A Systolic Array Solution for the Assignment Problem

G.M. MEGSON! aND D.J. EVANS2*
T Computing Laboratory, University of Newcastle upon Tyne

2 Parallel Algorithms Research Centre, Loughborough University of Technology, Loughborough, Leicestershire

A systolic array for the solution of the assignment problem is presented. The algorithm requires O(n?) time and an
orthogonally connected array of (n+2) * (n+2) cells consisting of simple adders and control logic. The design is
area-efficient and incorporates the new concept of a Systolic Control Ring (SCR) to generate the necessary
systolic wavefronts in any orientation within the design, while special cells are positioned only on the

periphery of the design.

The resulting Assignment Problem Iteration (API) is suitable for Wafer Scale integration using only

single input and output for data permitting low bandwidth.

Received April 1987, revised July 1990

1. INTRODUCTION

In this report we present a systolic design to implement
the assignment problem. This problem exhibits a number
of features that indicate possible systolic solutions. For
instance, it involves only add and subtract operations
and, as we will see, some comparisons implying an area-
efficient set of basic cells in the design. The assignment
problem also requires a square table representation
rather than rectangular in the case of the standard and
revised forms of the systolic simplex algorithm investi-
gated by the authors,™? resulting in simpler com-
putational wavefront synchronisation, hence a tight,
simple control.

The assignment problem solution technique used for
the array construction is the Hungarian algorithm, which
proves to be a simple and effective computational
procedure, again a favourable quality for a systolic
design. In contrast, we note that the assignment can be
converted into a transportation problem with n supplies
and n demands all equal to 1 by essentially replacing the
integer programming problem by a linear program. At
this time the systolic implementation of the trans-
portation algorithm has proved at best complex. We also

Then minimise "
[f=2Z Cij X5
=1 j=1
subject to

Sx,=1 i=1()n

j=1

Tx,=1 j=1(I)n

i=1
x;=0o0rl i=11)n, j=1(1)n

Remark. The matrix ¢ = c(ij) is called the cost matrix.
The Hungarian algorithm is an efficient method for
solving this problem, and can be simply stated as follows.

Step 1
(a) For each row in the cost matrix c; locate the smallest
number in the row, and subtract it from each number in
the row.

(b) For each column in the new matrix locate the<
smallest element in the column and subtract it from eachg
element in the column. The resulting matrix is called theo

reduced-cost matrix.

g/zgg/g/gg/epluenu[Luoo/woo'dnoogwapeoe//:sduu wiou} papeojumoq

note that under certain circumstances the corresponding
transportation problem can become highly degenerate.

Step 2

01sanb A

Find the minimum number of lines through rows and 2

columns of the reduced-cost matrix, such that all the @
zeros have a line through them. If the number of lines isS

2. THE ASSIGNMENT PROBLEM Step 3.

n then stop (optimal solution found); else proceed tqQo

¥20e

For completeness we state the details of the assignment
problem as follows: let there be n tasks which must be
performed by » individuals. The cost of individual i
performing task j is denoted by c,. The problem is to
assign people to the tasks in a way that minimises the
cost of completing the tasks.
Let
{1 if person i does task j
"7 1o otherwise i=1)n, j=1(n.

We minimise the total cost, according to the constraints

that one person is assigned to one task, and each task is
assigned to one person.

* To whom correspondence should be addressed.

Step 3

A new reduced-cost matrix is now constructed. Locate
the smallest number in the matrix without a line through
it. Subtract the number from all uncovered numbers,
and add to it numbers at the intersection of two lines
(twice covered).

Go to Step 2. [N.B. A covered number is one with a line
through it.]

The final solution is then constructed by assigning a
worker to a job so that the reduced cost is zero. This is
done by checking first the rows and then the columns,
looking for rows or columns with only a single zero in
them; the assignment is then the (i,j) ordered pair
corresponding to the zero element.

