Concurrency: Simple Concepts and Powerful Tools

L. FOSTER!, C. KESSELMAN? AND S. TAYLOR?

! Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, U.S.A.

2 The Aerospace Corporation
3 California Institute of Technology

Stepwise refinement is a central program development methodology that has been applied extensively to the design of
sequential and parallel programs. In this methodology, a problem is successively decomposed into subproblems in order
to untangle seemingly interdependent aspects of the design. To apply the methodology to parallel programs, one must
be able to separate and reason about issues such as partitioning and mapping.

This paper describes programming language concepts that we have found useful in applying stepwise refinement to
parallel programs. The concepts allow decisions concerning program structure to be delayed until late in the design
process. This capability permits rapid experimentation with alternative structures and leads to both portable and
scalable code. Although simple, the concepts form a sufficient basis for the construction of powerful programming tools.
Both concepts and tools have been applied successfully in a wide variety of applications and are incorporated in a

commercial concurrent programming system, Strand*.

Received July 1990

1. PARALLEL PROGRAM DESIGN

Parallel program design can be easy if conducted via the
appropriate methodology. The key idea is to separate
concerns so that each aspect of a program design can be
addressed in isolation. Fortunately, the stepwise refine-
ment methodology used in the design of sequential
programs'® is equally applicable to parallel program-
ming.? In this methodology, a program is refined
incrementally from an initial specification; parallel
aspects of the design such as partitioning and mapping
can be introduced in distinct refinement steps.

Decisions concerning parallel aspects of a program
design should be delayed until late in the refinement
process. This approach encourages problem formulations
in which much of a program’s structure is independent of
these decisions; thus, alternatives can be examined
without substantial program modification. In addition, it
is possible to achieve a degree of architectural in-
dependence: a program can be retargeted for a different
architecture by modifying only the latter refinement
stages.

Design decisions can be delayed only if preceding
design steps do not commit the design to a specific
architecture. For example, an early commitment to a
globally shared data structure, as a means of com-
munication between subprograms, may hinder sub-
sequent partitionings for execution on multicomputers.
Early commitments in the design can be avoided by
adopting an abstract, architecturally independent view
of communication, synchronisation, and concurrent
execution. Surprisingly, this architectural independence
can be achieved by using a programming model based on
only four simple concepts: monotone variables, con-
current interleaving, non-deterministic choice, and sep-
aration of sequential code. Furthermore, these ideas
provide a foundation on which powerful programming
tools can be built to support each step of the program
development cycle. The tools include portable pro-

* Strand is a trademark of Artificial Intelligence Limited.

gramming environments, low-overhead performance
analysers, support for the integration of existing sequen-
tial code, and compilers that allow parallel program
structures to be reused.

This paper describes the framework that we have
developed to support the application of stepwise refine-
ment in parallel programs. The ideas and tools that we
describe have been used to develop portable applications
on a wide range of hardware platforms including
multicomputers, networks of workstations, and shared-
memory machines. The exposition in this paper uses the
syntax of the concurrent programming language Strand;?
however, the underlying concepts are language-inde-
pendent. Some of the ideas have been useful in recent
research concerned with the central notion of program
composition.®

2. SIMPLE CONCEPTS

Four simple ideas are sufficient to express a wide variety
of concurrent computations. The notion of monotonicity
provides an abstract model of communication and
synchronisation. Programs are constructed by a con-
current interleaving of component programs. Non-
deterministic choice is used to select between alternative
program actions. Finally, separation of sequential code
simplifies the introduction of state change and se-
quencing.

Monotonicity. Components of a parallel program may
exchange information via shared monotone variables. A
monotone variable is initially undefined; it can be
assigned at most a single value and subsequently does
not change. A program that requires the value of a
variable waits until the variable is defined.

A shared monotone variable can be used to both
communicate values and synchronise actions. For
example, consider two programs producer and con-
sumer that share a variable X:

producer(X), consumer(X).

