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One of the problems facing the designers of a deductive database is that of the choice of query language. The deductive
database model is seen as a natural progression from the relational model; the query language should reflect this. This
paper reports the decisions taken while designing an extended form of SQL, called SQUIRREL, as the query language
Sor a Prolog-based deductive database. The extensions relate to the inclusion of both rules and incomplete information
in the query language and result in changes to the data definition, data manipulation and query languages of SQL. The
extensions were constrained by the desire to retain the existing SQL texture in the new language while introducing
concepts such as rules, rule manipulation and incomplete information which are alien to the relational philosophy. The
language we describe is being used as the interface language for an implementation of a deductive database which will
run on a version of Prolog developed to handle database applications.
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1. INTRODUCTION

The relational model which was introduced by Codd,!
and underlies relational databases, is now well es-
tablished, and a number of different query languages
have been developed for relational systems. More recently
the logic database model has been proposed®** as a
natural successor to the relational model. This model is
an upwardly compatible extension of the relational
model. However, as yet there has been little work done
on designing query languages for deductive or logic
database systems based on the logic database model.

One significant difference between the approaches lies
in the basic unit used by each. In the case of the relational
model the basic unit is the tuple, sets of which are
grouped together to form relations; in the logic database
model the unit is the clause, sets of which make up
procedures. A clause may be a ground fact which
corresponds to the notion of a tuple, or it may be some
form of rule. This difference is a fundamental one as it
affects the basic strategy for query evaluation in the two
models. In the relational model all tuples are stored
explicitly and require no evaluation; by contrast the
clauses stored in a deductive database are formulae
which generate explicit tuples when they are evaluated.
Thus the query language for a deductive database must
permit a distinction to be made between the clauses (rules
and facts) as objects stored in the database and the
objects which are produced when these clauses are
evaluated.

The functional characteristics of a logic database
system make it an appropriate vehicle for realising some
aspects of knowledge-based systems. The distinction
between a logic database and a knowledge base is a fine
one. Database systems have been developed for the
storage and retrieval of large volumes of data in a safe
and efficient manner. Interfaces to such systems are
generally based on a simple (preferably high-level)
approach which permits different applications to access
data simultaneously, returning the data in the form in
which each application needs it. An important function
of a Database Management System (DBMS) is to ensure
the security and integrity of data stored in the database

through appropriate authorization and concurrency
controls. A logic database system is a natural successor
to the relational database system, based firmly on the
theory of first-order logic as opposed to the relational
theory typically found in DBMSs. Traditional relational
databases permit only data (information) to be manipu-
lated; by using first-order logic it becomes possible for
more complex units of information (the foundation for a
knowledge base) to be manipulated.

A Knowledge Base Management System (KBMS) is
similar in concept to the DBMS. Just as a DBMS is
responsible for the storage and management of data (in
one or more internal databases), a KBMS is a repository
for knowledge which is stored in one or more knowledge
bases. In the case of a KBMS, different users and
application programs should be able to access the
internal knowledge bases it maintains in order to retrieve,
store and update knowledge. The KBMS contrasts with
the idea of a Knowledge Base (KB), which frequently
refers only to a single user system for storing and
retrieving knowledge. Such KBs often use rigid knowl-
edge formats appropriate only to the application for
which they were designed. If the KBMS is to parallel the
DBMS approach the knowledge base should be rep-
resentation (format)-independent, capable of returning
‘knowledge’ in a format usable directly by the application
that requests it. This suggests that the applications using
such a system would be able to access the contents of
a KBMS in a high-level, representation-independent
manner, and specify the representations to be used for
the knowledge returned by the KBMS. Clearly, such a
requirement will depend upon agreement as to the useful
encoding of knowledge units. At this stage the ideas of
KBMSs are still being formulated, and there is no clear
theoretical framework on which the representation
formats should be based.

Returning to the idea of a logic or deductive database,
one obvious factor in designing a query language for
such a database is the desirability for it to be an
upwardly compatible extension of a relational database
query language. In particular, the one relational query
language which has emerged as a standard for com-
municating with relational database systems is SQL,®
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and compatibility with SQL would clearly be advan-
tageous.

This paper describes some of the design decisions
taken in producing a query language for a deductive
database system. The language, SQUIRREL, is a natural
extension of SQL. The paper examines how the addition
of rules to the SQL language requires a number of
significant alterations to the SQL philosophy in order to
permit a compact, manageable language without com-
promising the deductive database capabilities. Alterna-
tive views of the database contents are considered and
the dual nature (termed syntactic and semantic) of a
relation introduced. The problem of indexing and cursor
use is examined briefly in the light of this dual nature.

Finally, this paper shows how incomplete information
has been incorporated into the SQUIRREL language.
The underlying database implementation will permit the
manipulation of incomplete values under different
evaluation strategies; the language has been designed to
facilitate these.

2. THE DEDUCTIVE DATABASE
POPULATION

In a relational database each tuple consists of a set of
explicit values, such as strings, characters, integers, reals,
etc. A relation may be represented by a view, which is a
projection of values found in other relations and views.
As an example consider the database consisting of family
details (Table 1) in which a relation person is defined by
a table and a relation parent by a view. A reference to
values in a view or a table is always to some value stored
explicitly in some table.

Table 1. Relational database population

Relation: person

name child age address

Mary John 103 Newcastle
Milly Billy 33 Sunderland
John Jack 72 Hartlepool
Bill NULL 22 Newcastle
Jack Paula 45 Sunderland
Paul Karen 34 Sunderland

VIEW definition
CREATE VIEW parent(adult, child)
AS SELECT name, child
FROM person
WHERE child IS NOT NULL

In a deductive database a relation may be populated
with explicit facts and with rules which express the
logical relation that holds between values in the database,
therefore defining the condition that a tuple must satisfy
for its inclusion in that relation.? For example, consider
a database of family details in which the relation person
is defined by a set of tuples and the relation grandparent
by a set of rules and facts (Table 2). For this section the
rules are represented as Prolog clauses, while later the
SQUIRREL syntax for rules will be introduced. Notice
that the relation grandparent is stored as a set of rules
and facts, but represents a set of tuples.