562 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

A SYSTOLIC ARRAY SOLUTION FOR THE ASSIGNMENT PROBLEM

3. THE SYSTOLIC ARCHITECTURE

The systolic design is split into two systolic arrays. The
first array is a linearly connected array of n cells which
computes the reduced-cost matrix in step 1 of the
algorithm, essentially performing a pre-processing func-
tion. The second array is an (n+2) * (n + 2) orthogonally
connected mesh of cells performing steps 2 and 3 and is
the core of the algorithm; we refer to this array as the
Assignment Problem Iteration (API) array. We could
also consider a third array to perform post-processing to
recover the final assignments, but this is a relatively
straightforward task and is not pursued here.

3.1 Pre-processing array

Here we use a linearly connected systolic array of n cells
to transform the starting-cost matrix to the reduced-cost
matrix. The construction requires four passes through
the array. Pass 1. Find the minimum element of each
row, storing it in the cell. Pass 2. Subtract the stored
value from all elements in the row. Pass 3. Find the
minimum in each column, and store it in the cell. Pass 4.
Subtract the stored element from all the elements in the
column. _

It appears from the array in Fig. 1 that the basic cell
requires a subtractor and a comparator when choosing
the minimum. However, if we include with the subtractor
a status bit to register when a negative value is produced,
we can detect a ‘less than’ condition without an
additional comparator. Thus, each basic cell in the
preprocessor is a simple subtractor with registers.

The change from pass 2 to pass 3 is crucial, as we turn
the matrix input from row ordering to column ordering,
which allows the same array to be used for the row and
column passes. As the data is a square matrix or table the
last column element leaves the array in a row pass, as the

Css

Cs4 Css

Cs3 Ca4 €35

_______ Cs2 €43 C34 €25

Cs1 €42 €33 €24 €15
a1 €32 €23 €14 Css
Pass 4 €31 €22 €13 Cs4 C45
€21 €12 Cs3 Cag €35
ci Cs2 C43 C34 €25
Cs1 Ca2 €33 Coa Cis
€4 €32 €23 Cla T'ss
Pass 3 3 Cy 13 45 a4
€21 ‘12 35 T4 s3
n s T34 Ta3 s
s T4 33 T2 sy
T4 3 32 T4 T'ss
Pass 2 s s r3; T4 rs4
T2 21 35 Ta4 7s3
™ r2s T34 Ta3 52
s 724 33 T42 T's)
T14 3 T3 a1
Pass 1 T3 ry r3;
T2 21
r
11
______ J

Figure 1. Pre-processing array (n = 5).

first element of the column is required to enter the array.
It follows that we have sufficient time to reorganise the
row form in pass 2 to the column form in pass 3 ‘on the
fly’ by the Host machine or a buffer. The data output by

the pre-processing array at each pass is looped back into

the array input; on the last pass the loop can be switched
out to provide a suitable interface for loading the API
array via its host interface.

The total time for all the passes is T = 5n (a cycle is the
cost of an add or subtract). If the last pass is used for
loading the API array, the last »n cycles can be overlapped
with the start of steps 2 and 3, the API section of the
algorithm.

3.2 Assignment Problem Iteration (API) array

The API computes the optimal solution to the assignment
problem given the reduced-cost matrix generated by the
pre-processing array. A global view of the API array is
shown in Fig. 2, where the major sub-arrays of the design
are defined and will be discussed below. The basic
structure is an orthogonally connected mesh of »n by n
cells placed inside a systolic control ring, in an area-
efficient manner. The systolic control ring (SCR) as its
name suggests controls the computation, its special
structure allowing it to generate control wavefronts in
any orientation travelling across the tableau representing
the reduced-cost matrix. The SCR can therefore easily
move control around the mesh by a series of point-to-
point connections.

The remaining two steps of the algorithm forming the
iteration are split into a number of distinct computational
phases related to the state of the SCR during the
algorithm iteration. The movement of control around
the ring allows the wavefronts corresponding to different
phases to be overlapped on the tableau, but in general
interleaving and interference from distinct wavefronts is
avoided, except where conflicts can be easily resolved
with simple control sequences.

o Host interface G
o =
= 2
4 Tableau mesh <
s nxn 2
Cs Column sort G

Figure 2. Assignment Problem Iteration (API) array.