The producer program may assign a value to X (e.g.

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 501

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

I. FOSTER, C. KESSELMAN AND S. TAYLOR

‘msg’) and thus communicate this value to the
consumer:

producer(X) :— X := ‘msg’.

The consumer program may receive the value and use
it in subsequent computation:

consumer(X) :— X == ‘msg’ | use(X).

The concept of synchronisation is implicit in this model.
In the example, the comparison X == ‘msg’ can be
made only if the variable X is defined. Hence, execution
of the consumer is delayed until the value is available.

Monotonicity is valuable for two reasons. First, a
program can be understood in isolation: choices made
on the basis of monotone variables cannot change. This
attribute eases the understanding of concurrent programs
and avoids errors caused by time-dependent interactions.
Secondly, the concept is trivial to implement efficiently:
it maps directly to pointers within a single computer and
to message passing between computers. Once available,
the value of a variable can be propagated throughout a
parallel machine without concern for consistency of
copies.'® Hence, programs can operate on distributed
shared data without locking protocols or complex
synchronisation schemes.

Interleaving. A program component is able to execute
when its data is available; if the data is available, the
program is guaranteed to execute eventually. The order
in which programs execute is not otherwise constrained.
In particular, programs can be executed in parallel.

A consequence of monotonicity and interleaving is
that it is not important where and when program
components execute. Hence, decisions concerning par-
titioning, mapping, and granularity can be isolated from
the rest of the program design process.

Choice. Programs must inevitably choose between
alternative actions; this choice is based on the values of
variables. We adopt a simple method of specifying
program actions that makes such choices explicit and
avoids overspecification.® The following program, which
computes the maximum of two numbers, illustrates the
concept.

max(X,Y¥,Z2) :— X >=Y|Z:=X.

max(X,Y,Z) :— X =<Y|Z:=Y.

Informally, the two rules in this program specify two
alternative actions, each with an associated condition. If
X>Y, the output Z is defined to be X. Alternatively, if
X<Y, Zis defined to be Y. If X=7Y, either action can be
performed. The program can be understood in terms of
pre- and postconditions: if X>Y holds, Z=X will hold
eventually, while X <Y leads to the postcondition Z=Y
and X=Y to the postcondition X=Y =2Z.

This intuitive understanding of the program is valid
because of monotonicity and interleaving. The mono-
tonicity of X and-Y ensures that the preconditions are
also monotone. For example, once X >Y, this condition
holds for ever and cannot be affected by actions
performed by other programs. Interleaving ensures that
once a precondition is satisfied, a valid postcondition will
eventually be reached.

Separation of sequential code. State change and
sequencing are familiar concepts from sequential pro-
gramming. State change permits efficient management of

memory via destructive operations to storage locations;
sequencing permits state changes to be organised without
the overhead of explicit synchronisation operations on
each access to data.!* We choose to make these concepts
available via simple interfaces to conventional languages
such as C and Fortran. These interfaces allow a sequential
program segment to be treated as an atomic black box
that computes an input/output relation. Hence, it can be
characterised in terms of pre- and postconditions in the
same way as parallel program components.

This approach has a number of benefits. It achieves a
clean separation of concerns between sequential and
parallel programming; it provides a familiar notation for
sequential concepts; and it enables existing sequential
code to be reused in parallel programs.

Summary. Monotonicity, interleaving, and choice
provide an abstract method for specifying parallel
computations. Sequential components of these comput-
ations can be expressed with existing languages. The
notion of monotonicity is at the heart of concurrent logic
programming,* ** functional programming,'? and object-
oriented programming;' the other ideas have also been
examined extensively. Unfortunately, the ideas are
frequently embedded in complex language designs and
are obscured by the terminology associated with a
particular programming paradigm. We consider the
ideas to be a sufficient basis for parallel programming in
and of themselves. Moreover, we find that they can be
implemented efficiently on a wide variety of architectures.

