barcelona is also known for its fine restaurants
and a wide variety of sports activities.

The social programme is planned to include
a banquet in a medieval building, and optional
trips to the beaches of the Costa Brava and to
a winery.

For further information contact:

VLDB *91, DIFINSA, Av. Republica Argen-
tina, 63, E-08023 Barcelona, Catalonia, Spain.
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