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 563

202 I4dy 60 U0 1senb Aq €121 5¢/295/9/€¢/8101e/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

G.M. MEGSON AND D.J.EVANS

Finally, the C,, i=1(1)4 are simple controllers
performing combinational logic functions on control
data streams only. The row, column sorters and Min-
shift sub-arrays are linear systolic arrays of n cells. The
API iteration begins with control signals from C,, which
is suitably close to the Host interface in case we want to
reset the array from the Host, e.g. for loading data. The
partitioning of the iteration algorithm into phases is as
follows.

Phase O. Loading of the reduced-cost matrix. A
number of options are available for this phase — the SCR
is not required, and techniques for loading square
meshes of processors with data are well understood.

Phase I. (Start of the iteration algorithm). In this phase
two wavefronts are generated, moving from C, towards
C, across the tableau.

(a) Wavefront 1 (W;). C, generates a control value
moving horizontally to C,, and vertically to C,, through
the Host interface and Min-shift arrays. These travelling
signals generate the wavefront W, moving through the
tableau. At the start, the min-shift cell immediately
below C, contains the smallest uncovered element in the
reduced-cost matrix. As W, moves across the tableau it
performs the reduced-cost matrix modification, accord-
ing to covered line positions. On the first cycle of the API
algorithm Min-shift will contain only zeros and the first
modification has no effect.

(b) Wavefront 2 (W,). On the cycle, after C, has
generated controls for W, it generates a different control
value also travelling on the SCR to C, and C,. W,
represents the end of step 3 of the algorithm, and W, the
second wavefront generated in a similar manner is the
start of step 2. W, uses a signal moving through the host
interface to C,, which is also sent vertically through
the tableau to count the number of zeros in each
column.

Phase II. This begins when the signal generated in
phase I for W, reaches C,. C, relays the signal to the row-
sort array, which propagates the signal from C, to C,.
While the signal travels down to C,, W, and W, continue
moving in the tableau. At the start of Phase II the first
column has completed its count of zeros in the column;
we call this value the Column Zero Weight. Thus, as the
control signal moves on the C,~C, portion of the SCR
the column sorter array is loaded with column zero
weights. As the weights are loaded the sorter cell checks
if the weight is zero and if on a previous iteration the
column was covered by a line; if this is the case a signal
is propagated back into the tableau to erase the line. The
sort cell then waits a cycle for the adjacent cell to be
loaded, and checks for line removal, then the cell starts
sorting. As sorting takes place, the maximum column
weight is bubbled right, and the minimum column weight
bubbled left. As the weights are swapped, signals are
output to the tableau to swap the corresponding column
elements. When the signal from C, reaches C, a wavefront
W, of swap controls is halfway across the tableau, and
the last column weight is in the rightmost cell of the
column sorter.

Phase III. The control signal continues on the SCR
from C; to C, through the column sorter which continues
to sort. The sorter being a linear array is used to perform
an ODD-EVEN transposition sort or parallel bubble-
sort, which requires n steps for n» numbers when all the
cells are working in parallel. It follows from the start-up

of the sorter in Phase II that we must have moved the
maximum zero right to the rightmost cell by the start of
Phase III. Hence, as the control moves down the C,~C,
portion of the SCR we can close down the column-
sorting cells while completing the sort. Thus, when the
signal reaches C, the column weights are fully sorted, the
sorting cells are off and the last possible column swap has
entered the tableau.

Phase IV. The control signal now travels the section
C,—C, of the SCR, during which it passes through Min-
shift causing a wavefront W; to be propagated right. W,
performs the same task as W,, collecting the row zero
weights by counting zeros in each row. When the control
reaches C,, completing the first cycle of the SCR, the
bottom row of tableau cells have completed the zero
count.

Phase V. This phase is analogous to Phase II. C,5
generates a new control signal travelling C,—C, on the<
next control cycle. Thus W, continues its journey right,
and the row sorter is loaded with the row zero weightsf%J
from bottom to top. Each weight is checked to see if it is=
zero, and as the row was previously covered a row lineg
erase can be sent left to remove it. When the new signal =
reaches C, as for the column sorter the row sorter hasg
loaded all the row weights, and all the cells are computing 5
in parallel. A side effect of the sorting is that the§
minimum row weight has reached the sorting cell§
immediately below C,. The wavefront W, is propagated o
left to perform relevant row swaps. At the end of thisS
phase, W is halfway across the tableau. 8

Phase VI. The control signal is now to travel C,-C,3
and can be used to close down the row sorters, while also S
completing the swap wavefront moving left. At the endS
of the phase, the control value is in Cj, and the last row 2
swap control has entered the tableau. All the row sorting &
cells are off, and the list of row weights is fully sorted, <
with the maximum row weight in the cell immediately &
above C,.