3. SIMPLE PROGRAMMING TECHNIQUES

Experience in the use of the basic concepts listed
previously has resulted in the isolation of six simple
programming techniques.® Applications are constructed
by the repeated use of these techniques in different
combinations and guises. Understanding the program-
ming concepts described earlier amounts to no more
than an appreciation of the structure and application of
the techniques.

The first three techniques are used to express various
stream-based interprocess communication protocols. The
producer/consumer protocol allows unbounded com-
munication between a single producer and one or more
consumers. The incomplete-message protocol allows two-
way unbounded communication. Finally, the bounded-
buffer protocol organises communication so as to bound
the number of unreceived messages.

The latter three techniques comprise the difference
list,® short circuit,'® and monitor. The difference list is a
representation of a list that allows it to be constructed in
parallel by many producers. The short circuit is used to
detect termination of a set of program components.
Finally, the monitor (or blackboard) allows concurrent
but atomic access to a shared data structure.

We outline here the most complex technique, the
bounded buffer. This organises communication between
a producer and a consumer so as to bound the number
of unreceived messages, by using a message buffer via
which all communication is conducted. The producer
generates messages only if there is space in the buffer; the
consumer is responsible for creating space when it
removes elements.

Fig. 1 illustrates the implementation of this protocol.

" The following program creates an initial buffer re-

502 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

CONCURRENCY: SIMPLE CONCEPTS AND POWERFUL TOOLS

producer (N, [M | Ms]) :—
N > 0|

N1 is N — 1,

M := "msg’,

producer (N1, Ms).
producer(0, [M | Ms]) :—

M asgn ‘done’.
consumer([“msg”> | Ms],End)
End := [X | Endl],

consumer (Ms, Endl).
consumer([“done” | Ms],_).

% R1. Wait for buffer
% Still generating?

% One less to generate
% Generate amessage

% Recurse to generate more
% R2. All done?

% Close stream

% R3. Wait for "msg”

% Extend buffer

% Consume rest

% Terminate.

Figure 1. The bounded buffer protocol.

presented by a list of five unbound variables. The
producer is given access to the beginning of the buffer;
the consumer is given access to both the beginning and
end.

go() :—
Buffer := [M1,M2,M3,M4,M5 | End],
producer (100, Buffer),
consumer (Buffer, End)

The producer waits for an element of the buffer to be
available (R1) and then assigns this element a value
representing a message (M : = ‘msg’). The producer
may terminate the protocol by adding a ‘done’ message
to the buffer (R2). If no element is available, the
producer suspends. The consumer suspends until
messages are available and then consumes them from the
beginning of the buffer (R3). Each time it receives a
message, the consumer creates space in the buffer by
appending an unbound variable to the end (End : = [X
| End1]). When the consumer receives a ‘done’
message it terminates (R4). Hence, execution of the
initial set of processes causes 100 ‘msg’ messages to
flow from the producer to the consumer; no more
than five messages are outstanding at any one time.

4. POWERFUL TOOLS

The concepts developed in previous sections permit the
design of powerful programming tools that aid in every
step of the program development cycle. Here we describe
a representative selection of the tools that we have
implemented. A portable programming environment
provides an architecturally independent implementation
of the programming concepts. Low-overhead measure-
ment techniques provide a basis for performance analysis
tools. A foreign language interface enables the integration
of sequential code. Finally, compiler tools support
algorithmic abstractions, allowing the reuse of program
structures in different applications and on different
architectures.

4.1 Portable programming environment

Portability has always been a central issue in computing,
as it protects long-term investment in software. On
sequential machines, standard operating systems and
utilities have evolved that permit a significant degree of
portability. Unfortunately, no clear standards are avail-

able for parallel machines either in software or hardware.
Moreover, new and improved parallel machines will
undoubtedly continue to appear. Hence, an important
requirement for a parallel program development en-
vironment is that it provide a uniform interface on a
variety of parallel machines.