Table 2. Deductive database population

Relation: person(name,child,age,address)

person(Mary, John, 103, Newcastle).
person(Milly,Billy, 33, Sunderland).
person(John, Jack, 72, Hartlepool).
person (Bill, NULL, 22, Newcastle).
person(Jack, Paula, 45, Sunderland).
person(Paul, Karen, 34, Sunderland).

Relation: grandparent(elder,younger)

grandparent (01d, Young): —
person(0ld, Middle, _, ),
person(Middle, Young, _, _).

grandparent (George, Michael).

grandparent (Susan, Michael).

A distinction is drawn between the two types of objects
that are involved in query evaluation: syntactic and
semantic objects. A relation is populated with syntactic
objects (rules, facts and views) which define the semantic
objects under some resolution strategy. The semantic
objects are those tuples produced by the evaluation of
the syntactic objects in the database under some inference
mechanism. This is illustrated in Table 3. This categoris-
ation is somewhat different from that of Extensional and
Intensional databases (EDB and IDB). In the latter
case®” a set of closed formulas can be viewed as having
two components, the extensional part which contains all
the ground unit formulas and the intensional part which
contains all the nonground or non-unit formulas. The
combined EDB and IDB are equivalent to the set of
syntactic objects of the database. It is essential for the
database query language to be able to distinguish between
the internal storage of the objects and the objects they
represent in addition to being able to distinguish between
internal objects.

Table 3. Syntactic vs. semantic objects in a deductive database

Syntactic objects

person(Mary, John, 103, Newcastle).
person(Milly,Billy, 33, Sunderland).
person(John, Jack, 72, Hartlepool).
person(Bill, NULL, 22, Newcastle).
person(Jack, Paula, 45, Sunderland).
person(Paul, Karen, 34, Sunderland).

grandparent (01d, Young): —
person(01ld, Middle, _,_),
person(Middle, Young, _, _).

grandparent (George, Michael).

grandparent (Susan, Michael).

Semantic objects

person(Mary, John, 103, Newcastle).
person(Milly,Billy, 33, Sunderland).
person(John, Jack, 72, Hartlepool).
person(Bill, NULL, 22, Newcastle).
person(Jack, Paula, 45, Sunderland).
person(Paul, Karen, 34, Sunderland).

grandparent (George, Michael).
grandparent (Susan, Michael).
grandparent (John, Paula).
grandparent (Mary, Jack).
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In a relational database the distinction between
syntactic and semantic objects vanishes, and reduces to
two different interpretations of the same underlying
object. On the other hand, a deductive database
management system must provide the facilities whereby
a user can manipulate both the syntactic objects stored in
the database, and the semantic objects produced by
evaluating those stored objects. However, the ways in
which these two types of object are manipulated are not
fundamentally different: one still wants to select, insert,
delete and update syntactic objects in the same way that
semantic objects are manipulated in SQL. For example,
one may select for display the rules stored in a named
relation (excluding any facts stored). One may even wish
to combine syntactic and semantic objects in a query. A
restriction may be imposed on the syntactic objects (as in
the selection above) and, rather than display the resulting
rules, one may require the constrained relation to be
evaluated in a further subquery.

2.1 Indexing and cursor use in a deductive database

The dual nature of the deductive database population
complicates the relational concepts of indexing and
cursor use. In a relational database it is the explicit
storage of base values that permits indexing and cursor
operations. The base representation permits the des-
ignation of an ordering of tuples in a relation and the
selection of tuples based on positions relative to that
ordering. When all tuples in the relations are explicitly
present (or referenced through views) this ordering can
be achieved, and each tuple has an identifiable next tuple
and previous tuple.

However, a deductive database permits the com-
bination of rules and facts to represent a relation. Given
a rule which generates a set of tuples, this raises questions
such as whether one indexes the rule bodies or the tuples.
If one imposes a cursor on a relation containing rules,
how does one insert, delete or retrieve tuples relative to
that cursor when the cursor currently identifies a tuple
generated by a rule? In the light of these difficulties it was
felt that an alternative to cursors should be investigated.

2.2 Clause and domain variables

When selecting objects, either for display (SELECT) or
for update (DELETE, UPDATE), one must be able to
distinguish clearly between the selection of a syntactic or
a semantic object as target of the manipulation. To
facilitate this, two different types of variables are
introduced. These are referred to as clause variables and
domain variables, respectively. A clause variable ranges
over the syntactic objects stored in a relation, whereas a
domain variable ranges over semantic objects and as
such is identical to the traditional SQL table and column
name reference. The use of these variables will be shown
in later sections of this paper.

The domain variable is represented by the SQL column
reference of [table name.]column name or (for the complete
relation) table name.

The clause variable is formed by adding @ to the front
of the table name. Thus, using the database of Table 2,
the domain variable grandparent will range over the tuple
set: :

{(George,
(John,

Michael),
Paula),

(Susan, Michael),
(Mary, Jack)}.

whereas the clause variable @grandparent ranges over
the clause set:

{grandparent (George,Michael).,
grandparent (Susan, Michael).,
grandparent (01d, Young): —
person(0ld, Middle, _,_),
person(Middle, Young, _, ).}

These two sets can be displayed by the statements

SELECT*
FROM grandparent

and

SELECT @grandparent
FROM grandparent

3. INSERTING SYNTACTIC OBJECTS
INTO THE DATABASE

All objects entered into the database, whether facts or
rules, are entered as syntactic objects. This means that
the existing SQL insertion of values is seen as inserting
facts which are syntactic objects rather than tuples which
are semantic objects. Apart from this reclassification of
the inserted values, no other alternation is made to the
existing insertion statement of SQL.

The major extension to the data manipulation language
lies in the statements for the insertion of rules into the
database. A number of alternative representations for
the rule syntax were examined. They fall broadly into
two categories, those that retain the SQL reference by
name to manipulate values and those that introduce
variables for use in the rule body.