Phase VII. We are now in a position to complete Step =
2 of the algorithm by drawing the minimum number of
lines. Notice that the heads of the sorted row and column @
zero weights are locally placed for C, to take control of €
the algorithm, which it now does. The basic technique%
for drawing the minimum number of lines will be
discussed in detail later; we sketch the method here (see
Fig. 3).

(@) C; collects the maximum row and column weights
from the adjacent cells, and finds the maximum.

(b) If both values are zero then there are no zeros
without lines covering them, go to Phase VIIIL. If # lines
have been drawn, go to stop (optimal solution) otherwise
draw a line.

(¢) A line is drawn by zeroing the row or column
weight which was a maximum, and sending a control
value into the tableau from the sorter element cleared.
For a column sorter cell the signal propagates up the
column towards the host interface, and for a row cell
towards the Min-shift array along the row. As the
control moves it marks the cell element with a line state,
and if the cell element is zero we send a control to the
adjacent sorter cell and modify the column or row weight
to remove the zero.

(d) At the same time as the tableau is being marked
with an implicit line, the sorter cells are switched on by
controls from Cj along the C,~C, and C,~C, portions of

/129G

¥20z IMdy 60 uo

564 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

A SYSTOLIC ARRAY SOLUTION FOR THE ASSIGNMENT PROBLEM

W,
W,
// °
// Ws
<
n 4 &
1V
Phase I Phase II Phase III
° *
Ws Wi
W7 #
)
Phase IV Phase V Phase VI
Wg) %
4
//
NZ5Z
°
Phase VIII Phase IX Phase X (loop)

Figure 3. The computational phases for APIL. (Phase VII not shown is the line-drawing section.)

the ring and weight modify commands, and the lists are
updated.

(e) The sorters are closed down by the returning signal
from C, and C,; as the round trip for the signal is 2n
cycles of the basic cell the new list must be sorted. The
previous maximum was set to zero and so will have
bubbled down the list, hence we can loop back to (a).

Phase VIII. If we reach this phase we have reduced
both the column and row lists to zero by covering all the
zeros in less than n lines. Hence a modification of the cost
matrix is required. C, now releases control and sends the
control signal from Phase VI along C,~C,, producing a
wavefront W, which moves the minimum element left.
When the signal reaches C, the minimum of the last
tableau row is available.

Phase 1X. The control value now completes its second

circuit of the SCR by moving along C,—C,; as it moves
it loads the minimum elements of each row into Min-shift
and also moves the minimum of the row minima up
towards C,. When the control completes its second cycle
the minimum element of the tableau taken over un-
covered values is in the Min-shift cells, and particularly
the one adjacent to C,. We now go to Phase I.

Stop. If stop is reached in Phase VII we close down the
API array and get ready to output the final tableau.

This completes the phases of the algorithm; some
remarks at this point are pertinent.

(1) The column and row sorting cells also contain an
index for the row and column, so that the row and
column swaps can be recorded and the final result
recovered.

(2) In Phase II and Phase V, the column and row

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 565

202 I4dy 60 U0 1senb Aq €121 5¢/295/9/€¢/8101e/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

G.M. MEGSON AND D.J.EVANS

sorters check the zero weights to see if they are zero and
that the row or column had a line through it on the
previous iteration. This implies that: (a) each sorter cell
is marked when a line is drawn from it; (b) a row or
column can only have a zero weight and be covered by a
line if all its zeros were on intersections with other lines
orthogonal to the line from the sorter cell: hence the line
must be removed.

(3) In order to remove lines we have to compute totals
or weights for rows and columns with lines already
through them; these weight totals must be zeroed when
a line is removed.