There are three aspects to such an interface. Ap-
plication codes must be able to execute on different
architectures without modification (application port-
ability). It must be possible to achieve efficient implemen-
tations of the environment on a wide variety of
architectures (system portability). Finally, application
codes must be able to utilise an increasing number of
computers as additional hardware becomes available
(scalability). These three goals can be achieved by using
three simple concepts: an abstract machine, servers, and
virtual machines.

Abstract machine. An abstract machine is an archi-
tecture-independent compiler target language.'” The use
of an abstract machine greatly reduces the cost of porting
a programming system to a new parallel computer: only
a small machine-dependent back-end and/or run-time
system need be developed to support a specific archi-
tecture. Our experience with Strand shows that this
machine-specific code often comprises less than 100 lines
of C source.®.

On a parallel computer, an abstract machine must
incorporate the central notions of communication and
synchronisation.'®* Recall that these notions can be
expressed in terms of monotonicity. We find that
monotonicity can be implemented by using just two
generic operations: unblocked send and receive. These
operations can be implemented readily on architectures
as diverse as multicomputers (using message-passing),
networks (using low-level network protocols) and shared-
memory machines (using pointers).'°

Servers. A server is a program that encapsulates and
provides a uniform interface to system facilities such as
device I/0O. Servers are designed to invoke system
facilities in response to messages received on an input
stream; the messages originate in application codes.
Servers can be implemented easily by using the concepts
of monotonicity and concurrent interleaving.’

A server may route a request to another, remote server
if a required facility is not available locally. Hence,
application codes can be provided with uniform access to
system-wide facilities such as user interfaces and con-
current file systems.

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 503

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

I. FOSTER, C. KESSELMAN AND S. TAYLOR

Virtual machines. A virtual machine provides an
abstract architecture over which programs can be mapped
using simple annotations.'® A simple example of such a
machine is a linear array of computers; a program can be
mapped recursively to successive computers in this array
by using an annotation @fwd. Mesh and tree topologies
can also be supported. It is easy to build sophisticated
program structures on top of these simple facilities.

Fig. 2 illustrates these ideas using a simple matrix-
multiply program. This program computes the matrix
multiplication C = 4 x B™'. 4 is represented by a list of
row vectors; the transposed matrix B is represented by a
list of column vectors. The program is invoked with a call
of the form mm (A, B, C) and executes mm_row processes
on successive computers in a linear array.

A virtual machine may be arbitrarily large and can be
automatically embedded in a smaller physical machine.
This approach simplifies the task of mapping a program
to an architecture by reducing the problem to two
separate activities: mapping a program to a virtual
machine and mapping a virtual machine to an archi-
tecture. The first of these activities can be performed
easily, as the programmer can select a virtual machine
that is convenient for the problem structure. The second
can be completely automated with compiler tools. Virtual
machines also provide portability and scalability.®

mm([A | As],Bs,Cs) :—
mm_row(A,Bs,C),

Cs := [C | Cs1],
mm(As, Bs, C21) @fwd.
mm([],_,Cs) :— Cs := [].

Figure 2. Matrix multiply.

It is important to note that a virtual machine is simply
a mechanism for directing program mapping: it does not
restrict possible communication patterns. The underlying
run-time system ensures that any two programs sharing
a monotone variable can communicate directly, ir-
respective of their location.

Summary. Sophisticated programming environments
can be designed based on only the core concepts and
implemented by using only the basic programming
techniques. These environments allow programmers to
design portable, scalable applications. Moreover, the
environments themselves are both portable and scalable.

4.2 Performance analysis tools

All programs constructed with the simple concepts that
we have emphasised have a common form: a program is
a collection of choices expressed by rules; computation
consists of repeated selection and execution of these
choices. This regularity of structure permits the use of
low-overhead performance-monitoring techniques.
These techniques heavily emphasise the use of compile-
time information to reduce the amount of data that must
be collected at run-time.*

The expected cost to execute each choice in a program
is determined by a static analysis of the program text in
combination with architecture-specific calibration data.
Dynamic counter values are collected during a particular

program execution by instrumentation inserted by the
compiler. The counters measure execution frequencies
for particular choices; this information is sufficient,
when combined with the static information, to compute
a variety of performance metrics. These include execution
and idle time on a per-program basis, processor
utilisation, and communication traffic.