3.1. Reference-by-name approach

SQL is a reference-by-name language, that is, a language
in which each data reference has an explicit (and
universal) name. For example, the student relation
(Table 5) contains a column age which is referenced
as student.age or simply as age when no ambiguity
can arise.

If this reference-by-name philosophy is maintained, it
leads to unwieldy rule bodies. To illustrate this, consider
the following examples.

Table 4. Examples of possible clause restriction representations

RESTRICT Statement

SELECT elder, age

FROM person, grandparent
RESTRICT rules (@grandparent)
WHERE age > 40

Clause Restriction Statement

SELECT elder, age
FROM person, grandparent: rules
WHERE age > 40

Using the relations in Table 2, restrict the grandparent relation
to rules only and select the names and ages of the grandparents
with ages over 40.

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 537

¥20Z Iudy 01 uo 1senb Aq 8101 GE/SES/9/€€/810me/|ulwoo/wod dnorolwspede//:sdiy wolj papeojumoq



K.G.WAUGH, M. H. WILLIAMS, Q. KONG, S. SALVINI AND G. CHEN

Table 5. Database schema

Relation Column names

staff name age sex dept grade
student name sex age year dept
marks dept name num mark

record dept name total_courses avg_mark

result dept name grade

teaching_staff name dept

research_staff name dept

ancestor anc man

father name dad

Table 6. Extended cartesian product of parent and benefit
relations

parent benefit

name child name amount
mark william william 10
mark william simon 20
mark william tom 30
mark william mary 40
mary simon william 10
mary simon simon 20
mary simon tom 30
mary simon mary 40
mark tom william 10
mark tom simon 20
mark tom tom 30
mark tom mary 40

(1) Assuming relations ancestor and father are defined
as ancestor(person,elder) and father(dad,son), the an-
cestor rules can be inserted as:

INSERT INTO ancestor
USING father, ancestor
DEFINE ancestor IF SELECT son, dad
FROM father
DEFINE ancestor IF SELECT son, elder
FROM father, ancestor WHERE dad=person

The rule body has the form of a select statement to allow
multiple assignment to columns in the target relation.
The alternative is to have explicit assignments to
ancestor .person and ancestor .elder (ancestor.person =
father.son and ancestor .elder = father.dad in the first
rule body). This would inhibit the reading of a rule as an
assignment to a tuple.

(2) Using the research_staff, teaching_staff and staff
definitions in Table 5, the definition of research_staff as
a rule can be inserted as:

INSERT INTO research_staff(name,dept)
USING staff, teaching_staff
DEFINE research_staff IF
SELECT staff.name, staff.dept
FROM staff
WHERE staff.grade {) ‘technician’
NOT EXISTS (SELECT name
FROM teaching_staff

AND

WHERE staff.name = teaching_
staff.name AND staff.dept =
teaching staff. dept

)

3.2 Prolog-like approach

An alternative approach for the rule formats is to base
these on the logic programming language Prolog. Prolog
is a reference-by-position language, that is, one which
permits a variable to be declared which takes its value
from some positional information supplied when it is
used. For example, student(_,_,Age,) would associate
the variable Age with the values found in the third
argument position of the student tuples.

Using this approach, the above examples can be coded
in Prolog in the following manner.

(1) The Prolog definition of ancestor, assuming
ancestor(elder,younger) and father(dad,son) are defined
as for Example 1 above, is as follows:

ancestor(X,Y):— father(X,Y).
ancestor(X,Y):— father(X,Z),
ancestor(Z,Y).

(2) The Prolog definition of research_staff, assuming
the schema defined in Table 5, is

research_staff(N,D):—
staff(N,_,_,D,G),

not (G = ¢‘technician’),
not (teaching Staff(N,D)).

However, this approach is possible only when the number
of columns in a relation and their ordering is known.
Clearly in a relational database language this cannot be
guaranteed. A user may not have authorized access to all
columns of a relation, may not know in what order the
columns were defined or what the names of all the
columns are; or a relation may be unwieldy in this form,
having a large number of columns of which only a few
are of interest.

3.3 Intermediate approach

A solution to the difficulty of using positional represent-
ations in a relational language which takes advantage of
the shorthand offered by the use of variables and
unification can be found in SQL. The existing SQL
INSERT statement permits the use of an insert column
list to define the target columns and the order in which
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they will be referenced in the query. There is then no need
to use all columns or to depend on some default
ordering. The insert column list can be used to override
the default information.

Example:

INSERT INTO staff(name, age, grade)
VALUES (‘clare’, 23, ‘technician’)

Note that columns not referenced in the INTO statement
default to the NULL value provided that the relation
permits this; the column names that are referenced can
be in any order. Thus if the relation actually contains two
further fields, sex and dept, this would be interpreted as
if it were the statement:

INSERT INTO

staff(name, age, sex, dept, grade)
VALUES

(‘clare’,23,NULL, NULL, ‘technician’)

In SQUIRREL the two reference systems have been
combined by permitting the declaration of source and
target columns in a reference-by-name manner; this
declares the order of those columns for the reference by
position employed in the rule bodies. In order to allow
the definition of source tables for the rules, a USING
clause is added to the INSERT statement. The following
examples show how the INSERT USING statement is
employed to insert rules into a relation using both
reference by name and reference by position. The first
example shows how the declaration of source and target
relations can be used to override the default order of the
columns of the relations used. The second shows how the
number of columns used in the rule definition can be
restricted to those actually used in the rule bodies. The
final example shows how correlation names can be
employed, in this instance for the insertion of a recursive
rule. (The schema description of the tables used in these
examples can be found in Table 5.)
Examples:
(1) Insert rules into the result relation.