The points above seem to be making the array cell
structures more complicated. In fact it can be shown that
we will never have to remove a line, and hence line-
drawing marks in the sorters can be removed, and we can
compute zero weights only from uncovered rows and
columns. Hence the checking in Phase II and Phase V
can be removed, making the sorter start up a simple load
procedure. Likewise the line removal wavefronts never
occur in the dataflow.

Remark. This is an important point to realise so that
cells are not overly complex.

3.3 Systolic line drawing

The method used in Phase VII to draw lines is to place
a line through as many zeros as possible each time a line
is drawn. We do this by maintaining a list of row and
column weights for the number of zeros in each unmarked
row and column, with a line being placed in the row or
column with the maximum number of zeros over all the
weights. These weights are then adjusted by removing the
covered zeros, and the lists resorted. However can we be
sure that we always draw the minimum number of lines?

Theorem 1

The systolic API array always constructs the minimum
number of lines to cover all the zeros.

Proof

Case (a). Suppose we do not cover all the zeros, then on
evaluating the new row and column weights and sorting,
some row or column would be non-zero and we would be
forced to draw another line. Only when all the row and
column weights are zero are all the zeros covered.

Case (b). Suppose we drew more than the minimum
number of lines. Let the minimum number of lines be
K.i» and suppose we drew K lines K > K, ,.. Suppose
for simplicity and w.l.o.g. that Koin+1 =K. Then a line
was drawn that was redundant ; in order to do this all the
zeros had to be covered at the time of drawing, hence all
the row and column weights were zero and we could not
have drawn the line. This is a contradiction, hence
K = K., follows, as we always put a line through the
maximum available zeros at the time.

After defining the algorithm we stated that once a line
is drawn it is never erased. Why is this so? To answer this
we prove the following theorem.

Theorem 2

Once a line is drawn on the tableau it will never be
removed.

Proof

To update the cost matrix we perform one of the
following computations.

(a) Add the minimum uncovered element to an
element on an intersection of two lines.

(b) Subtract the minimum uncovered element from
another uncovered element.

It follows that once a zero has had a single line drawn
through it, it will never be made non-zero. While a zero
on the intersection of two lines can be made non-zero, if
the only zeros in a row or column are on intersections, a
modification of the reduced-cost tableau could create a
line on a row or column which contained no zeros and a
line would have to be removed. However, a line with
zeros only at intersections with other lines is redundant
and would not be drawn by Theorem 1. It follows that
once a line is drawn it is not removed.

Remark. Theorem 2 allows the timing of the systolic
array to be calculated, and allows the suggested
simplifications to the systolic array to be made.

3.3.1 ‘On-the-fly’ construction of lines

The lines drawn on the reduced-cost matrix are repre- ;
sented by the line state of the tableau cells. The line state
is used to identify covered elements of the cost matrix @
during the modification (Phase I; W}) of the cost matrix.
Essentially there are only three states for a tableau S
element: uncovered, no line; covered, with a single line; o
covered, by two lines, Wthh is an intersection. The lme
state of each tableau element and hence processor can

92// sdny wouj papeojumo(

m

=)

O

C

3
8

thus be represented by a line-state variable consisting of 5 El

only two bits with the above states 00, 01 and 10
respectively. Line drawing then becomes trivial as the
line state can be set by simply shifting the line-state
variable left, and initially introducing a 1 for the first
drawing. Thus a three-bit circulating shift register in the
tableau cell is used to represent lines, according to the
following states: 100, no line; 001, single line; 010,
intersection. (Notice that if we had to remove a line we
would need ‘shift right’ signals; here only a single shift
direction suffices.) For purposes of swapping rows or
columns during the sorting of row and column weights,
we consider these three bits to be tagged to the actual
tableau element. The lines are simply constructed by
tying the control inputs to the cell to the shift register, so
that they shift when the line-drawing control from the
row or column sorter cell adjacent to controller C, is
received. The tableau cells in the row and column
adjacent to the row and column sorter cells, by the
mechanics of the array are the only ones to receive the
line-drawing commands, but as the lines are bubbled
away from boundaries all the cells in the tableau must
contain a line-state register to record lines for modifica-
tion. As lines are marked on the tableau cells, cells
which contain the zeros on the line must generate signals
to modify the row/column weight in the adjacent cell.
The tableau cell must therefore be able to detect a zero
element, which is simply done by taking the NAND of
the bits in the tableau element. It follows that the line
drawing can be completed with only a 3-bit circulating
shift register and a NAND gate, in each cell.