Experience indicates that performance estimates ob-
tained by using these techniques are within 10 % of their
actual value. The run-time overhead for instrumentation
is less than 3 % ; hence, performance analysis has become
an integral part of the program development cycle. In
addition, the techniques extend naturally to integrate
timing information for foreign language program com-
ponents, collected by explicit timers.

A visualisation tool promotes the exploration of the
performance data by providing interactive statistical
analysis and data summary facilities. An example pro-
cessor-utilisation display from this tool is shown in Fig. 3.
Processors are listed horizontally and programs ver-
tically; the darkness of a square in the display indicates
the level of activity. The program illustrated is a similarity
search program that seeks to find close matches for a
DNA sequence in a large database. This example
illustrates how the tool can provide insights into the
global operation of an application. Processor 1 executes
relatively infrequently ; it is responsible for coordinating
concurrent operations on the database. The remainder of
the nodes perform similar activities, although some load
imbalance is apparent on processors 13 and 15. Closer
investigation showed that this imbalance was associated
with initial ramp-up and final ramp-down periods in the
computation, during which not all processors were busy.

4.3 Foreign-Language interface

Recall that monotonicity avoids the time-dependent
errors that are often introduced when concurrent
programs modify shared data; it also simplifies parallel
implementation. However, exclusive use of monotonicity
hinders the efficient implementation of algorithms which
can be conveniently expressed in terms of sequential
updates to data structures. We recognise the importance
of sequentiality and updates. However, for simplicity we
choose to isolate the use of these concepts in distinct
program components expressed in existing languages
such as C or Fortran.

We achieve a clean separation of concerns between
sequential and parallel components of programs by
requiring that sequential components adopt a monotone
interface. That is, we disguise programs that use
modification to look like programs that use mono-
tonicity. For example, consider the problem of computing
the input-output relation N1 =N+1. A monotone
implementation will construct a new value N1 corre-
sponding to the sum of N and 1. An alternative
implementation may update N in place and return the
result as NI; this may be safely used if no other
concurrent program can access N. The safety property
can be guaranteed trivially by encapsulating N inside a
program.

An example of this use of modification can be seen in
Fig. 2. The mm_row routine called to compute a row of
the output matrix can be implemented in a low-level
language such as Fortran; moreover, if the programmer

504 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

CONCURRENCY: SIMPLE CONCEPTS AND POWERFUL TOOLS

C Usage) ﬁalls] (Statistics) CUnsort j (Clear)

@ Zoom ® Bin

O Unzoom @ Unbin

® Linear O 2-D

O Logarithmic ® 3-D

6 7 8 9 10 11 12 13 14 15

work:max/3
work:generate_row’7
work:sub/3
work:add/3
work:calculate_H/6
work:calculate_F/3
work:calculate_E/3
workiu/l

work:v/1
work:get_arg/4
work:generate_rows/5
work:char_index/2
work:similarity_matrix/1
work:init_row/2
work:generate_row/’6
workidiv/3
man:load_file/3

Displaying data for ALL processors

Total Execution Time {(mins:secsimsecs):
27405486
9514967

Total Reductions:
Total Suspensions:

10:63:113

Figure 3. Example performance display.

is able to verify that the input row A is unused in
subsequent computation, the routine can reuse the
storage occupied by A to hold the result row C.

This approach encourages the introduction of updating
and sequencing in the final stages of program de-
velopment. It permits local refinements that enhance the
efficiency of low-level operations. It also allows the
integration of segments of existing code into parallel
programs, providing a transition path from sequential to
parallel programming. The technique is particularly
beneficial in numeric computations involving grids, since
the storage used to hold a grid point can be reused in
successive iterations.