INSERT INTO result(grade, name,dept)
USING record(dept, name, total_courses,
avg_mark)
DEFINE result( ‘excellent’,D,S,)
IF record(D,S,N,A) and N)3
and A>=80
DEFINE result( ‘good’,D,S)
IF record(D,S,N,A) and N)3
and A{80 and A)>=60
DEFINE result( ‘pass’,D,S)
IF record(D,S,N,A) and N)3
and A{60 and A)>=40
DEFINE result(‘fail’,D,S,)
IF record(D,S,N,A) and N)3
and A{40
DEFINE result (‘incomplete’,D,S)
IF record(D,S,N,A) and N(=3

(2) Insert a rule defining the research_staff relation.

INSERT INTO research_staff(name, dept)
USING staff(name,dept,grade),
teaching_staff
DEFINE research_staff(N,D) IF
staff(N,D,G) and G{)‘technician’
and not teaching_staff(N,D)

(3) Insert the recursive rule pair for the ancestor
relation.

INSERT INTO ancestor(anc,man)
USING father(name,dad),
ancestor(man, anc) ancl
DEFINE ancestor(person, elder)
IF father(person,elder)
DEFINE ancestor(person, elder)
IF father(person,parent) and
ancl(parent, elder)

A number of constraints are imposed on the rule bodies,
including some on the use of variables in the INSERT
and USING statements. The following restrictions apply:

(1) Variables must agree both in position and type
with the lists of columns appearing in the relation
descriptions in the INSERT and USING statements.

(2) All variables must have a defining use, that is one
in which the value of a variable can be bound to a
constant. A defining use declares the variable name and
(due to its positional use) a type. A defining use of a
variable occurs in some primitives and under certain
conditions. The primitives permitting a defining use are
assignment and use in an argument position in a table
reference. Terms of the form, table_name(argument list),
offer defining use for all variables used in the argument
list (unless already defined). All variables must agree in
type and number with the column types declared in the
USING list. Use of a variable in the head of a rule is not
a defining use as the head of a rule is considered to be the
target of the variables. This prevents unbound variables
appearing in the head of a rule and hence in a column of
the relation.

(3) Assignment ({var)? {value expr)) is non-destruc-
tive; that is, it assigns the result of the {value expr) to the
variable on the left of the operator (?) which should not
have previously been used in a defining position.

(4) A comparison predicate does not offer a defining
use. For example, the comparison expression, Var < 10,
would offer a set of values for Var if it were not already
bound to a value.

(5) Inarule body containing a disjunction the defining
use of a variable is global if and only if it occurs in both
branches of the disjunction and the defining use agrees
with respect to type. For example, in ‘parent(X,Y) OR
grandparent(X,Z)’, X is a defining use if the types of the
first columns in parent and grandparent agree. Y and Z
are not global defining uses.

(6) No variables can be defined globally under
negation. If a defining use does occur within a negation,
this is treated as a local defining use. For example, in
‘NOT(parent(X,Y) AND Y > 10)’, X and Y are treated
as local defining uses. Furthermore, if the negation
appears in ‘grandparent(X,Z) AND NOT (parent(X,Y)
AND Y > 10)’, Y cannot be used elsewhere in the rule,
whereas X may be used, as its defining use occurs in the
argument list of grandparent, which is not negated.

4. QUERY LANGUAGE

Since the query language in SQUIRREL must permit the
retrieval of both syntactic and semantic objects, this
requires the ability to distinguish between these two
aspects of a relation. Furthermore, it is useful to be able
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to constrain syntactic objects before a relation is
evaluated. This is achieved with the clause restriction.

Clause and domain variables are used to indicate the
type of result required from the SELECT statement.
However, a few constraints must be imposed on the use
of clause and domain variables. In the select list of the
SELECT statement clause and domain values cannot be
mixed, since it does not make sense to permit the mixing
of rules and the objects they generate. Similarly, it would
be difficult to select clause—variable objects if the table
expression produced domain-variable values, so that the
use of a clause variable in the select list is not permitted
when a table expression (WHERE, GROUP BY and
HAVING clause) is present in the query.

In this section of the paper consideration is given to
the syntax for manipulation of the syntactic population
of the database, before showing how to form queries
which return the syntactic objects. The evaluation of a
query over a constrained relation is shown and an
explanation given of how syntactic constraints and
semantic conditions can be combined in a single query. It
remains possible to pose typical relational queries, which
select semantic objects from the database as if it were a
standard relational database.

4.1 Restricting the syntactic objects

Just as the SQL WHERE clause selects semantic objects on
the basis of some specified condition, one needs to be
able to select syntactic objects on the basis of syntactic
properties. This can be achieved by a clause restriction;
this either takes the form of a separate clause, the
RESTRICT clause (which is similar to WHERE, GROUP
BY, etc.) or by adding the restriction to the FROM clause.

The two forms for restricting objects on the basis of
their syntactic structure are illustrated in Table 4. While
the first (RESTRICT clause) approach appears most
SQL-like there are a number of interpretation problems
which arise if one needs to restrict more than one relation
from within a single clause. The second form removes
these problems while strengthening the concept of the
FROM clause as the source of the syntactic objects used in
the evaluation of the user query.

There are two basic problems with the RESTRICT
clause: inter-relation dependencies and conditions in-
volving independent variables.

(a) Inter-relation dependencies. The following descrip-
tion of the dependency problem gives some background
on the SQL-evaluation of inter-relation dependencies
and shows how this would result in problems if it were
carried into the clause restriction.

The SQL-processing of the FROM list involves the
production of the extended cartesian product of the
relations. So that for each condition in the table

Table 7. Result of applying the WHERE condition to Table 6

parent benefit

name child name amount
mark william william 10
mary simon simon 20
mark tom tom 30

expression the values in the extended cartesian product
can be used to examine dependency information. For
example, consider the relations parent(name,child) and
benefit(name,amount) with the values:

parent (mark,william).

parent (mary, simon).

parent (mark, tom).

benefit(william, 10).

benefit(simon, 20).

benefit(tom, 30).

benefit (mary, 40).

and the query:

SELECT parent.name, amount
FROM parent, benefit
WHERE child = benefit.name

which lists the benefit amounts for each child and the
person to whom it is payable.