As the row or column is bubbled away from the row
sort/column sort boundary, taking the now zero but

566 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

QJ

202 Iudy 60 uo 1senb Aq €1215€/295/9/€E/210M

A SYSTOLIC ARRAY SOLUTION FOR THE ASSIGNMENT PROBLEM

previously maximum weight with it, the list which is
having its weights modified may need to be fully re-
sorted. The round trip for the control signals generated
from controller 3, to reach controllers C, and C, and
back, is 2n which gives plenty of time for the lists to be
re-sorted, and the line-drawing signals to move out of the
immediate vicinity of the C, controller. It follows that we
can draw lines at the rate of 1 every 2n+k cycles, where
k is a small constant for synchronisation of the row and
column sorters and the C, cell to decide on the next line
position.

3.4 Complexity of the tableau element

We have already seen in the section on drawing lines that
the tableau requires a three bit circulating shift register
and a NAND gate to detect lines and generate signals to
modify the weights when a zero is covered. The tableau
cell also requires some additional hardware to perform
the modification of the cost matrix, compute row and
column weights in early phases and locate the minimum
uncovered element used in the modification.

(1) Modification of the cost matrix. This is easily
performed. We already have the line status in three bits,
using two of these to decide if an element is covered by
one or two lines, or not at all. We also have a signal
which will indicate if the element is zero. Thus we can use
these combined signals to indicate addition, subtraction,
or no operation, as follows.

Line state Zero Action

00 X Subtract minimum element
from cell element

01 X Add zero to tableau element

10 X Add minimum element to cell

element

X = don’t care.

(ii) Row and column weights are also simply computed
using the same signals.

Line state Zero Action

00 1 Add 1 to row or column index
01 X Null (add zero)

10 X Null (add zero)

Note that we can use line state and zero to generate the 1 to
be added to total, in the cell.

(iii) The modification of the matrix requires the
location of the minimum element ; this in turn means that
the tableau cell must shift the minimum element left. To
find the minimum we compare the value coming from the
right with the cell element and moving the minimum left.
This is done by simply subtracting the cell element from
the incoming element; if the result is negative the
incoming value is less than the cell element, otherwise the
cell element is the minimum and we send the correct
value left. All this can be detected by noting that all the
cost matrix variables are positive, so a negative result is
unique in determining the minimum. Finally, the most
significant bit generated by the adder/subtractor will be

set high for a negative answer, hence a single control bit
is sufficient for detecting the minimum.

It follows that all the operations required for the
tableau element can be constructed using an adder/
subtractor, tegether with some switching for inputs and
the line state, zero and + status bit. Thus the cycle time
of the API array is the time for a single addition or
subtraction and the necessary time for setting controls.
The tableau cell is thus very simple in structure. By
similar arguments we can also conclude that the row
sort, column sort and Min-shift arrays can also be
represented by an adder/subtractor arrangement with
the same cycle time. The fact that all the basic cells are
adder/subtractors with associated control logic is signifi-
cant, because the algorithm appears to imply a basic cell
with at least a comparator and adder/subtractor ar-
rangement, so the above arrangement can save about
half the area. We assume a comparator is approximately
the same area as an adder.

Remark. We stated that each tableau cell reads a value
from its right and passes the minimum of the cell element
and the incoming value to the left. What happens on the
right boundary, where tableau cells have row-sort cells to
the right? We may think that a row weight may propagate
through the tableau to become the erroneous minimum.
In fact this is not possible, as we find the minimum only
after drawing lines, hence if we seek the minimum
element of the tableau all the row weights are zero. Also,
the minimum uncovered element must be non-zero (line-
drawing algorithm), hence incorrect results can easily be
avoided by rejecting zero minima (see Fig. 4).