4.4 Algorithmic abstractions

In the long term, with the availability of many thousands
of computers, the structural organisation of computa-
tions must become a dominant theme in parallel
programming. It is not practical to manage at a
microscopic level the detailed operation of thousands of
cooperating computers. In consequence, more abstract
views of concurrent computation are required.

Many of the problems that we face in parallel
programming have already been tackled in the area of
VLSI design. The central concept in this discipline is the
use of hierarchy to control complexity: large circuits are
built by replicating and combining smaller units. The
combining functions have well-understood properties,

permitting the internal details of the resulting forms to be
ignored in subsequent stages of the hierarchy. Moreover,
both subunits and combining forms can be archived and
applied in alternative design problems.

In the same way, we now seek to structure parallel
computations by combining well-understood program
units. As in the case of VLSI, we focus on the individual
units and the methods by which they are combined.

Reflecting upon a number of parallel applications that
we have developed, we observe that the same parallel
structures are used again and again, albeit in different
guises. For example, many numerical simulations such as
those occurring in climate modelling and fluid dynamics
are structured as a grid of programs; each node executes
the same basic cycle involving nearest-neighbour com-
munication, computation, and global exchange. Another
example where we have noticed commonality of structure
is in simple load-balancing and bin-packing strategies.
We have applied the same basic strategies repeatedly to
problems as diverse as DNA matching, protein structure
prediction, game trees, and molecular dynamics. Finally,
we observe that these different computations often
involve common subunits such as spanning trees for
broadcasting information and combining global metrics.

In order to reuse these program structures and to
combine them in program hierarchies, we seek to achieve
an abstract, application-independent formulation. To
illustrate how this may be achieved, we consider the
problem of implementing a generic ‘grid computation’

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 505

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

I. FOSTER, C. KESSELMAN AND S. TAYLOR

grid_solve (Nodes, Threshold, InitFn, GetFn, PutFn, ComputeFn) :—
grid compute (Nodes, Threshold, InitFn, GetFn, PutFn, ComputeFn).

solve(Id, Streams, Threshold, InitFn, GetFn, PutFn, ComputeFn) :—

InitFn(Id, State),
InitialError is Threshold + 1.0,

iterate(InitialError, Threshold, GetFn, PutFn, ComputeFn, State, Streams).

iterate(Error, Threshold, GetFn, PutFn, ComputeFn, State, Streams) :—

Error > Threshold |

grid_exchange(GetFn, PutFn, State, Statel, Streams, Streams1),

ComputeFn(Statel, State2, MyError),

global _combine (MyError,MaxError, Streamsl, Streams2),
iterate(MaxError, Threshold, GenFn, Put¥Fn, ComputeFn, State2, Streams2).
iterate(Error, Threshold, ., _,_,_,Streams) :—

Error = < Threshold | close(Streams).

Figure 4. Grid computation abstraction.

abstraction. In this abstraction, a set of identical
programs cooperate to compute an approximation to a
differential equation. The program in Fig. 3 provides the
top-level structure of this abstraction. It is parameterized
with the size of the grid (Nodes), a termination condition
(Threshold), and four functions. These will be used to
initialise a subgrid (InitFn), extract and store boundary
data for nearest-neighbour communication (GetFn,
PutFn), and advance the state of a subgrid computation
(ComputeFn). Calls to these functions in the program
are distinguished by an initial upper-case letter; calls to
subprograms that form part of the abstraction have an
initial lower-case letter.

The abstraction assumes a particular grid structure
created by the subprogram grid_compute. This sub-
program partitions the grid into subgrids, maps the
subgrids to computers, establishes communication
streams between nearest neighbours, creates a spanning
tree for global operations, and invokes a solve program
at each subgrid. Note that each of these operations is
independent of both the application and the abstraction.