The FROM list is evaluated to give the extended
cartesian product of the two relations; this is shown in
Table 6. The evaluation of the WHERE condition is then
performed by examining each row in the cartesian
product table to produce the constrained result (Table 7).
The first and fourth columns of Table 7 are projected to
give the result of the query.

The effect of the inter-relation dependencies is best
demonstrated by examining the result of the (badly
formed) query:

SELECT parent.name
FROM parent, employee
WHERE parent.child IS NOT NULL

which produces the results shown in Table 8.

If this were paralleled in the clause restriction it would
greatly increase the complexity of the subsequent
evaluation of a constrained relation. Consider that the
RESTRICT clause is intended to constrain the syntactic
objects in the database to allow subsequent evaluation of
the constrained rule set. A clause condition statement
modelled on the above evaluation strategy would not
result in a single set of syntactic objects for each relation,
but a collection of sets of syntactic objects.

Consider the following query fragment:

FROM P,Q
RESTRICT rules(P) and rules(Q) and
@P.a = @Q.x

where P is defined as having columns a and b; Q as
having columns x and y.

The intention of the RESTRICT statement is to apply
restrictions to each set of clauses (P and Q). However,
the above fragment appears to impose a dependency
condition between the sets (that of equality between two
columns). Thus, given the initial clauses P(1,2):—-A(1,2),
P(2,3):—-A(2,3), P(3,4):—A(3,4), 0(1,2):-B(1,2),
0(2,3):-B(2,3) and Q(3,4):-B(3,4) the FROM statement
would produce the cartesian product shown in Table 9.

The RESTRICT statement would then eliminate the
clauses not satisfying the dependency condition and
would produce the full six clauses, but paired into the
sets:

{P(1,2):—-A(1,2),
{P(Z:S)_A(zaa)’
{P(3,4):-A(3,4),

Q(1,2):-B(1,2)}
Q(2,3):-B(2,3)}
Q(3,4):-B(3,4)}
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Table 8. Result of the badly formed query

parent
name

mark
mark
mark
mark
mary
mary
mary
mary
mark
mark
mark
mark

Table 9. Cartesian product produced by RESTRICT clause

P Q

P(1,2):—A(1,2)
P(1,2):—A(1,2)
P(1,2):-A(1,2)
P(2,3):-A(2,3)
P(2,3):-A(2,3)
P(2,3):—A(2, 3)
P(3,4):—A(3,4)
P(3,4):—A(3,4)
P(3,4):—A(3,4)

Q(1,2):-B(1,2)
Q(2,3):-B(2,3)
Q(3,4):-B(3,4)
Q(1,2):-B(1,2)
Q(2,3):—B(2,3)
Q(S, 4):_B(3)4)
Q(1,2):-B(1,2)
Q(2,3):-B(2,3)
Q(3,4):-B(3,4)

This would require evaluation of ‘each’ set of clauses to
produce the exhaustive set of semantic objects for the
clauses satisfying the dependency. The effect of this is not
easy to predict, nor is it easily implementable. Thus, any
inter-relation dependency information does not introduce
a useful restriction on the clause sets. For this reason the
clause restriction operates on clauses taken one at a time
from the source clauses. This prevents dependency
information such as explicit equality being used in the
clause restriction.

(b) Independent variables. If the RESTRICT clause is
constrained to conditions with independent variables
(that is, inter-relation dependencies are prevented), the
RESTRICT clause can be written as either

FROM P, Q
RESTRICT F(P) or G(Q)

or

FROM P, Q
RESTRICT F(P) and G(Q)

where F and G are conditions over P and Q respectively.
Since F and G are independent and are evaluated for
each single-source clause taken from P and then Q, the
conjunction of F(P) and G(Q) cannot be satisfied. For
this to occur the source clause would need to be a
syntactic object in relation P and in relation Q. With
independent conditions only the disjunction can be
permitted.

For these reasons the RESTRICT clause would require
a complex formulation of syntax rules to ensure the
above code fragments did not occur. Notice in Table 4

that in the augmented FROM statement it is impossible to
contravene the above requirements. The source relation
and its restriction are bound tightly, which prevents
interdependencies and forces the separation of indepen-
dent conditions.

The clause restriction is used in the delete and update
statements as well as in selection for display purposes.
Examples of these statements are given in a later section.

4.2 (Clause restriction predicates and functions

A new set of functions and predicates applicable to
syntactic objects in the database is required. The
following gives an indication of the form that these might
take.

4.2.1. Predicates

A useful set of predicates might include:

facts: true for those clauses which are facts.

rules: true for those clauses which are rules.

recursive: true for those clauses which can lead to a
recursive call of the relation, under a static search of
the call tree.

uses(relation name): true for those clauses which include
a call to the named relation.

match(string): true for those clauses that contain the
named string in the head or body.

var(column name): true for those clauses with a variable
in the named column position in the object head.

null(column name) or column name is [not] null: true for
those clauses with null in the named column position
in the head of the rule.

4.2.2. Functions

The function set should include:

head(clause variable): returns the head structure of the
clauses selected by the clause variable.

body(clause variable): returns the body of the clauses
selected by the clause variable.

count_clauses(clause variable): returns a count of all
syntactic objects represented by the clause variable.

count_rules(clause variable): returns a count of the rules
represented by the clause variable.

count_facts(clause variable): returns a count of the facts
represented by the clause variable.

4.3 Selecting syntactic objects

Consider how syntactic objects can be retrieved from the
database. The clause variable and the clause restriction
can be combined to constrain a relation population and
then display the constrained set of syntactic objects.

The simplest retrievals are those without any clause
restriction imposed on the selection. This is comparable
with the ‘select*from relation’ of SQL. The
objects returned are the representations of the syntactic
objects stored under a given relation name. An example
is:

SELECT
FROM

@student
student
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Similarly, one can apply the functions mentioned earlier
to the result of the SELECT statement, e.g.