. T I
1 ! [
1 | 1
1 ! [
1 X !
I‘ ————————— >4 € — — — = >
f <>~
jF=m - - Switching 1
Wy r----- > network !
\ 1
1 LS 1
| I iy 1
| Rl R ¥ 1
[| E (. 1 !
| 1 L] A ﬁ 1 |
I e d] |
| m d 1 [}
| e € | !
] n r | |
1 t l !
| 1 |
DD SN I
Figure 4. Tableau cell arrangement. LS, line state; ———,
control; ——, data.

4. COMPUTATION TIME AND AREA
CONSIDERATIONS

The use of the SCR in the API array means that the
timing of the array is easy to compute. The control signal
travels around the SCR exactly twice to complete the
steps 2 and 3 of the algorithm; on the second cycle we
perform line drawing, which is a variable time on each
iteration of the matrix. If we call the total time spent in
the line drawing phase T;,, the time for a single API

iteration is
I,=8n+6,T,+8, 0<6 <],

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 567

202 I4dy 60 U0 1senb Aq €121 5¢/295/9/€¢/8101e/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

G.M. MEGSON AND D.J. EVANS

as the time to traverse a quarter (or side) of the SCR is
n+ 1 basic cell cycles and a single cycle around the SCR
is 4(n+1).

Now if we perform z iterations the total time is

ST=3X8+36,T,+8z

i=1 i=1 i=1

z
=8nz+ X 6, T, +8:z.
i=1
The time taken to draw a single line systolically is also
easily computed. It is the time taken to select the next
row and column and then traverse a side of the API
twice, 1.e.

T, = 2n+1)+k,
where k£ = constant (non-zero, positive).

But if we stop when we have drawn 7 lines, and if, once
a line is drawn, it is never removed, then

Y0, T, =nT, =2n*+n+kn.

i=1
Thus, for z iterations, we have

T=8nz+8z+2n*+n+kn
=2n*+n(k+1+8z)+8z.

Hence if we perform the following iterations:
(z=1) T,=2n*+k+9)n+38
z=n) T_=10n®+k+9)n.

up
Hence the API computation time is bounded as given by
the expression

2+ (9+k)n+8 < T<10n2+(9+k)n.

The time taken to pre-compute the initial reduced-cost
matrix is 5»n and, overlapping the last » with the loading
of the API, we only require an extra 2n to complete the
loading and performing unloading to give the total 7n.
Thus a bound for the complete algorithm is

2+ (16+k)n+8 < T< 10n*+ (16 +k) n.

Notice that this timing is in terms of cycles which are as
long as is required to perform an addition and some
trivial control switching, so the systolic design should be
fast.

In terms of area we already have n adder-type cells to
produce the reduced-cost matrix in the pre-processing
stage, while the API requires approximately
[(n+2)+(m+2)] added cells (including switching,
registers, etc.), which is useful in terms of area efficiency.
We also assume that the controllers are sufficiently
simple to be bounded by the area of four adder
arrangements, and it is trivial to notice that C, and C,
satisfy sub-adder area, while C, and C,-the major
controllers —are more complex. In any event, the
controller area is not significantly more than the area for
the adder-type cells, so our area estimation is essentially
correct.

4.1 Wafer Scale Integration (WSI)

It is acknowledged that the assignment problem will
often be used on large problem sizes (n), and thus the

number of basic elements in the API is large and the
resulting area for the problem may be large. In earlier
sections it was noted that the pre-processing array could
be linked directly to the Host interface section of the API
array for each loading of the reduced cost matrix. This
implies a high bandwidth for large n and a large number
of pins for a chip-based implementation of the API
array. However, we assumed that loading would be done
in a row-by-row order in O(n) time. The API algorithm
is itself O(n®), so a more expensive loading scheme with
smaller bandwidth can be justified, in particular we
consider a method known as ‘snake-loading’ requiring
O(n®) time which requires only a single input—output line,
as is shown in Fig. 5.

¢

Figure 5. Snake loading using one I/O connection (n = 3).

Since we now only require a single I/O connection
which is easily within pin restrictions, and the interface
between API and Host is still local to C; the start
controller, the possibility of producing a Wafer API
(WAPI) Systolic Array which could have a very large
number of cells permitting large assignment problems to
be solved is feasible using this principle. Notice that the
API is well suited to VLSI implementation due to the
arrangement of different cell types, with a core of n'%n
identical cells, and linear arrays of n cells each around the
periphery of the design punctuated by simple controllers
(see Fig. 6).