The solve program first initialises its local data state
using the supplied InitFn. It then iterates until a grid-
wide error is less than the specified threshold. The
iterate subprogram is defined in terms of three other
subprograms. The grid_exchange subprogram uses
the supplied GetFn and PutFn to extract and store
boundary values communicated with nearest neighbours.
The supplied ComputeFn performs the subgrid compu-
tation, producing a new state. Finally, the global_
combine subprogram uses the spanning tree established
by grid_compute to obtain a global error value.

This program may be reused to obtain parallel
implementations of any problem that can be formulated
in terms of this particular grid structure and the four
function arguments. However, in its present form it is
both clumsy and inefficient. The arguments introduced
to represent function names and communication streams
obscure the program structure. In addition, both the
passing of these arguments and the repeated higher-
order calls are likely to be sources of run-time overhead.
Hence, we prefer in practice to use compiler tools to
combine the four application-specific programs with the
abstraction.® This approach permits a more succinct
representation of the abstraction that does not require
the functional arguments. The compiler tools allow the
linking of the application code with the abstraction to be

achieved via an automatic source-to-source transform-
ation. A powerful metalanguage allows the transform-
ation to be specified in a few lines of code.

5. CONCLUSIONS

The perceived difficulty of programming parallel com-
puters has often led to an unfortunate emphasis on
language design. However, languages do not solve
problems: they merely provide a means of describing
solutions.

The design and implementation of problem solutions
are primarily a programming task and must be supported
by an appropriate methodology. Standard stepwise
refinement techniques are ideally suited for parallel
computers; however, additional refinement steps are
required to introduce design decisions concerned with
partitioning and mapping. We have emphasised the
importance of delaying these decisions until late in the
design process. The key feature that we look for in a
language is that its concepts support a separation of
concerns between algorithmic specification and parallel
implementation. ‘

We have described a core set of simple concepts that
achieves this separation: monotonicity, interleaving,
choice, and separation of sequential code. These are not
necessarily the only concepts that could be employed,
but we have found them particularly useful and pervasive.
We are convinced that they are a sufficient basis for
practical parallel programming. Powerful programming
tools have been built with the concepts; several of these
tools are described in this paper.

The concepts and tools have been incorporated in a
commercially available concurrent programming system
called Strand. This programming system operates on a
wide variety of parallel architectures. It has been used to
develop substantial applications in areas as diverse as
molecular dynamics, computational biology, climate
modelling, fluid dynamics, and telephone exchange
control.

The tools are now available and will naturally improve
over time: the emphasis must now turn to application
development. The challenge is to develop experience in
solving significant scientific problems on large parallel
computers. Armed with this experience, we can hope to
build the next generation of advanced programming
tools. We expect these tools to be based on the use of

506 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

CONCURRENCY: SIMPLE CONCEPTS AND POWERFUL TOOLS

abstractions® as a means of organizing concurrent
computations and on methods that will allow pro-
grammers to understand programs constructed by using
these abstractions.®

Acknowledgements

The exposition of the basic concepts and our appreciation
of their relevance to computer science have been inspired
by insightful discussions with K. M. Chandy.

This research, in the case of the first author, was
supported by the Applied Mathematical Sciences sub-
program of the Office of Energy Research, U.S. De-
partment of Energy, under contract W-31-109-Eng-38.
The third author was supported by ONR and AFOSR
under contract N00014-89-J-2301.

REFERENCES

1. G. Agha, Actors. MIT Press, Cambridge, Mass. (1986).

2. K. M. Chandy and J. Misra, Parallel Program Design.
Addison-Wesley, Reading, Mass. (1988).

3. K. M. Chandy and S. Taylor, Composing parallel pro-
grams. Beauty Is Our Business, Springer-Verlag, Heidelberg
(1990).

4. K. Clark and S. Gregory, A relational language for parallel
programming. Proc. 1981 ACM Conf. on Functional
Programming Languages and Computer Architectures, pp.
171-178 (1981).