SELECT count_rules(@student)
FROM student

A retrieval may restrict the clauses chosen before display.
An example of this is

SELECT @result

FROM result: grade = ‘good’

which selects the objects in which the named column
position (grade) in the head of the clause has the specified
value.

The restriction may be more complex than this, e.g.

SELECT @result
FROM result: grade =
var(dept)

‘good’ and

in which the dept column position in the head must be
occupied by a variable and the grade position must have
the value ‘good’.

Notice (as stated earlier) that since the target of the
above queries is a clause variable one cannot have a
semantic condition (table expression) as this would result
in the evaluation of the syntactic objects.

4.4 Evaluation under the clause restriction

As mentioned previously, it is useful to be able to
evaluate a relation which is constrained to syntactic
objects satisfying a clause restriction condition. That is,
one may constrain a relation (as shown above) and then
require that the constrained relation is evaluated to
produce semantic objects to be used in a table expression.

In implementing the clause restriction one must ensure
that the restriction does not lead to side-effects in other
aspects of the query. Thus one must ask how restricting
the set of syntactic objects for a particular evaluation of
a relation affects other relations that depend on the
values produced by the restricted relation. Two alterna-
tive approaches are the following.

(1) Temporarily remove from the database all clauses
that do not satisfy the restriction. Consider a database
DB and a query Q(p,e) (i.e. the query is over relations p
and e). If Q restricts the relation p to p’ then Q(p,e) is
evaluated over the database DB—p+p’. Hence, if e
contains a procedure using relation p, the evaluation of
e is restricted to those clauses that use the clauses in p’.

(2) Create temporary relations and fill these with the
restricted clauses. Consider a database DB and the query
Q(p.e). If Q restricts p to p’, then copy p’ into the
database in a marked form so that DB’ = DB+p’. Now
rename the explicit use of relation p in Q to p’, i.e. Q(p,e)
— Q(p’,e) and execute this query over the database DB’.
After the execution of the query, remove p’ from the
database, i.e. DB’ — DB. Now, if e contains a rule which
uses relation p it is able to use all of relation p contained
in the database.

For example, if the initial database consists of Prolog
clauses:

ancestor(X,Y) if father(X,Y).
ancestor(X,Z) if father(X,Y),
ancestor(Y, Z).
father(....etc.

Under the first implementation a query ancestor(4,B) in

which the relation ancestor is restricted to only recursive

clauses, would result in the evaluation of the query

ancestor(A,B) over the database:

ancestor(X,Z) if father(X,Y),
ancestor(Y, Z).

father(....etc.

Under the second implementation the same query would
result in the evaluation of ancestor_marked(A,B) over the
database:

ancestor_marked(X,Z) if
father(X,Y), ancestor(Y,Z).
ancestor(X,Y) if father(X,Y).
ancestor(X,2Z2) if father(X,Y),
ancestor(Y,Z).
father(....etc.

The second implementation strategy has been employed
in this project for the following reasons.

(a) Recursion remains safe under this interpretation.
Suppose that under the Prolog resolution strategy the
example database above will execute the query
ancestor(4,B) correctly and will terminate correctly. If
the first implementation were used to constrain the
database, the ancestor query would not terminate. Under
the second implementation the query will be executed
and terminate correctly.

(b) In the database one does not want the effects of a
restriction on the syntactic objects of one relation to alter
the semantic objects in other relations. That is, in the
example query above one does not want a restriction on
p to affect the semantic objects produced by evaluating e.
This is similar to an SQL query in which a view over a
base table and the base table itself are included in a query.
If a where statement imposes a condition on the base
table the view is not affected.

4.5 Selecting semantic objects

Having seen how a constrained relation can be evaluated,
consider how domain variables, clause restriction and
the SQL table expression can be combined in the
retrieval of semantic objects (tuples).

In these cases one wants the tuple sets of traditional
relational database queries to be returned by a query.
The simplest example is that of a normal SQL query such
as

SELECT name, mark, dept
FROM marks

GROUP BY name,dept,mark
HAVING max(mark) = mark

No distinction is necessary when using tables which are
defined by rules, for example

SELECT name, depth
FROM result
WHERE grade = ‘excellent’

From the preceding section it has been seen that
SQUIRREL will permit a query to be evaluated over a
set of clauses taken from a relation definition by using a
clause restriction. An example is

SELECT name
FROM result: facts
WHERE grade = ‘excellent’
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This restricts the evaluation of the query to those
syntactic objects which are facts (it excludes any rules
used to define the relation result).

This can be used to calculate the restricted ancestor
relation described in the database population section
above.

SELECT anc

FROM ancestor: uses(ancestor)
or

SELECT anc

FROM ancestor: recursive

The use of the clause restriction means that some queries
can be expressed in two ways, using the clause restriction
or using the WHERE clause. For example, the query

SELECT name, dept

FROM result: grade = ‘incomplete’

has the same result as the query

SELECT name, dept
FROM result
WHERE grade = f‘incomplete’

However, in the second case the entire relation for result
must be generated and examined, tuple at a time, in order
to compare the grade with the constant ‘incomplete’. In
the first case, only those objects that will generate the
constant ‘incomplete’ in the grade position will be used,
hence no extra tuples are generated then excluded.
(Obviously this depends on the grade position being filled
with constants, a slightly safer but less efficient approach
would be to include the rules which have variables in the
grade position. That is, SELECT name, dept FROM
result: grade = ‘incomplete’ orvar(grade).)

5. OTHER OPERATIONS

The changes to the data definition language and the
delete and update statements are introduced in this
section. The problems of the update of semantic objects
are considered, and parallels are drawn with the difficulty
of update through relational views.

5.1 Data definition language

The CREATE TABLE statement is used to define a table.
The only change to this statement is the addition of an
optional restriction which permits a table to be defined
WITHOUT RULES. An example (taken from the database
schema in Table 5) is:

CREATE TABLE staff(
name char(20) NOT NULL UNIQUE,
age integer NOT NULL,
sex char (1),
dept char(5),
grade char(20) NOT NULL
) WITHOUT RULES.

The main reason for this is for use in optimization
processes which are applicable during query evaluation.

5.2 Deletion

There are two possible forms for the deletion statement,

either deleting a syntactic object or deleting a semantic
object.

(a) For the purposes of deleting a syntactic object
from a relation, the relation is identified using the clause
variable and then the optional clause restriction is
applied to restrict the deletion to those clauses one
actually wants to remove. To illustrate this, consider the
following examples.

(1) Delete all syntactic objects in the result relation,

DELETE FROM @result
(2) Delete all facts from the result relation,
DELETE FROM @result:

(3) Delete all rules from the research_staff relation
that use the student relation and the facts that have NULL
in the dept position.

DELETE FROM @research_staff:
(rules and uses(student)) or
(facts and null(dept))

facts

A semantic condition (WHERE clause) cannot be applied
if the target of the deletion is a clause variable. The
reason for this is the same as the reason that the table
expression statement is not permitted if the target of the
select statement is a clause variable.

(b) The semantic objects for deletion can be identified
using a combination of domain variable, clause re-
striction and semantic condition (WHERE clause). The
syntax for SQUIRREL permits the expression of
statements to delete semantic objects. Some examples are
considered below.

(1) Delete all semantic objects from relation result.

DELETE FROM result

(2) Delete the semantic objects from relation result
which have a grade column value of *fail’.

DELETE FROM result
WHERE grade = ‘fail’

(3) Delete all semantic objects that are generated by
the facts for the relation result.

DELETE FROM result: facts

(4) Delete the semantic objects that are generated by
rules and have a grade column value of ‘pass’.

DELETE FROM result:
WHERE grade =

rules
‘pass’

5.3 Update

Updates to the contents of a relation can similarly be
divided into those with syntactic or semantic targets.

(a) The update of syntactic objects is identified by the
use of the clause variable as target for the update. As
with select and delete, one cannot have a semantic
condition if the target of the update request is a syntactic
object. Rule update is currently performed using a simple
string-replacement operation. Thus, for a given clause
the operation replace(stringl,string2) will replace all
occurrences of stringl in the clause body with string?.
Examples include,

(1) Update the facts in relation student replacing the
age of all ‘kevin’s with the null value,
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UPDATE @student: facts and
name = ‘kevin’
age = NULL

(2) Update the rules in research_student that use the
relation student, replacing the ‘ student’ string with ‘staff”,

UPDATE @research_student:
rules and uses(student)
replace (‘student’, ‘staff’)

SET

SET

(b) Semantic updates are identified by the use of the
domain variable as target. The SQUIRREL syntax
permits the statement of queries that update semantic
objects. The problems of implementing such updates are
considered in the next section. Examples include,

(1) Update all semantic objects in relation student
replacing the age field with NULL.

UPDATE
SET

student
age = NULL

(2) Update the semantic objects in relation student
which have the name field equal to ‘kevin’ setting the age

field to 23.

UPDATE student
SET age = 23
WHERE name = f‘kevin’

(3) Update the semantic objects generated by the facts
in the syntactic object set for the relation student setting
the dept field to ‘ remedial’.

UPDATE
SET

facts
‘remedial’

student:
dept =

(4) Update the semantic objects generated by rules for
the student relation that have the name field equal to
kevin, setting the age value to 23.

UPDATE student: rules
SET age = 23
WHERE name = °‘kevin’

5.4 Update and deletion of semantic objects

The use of views in relation databases leads to problems
in updating and deleting tuples in relations represented
as views. In a deductive database this problem is
exaggerated by the generality permitted in the rule
bodies.® This problem is partly ascribable to the fact that
in logic the world is static.® That is, once a rule is defined
there can be no exceptions to that rule at a later instant.

Consider the following syntactically valid request to
delete a semantic object generated by a relation which
contains rules:

DELETE FROM grandparent
WHERE elder = ‘kevin’

There are two possible ways in which tuples containing
‘kevin’ can be generated: either the tuple appears in the
set of facts in the syntactic set, or it appears in the set of
semantic objects generated by a rule in the syntactic set.
In the first instance an implementation can delete the
corresponding facts from the syntactic set. In the second
case (as has already been identified in respect of the
indexing problem), the rule generating the tuple cannot
be removed as this action will have the side-effect of

removing all other semantic tuples generated by the rule.
The same arguments apply to update operations.

The question then arises as to the interpretation of a
request to delete a semantic object. Should it result in an
alteration to the syntactic objects so that the rules when
evaluated cannot generate the deleted tuple, or should
this form of deletion be forbidden (allowing only
deletion or update of syntactic objects)? The first of
these suggestions is unsatisfactory, as any implemen-
tation that achieves this effect would need to be free from
side-effects and would lead to the possibility of inefficient
rules being created automatically without the database
user being aware of this. The second is also unsatisfactory
from the user’s perspective, since if one wants to delete a
tuple one should not need to be aware of how that tuple
is generated internally.

In fact a preferred reading of such a deletion request
would be to create facts in the set of syntactic objects
which are interpreted as positive exceptions to the
relation, that is, as tuples that the rules cannot generate
but which should be included in the relation. The request
to delete a tuple would then be interpreted as creating an
exception to the relation, that is, a tuple which can be
generated by the syntactic set but which should not be
included in the relation.

This suggests that the problem of a general update to
deductive databases parallels the negative information
problem. Much research has been conducted on the
representation of negative information in databases.
Gallaire® summarizes this research, but the results
reported are generally difficult or expensive to implement.