5. K. Clark and S. A. Tarnlund, A first order theory of data
and programs. Information Processing 77; Proc. IFIP

10.

11.

13.

14.

15.
16.

17.

18.

Congress 77, pp. 933-944. North-Holland, Amsterdam
(1977).

. E. W. Dijkstra, Guarded commands, nondeterminacy and

the formal derivation of programs. CACM 18, 453-457
(1975).

. I. Foster, Systems Programming in Parallel Logic Lang-

uages. Prentice-Hall, London (1989).

. I. Foster, Automatic generation of self-scheduling pro-

grams. IEEE Transactions on Parallel and Distributed
Computing (in press).

. 1. Foster and S. Taylor, Strand: New Concepts in Parallel

Programming. Prentice-Hall, Englewood Cliffs, N.J. (1989).
I. Foster and S. Taylor, Strand: a practical parallel
programming tool. Proc. North American Conf. on Logic
Programming, pp. 497-512. MIT Press, Cambridge Mass.
(1989). :

D. Gajski, D. Padua, D. Kuck and R. Kuhn, A second
opinion on data flow machines and languages. IEEE
Computer 15 (2), 58-69 (1982).

. P. Henderson, Functional Programming. Prentice-Hall,

Englewood Cliffs, N.J. (1980).

S. Gregory, Parallel Programming in PARLOG. Addison-
Wesley, Reading, Mass. (1987).

C. Kesselman, Integrating Performance Analysis with
Performance Improvement in Parallel Programs, Ph.D.
thesis, UCLA (in preparation).

A. Takeuchi, How to solve it in Concurrent Prolog.
Unpublished note, ICOT (1983).

S. Taylor, Parallel Logic Programming Techniques. Prentice-
Hall, Englewood Cliffs, N.J. (1989).

D. H. D. Warren, Applied Logic —its Use and Implemen-
tation as a Programming Tool. SRI International Tech.
Rep. 290 (1983).

N. Wirth, Program development by stepwise refinement.
CACM 14, 221-227 (1971).

Announcements
@ Pattern recognition Dr Jim Bezdek, Program Chair, Division
@ Neural networks of Computer Science, University of West
2-5 JUNE 1991 @ Machine learning Florida, Pensacola, FL 32514. Tel: (904)
® Machine vision 474-2784; fax: (904) 474-3129; E-mail:
Industrial and Engineering Applications of ° Computer-a@ded ma;mfacturing JBEZDEK @UWF .BITNET.
Artificial Intelligence and Expert Systems, ® Computer-aided design . . .
IEA/AIE-91 ® Expert and diagnostic systems Dr Moonis Ali, General Chair, Computer
@ Intelligent databases Science Department, University of Tennessee
o . . @ Intelligent interfaces Space Institute, Tullahoma, TN 37388. Tel:
Waiohai Hotel, Kauai, Hawaii e Intelligent tutoring (615) 455-0631 ext. 236; E-mail:
Sponsored by @ Knowledge representation ALIF@UTSIV1.BITNET.
® Knowledge acquisition
The University of Tennessee Space Institute ® Reasoning under uncertainty General information and registration materials
(UTSI) ® Model-based and qualitative reasoning may be obtained from: Ms Sandy Shankle,
@ Natural language processing UTSI, Tullahoma, TN 37388-8897. Tel: (615)
This conference continues its tradition of ® Robotics 455-0631, ext. 278. The proceedings will be
emphasising applications of artificial intel- o Distributed Al architectures published by ACM and will be available at the
ligence and expert/knowledge-based systems @ Planning/Scheduling conference. Proceedings of earlier conferences
to engineering and industrial problems. Topics @ Sensor fusion are available — contact Ms Nancy Wise at
of interest include but are not limited to: @ Fuzzy logic (615) 455-0631, ext. 236.

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 507

202 I4dy 60 U0 1senb Aq 08605¢/10S/9/€€/2101e/|ulWwoo/wod dno-olwsepeoe//:sdiy wolj papeojumoq