6. INCOMPLETE INFORMATION IN
SQUIRREL

In many database applications a value of an attribute
might be unknown. A special value called null is
introduced to represent the missing value.!® In some
situations one may have some partial information about
an attribute even though its exact value is unknown. If
the null value is used for this case the information one
does have will be discarded. To handle this problem the
concept of incomplete information is introduced. This
kind of value falls between exact values and the null
value. The handling of incomplete information in
relational databases has been studied by many re-
searchers,!!-12.14.17

The manipulation of incomplete information in a logic
database is much more difficult than it is in a relational
database, because the complexity of deductive operations
is substantially increased.® A model has been put forward
by Williams and Kong!® to account for the behaviour of
incomplete information in a logic database.

In this model, a student called John Smith, whose age
is not known exactly but is known to be one of 18, 19 or
20, can be expressed as:

student( ‘John Smith’, {18, 19, 20}).
which is equivalent to the following expression

student( ‘John Smith’, 18) OR
student( ‘John Smith’, 19) OR
student( ‘John Smith’, 20).

The implementation problems associated with incom-
plete information in a logic database have been discussed
in Refs 13 and 16.
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6.1 Inserting incomplete constants

The values that can be stored in a deductive database are
expanded to include incomplete values, and the ma-
nipulation strategies applicable to the incomplete values
are similarly expanded. The evaluation strategy employed
for incomplete information can be expensive in both
memory usage and execution time. For this reason the
algorithm is capable of selectively applying the evaluation
strategy. If, for instance, no incomplete information is
employed, the normal deductive database evaluation
strategy is applied. To permit maximum use of this
conditional strategy the definition of a column in a
relation will default to complete information. A database
designer will be required to specify that a column in a
relation may include incomplete information when
defining the relation. The following example shows this.

Define a table for relation staff which is declared to
contain no rules but may have incomplete information in
attributes age and dept.

CREATE TABLE staff(
name char(2) NOT NULL UNIQUE,
age integer NOT NULL WITH INCOMPLETE,
sex char(1l) NOT NULL,
dept char(20) WITH INCOMPLETE,
grade char(20) NOT NULL
) WITHOUT RULES

The insertion of incomplete values into the above table is
demonstrated in the following example:

INSERT INTO staff(name, age, sex, dept, grade)
VALUES ( ‘Bill Stone’, {31, 32, 33},
‘m’,{‘Physics’, ‘Chemistry’}, ‘Lecturer’)

A rule may contain incomplete information, for example::
a statement that a child has blood group A or O if one of
his parents has blood group A and the other has blood
group O can be expressed as:

INSERT blood_group(name, type)

USING father(name, child),

mother (name, child),
blood_group(name, type) bg

DEFINE blood_group(NameC,{‘A’, ¢0’}) IF
father (NameF, NameC) AND
mother (NameM, NameC) AND
bg (NameF, ‘A’ ) AND
bg (NameM, ¢0’)

DEFINE blood_group(NameC,{‘A’, ‘0’}) IF
father (NameF, NameC) AND
mother (NameM, NameC) AND
bg(NameF, €0’ ) AND
bg(NameM, “A’)

6.2 Manipulating incomplete values

The evaluation strategies defined in Ref. 16 allow two
types of interpretation to be employed in query evalu-
ation. These are definite and possible evaluation. To these
modes is added a default evaluation strategy which treats
all incomplete values as if they were the null value. The
user is able to control the type of evaluation strategy
employed in a similar way to the ALL and DISTINCT
selections of SQL which either take all values in a result

or restrict the result to unique values. The query and
subquery specifications are given an optional DEF or
POS clause to specify the form of evaluation strategy to
be employed. Examples include:

(1) Select tuples in the staff relation which definitely
have the value 21 in the age column,

SELECT DEF*
FROM staff
WHERE age = 21

(2) Select tuples which possibly have the value 21 in
the age column,

SELECT POS*
FROM staff
WHERE age = 21

(3) Select the tuples with 21 in the age column,
treating incomplete information in the age column as if
it were a NULL value,

SELECT*
FROM staff
WHERE age = 21

A new predicate is added for use in the where clause of
the table expression: the incomplete data predicate. This
is true if the column referenced contains a value that is in
the incomplete data item or is a subset of that data item.
(4) Select tuples where the age value is wholly
contained in the incomplete constant {21,22,23,24},

SELECT DEF*
FROM staff
WHERE age IS {21,22,23, 24}

Since for update and deletion queries the contents of the
database are evaluated, it is necessary for the user to
specify which evaluation strategy is employed in these
statements. This is achieved by including the option DEF
or POS (or default) in the update and delete statements.
The update statement also permits an incomplete
constant to be used in the set clause. Examples show how
this is used:

(1) Delete all possible staff members whose age may
be above 65:

DELETE FROM POS staff
WHERE age > 65

(2) Update the staff members who are definitely in the
Physics department making them all technical grade,

UPDATE DEF staff
SET grade = ‘technical’
WHERE dept = ¢‘Physics’

(3) Update all staff members making those with ages
possibly below 21 have the grade {‘junior’, apprentice )

UPDATE POS staff
SET grade = {‘junior’, ‘apprentice’}
WHERE age < 21

7. SUMMARY

The SQUIRREL language presented in this paper is a
variant of SQL, designed for access to a deductive
database. It permits the definition and manipulation of
relations containing logic statements. The distinction
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between the two interpretations of the database popu-
lations (syntactic and semantic) is made, and language
features to distinguish between the database populations
described. Examples of the definition, insertion and
manipulation of syntactic objects are given. A brief
description is given of the implementation strategy that
permits syntactic and semantic manipulations to be
combined in a query. The logic database implementation
permits the expression and manipulation of incomplete
information. Examples are given which show how such
information is incorporated in the SQUIRREL language.
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complished by the international community —
academia, industry and government —in the
areas associated with intelligent systems.

The emphasis of the reported work will be
on new and original research and technological
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developments covering methodologies as well
as applications. Special topic issues will be
published from time to time.

Applied Intelligence is a new international
journal, published four times a year, beginning
in January 1991.

Instructions for Authors

Potential authors should write to the following
address for ‘instructions for authors’:

Karen S. Cullen, Kluwer Academic Pub-
lishers, 101 Philip Drive, Norwell, MA 02061,
US.A.
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