Remark. Notice that the wafer is sectioned into squares
assumed roughly proportional to a single chip area.
Hence using VLSI techniques each square itself could be
a sizeable portion of the array. If we consider the block
form of the reduced-cost tableau, then if each chip has
enough cells for a k * k grid, the wafer can implement a
k block-partitioned reduced-cost matrix.

In our example there are 112 squares in the tableau
portion of the API; if we assume a 4 * 4 portion on each
chip this implements a 44 * 44 reduced-cost matrix. In all
probability we will be able to increase the number of
array cells in each wafer square. One final point about
the wafer idea is that the row sorting, column sorting and
other boundary cells absorb very little area, less than a
single chip, hence we can increase the size of the tableau
by using this extra space.

Notice that as only one input—output line has been
used we may consider extending this to one line for each
boundary to reduce the loading and unloading times.

Remark. We have ignored the problems of re-routeing
if a chip fails; this can be solved by consulting the current
literature on the subject but is beyond the scope of this

paper.

568 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

202 I4dy 60 U0 1senb Aq €121 5¢/295/9/€¢/8101e/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

A SYSTOLIC ARRAY SOLUTION FOR THE ASSIGNMENT PROBLEM

[] |]
T T[T

Figure 6. Mapping of API on to a wafer.

We can consider increasing the problem solved by
adding some memory and control to the design. The
principle is to develop a scheme similar to the LISA
concept.” Here it would fabricate a processor with a
single cell of the tableau array and simulate it with the
control program built in as part of the new cell — a virtual
grid of array processors storing the results in an auxiliary
memory. This approach suffers from a reduction in speed

of computation but could produce much larger grids (see
Fig. 7).

Host interface

Co H e H e e HesH

Figure 7. API systolic array (n = 5).

5. CONCLUSIONS

We have shown that the computational procedure known
as the Hungarian method for solving the assignment
problem can be implemented in a systolic manner.

The seemingly difficult problem of systolically drawing

the minimal lines through zeros in the reduced-cost
matrix and its later modifications proved simple to
implement. We also introduced the notion of the systolic
control ring (SCR) to control systolic movement within
‘the systolic array, and discovered that the control exhibits
more systolic properties than the actual data, although
this could be the result of assigning one cost matrix
element to each processor in the orthogonally connected
tableau.
The time of the final algorithm is bounded as

2n+(16+k)n+8 < T< 10n*+ (16 + k) n

and the design requires O(n®) basic cells of approximately
equivalent area to an adder/subtractor with associated
control and registers for recording line states of each
variable table element. This is compared with O(»®) if the
algorithm was implemented sequentially; however, a
sequential machine would be able to take advantage of
the smaller weight lists as lines are drawn, which the
systolic array presented does not. The current array can
however be modified by restructuring the control flow in
the sorter cells to perform this.

We also showed that the design would be suitable for
solving the large problems encountered in practice by
using Wafer Scale Integration (WAPI) arrays, which
would free any host (sequential machine in particular)
for other tasks during the computation of the API
algorithm. Smaller problems can be solved on a larger
array by adding dummy jobs and individuals to pad up
to full array size. The wafer form of the algorithm using
a snake loading pattern requires a time bounded by

3+ +k)n+8 < T< 11n+(9+k)n.

Finally we note that a commonly used and often large
problem can be solved simply and quickly using
remarkably simple cells using systolic principles, es-
pecially if we use the wafer scale integration techniques
currently under development.

REFERENCES

1. D. J. Evans and G. M. Megson, 4 Systolic Implementation
of the Simplex Algorithm, Computer Studies Report 288,
LUT. Int. Jour. Comp. Math. 1991 (in press).

2. G. M. Megson and D. J. Evans, 4 Systolic Cylinder for the
Revised Simplex Algorithm, Computer Studies Report 304,
LUT. Int. Jour. Comp. Math. 1991 (in press).

3. Nesa Wu & Richard Coppins, Linear Programming and

Extensions. McGraw-Hill, Maidenhead (1981).

. Silicon Design 3 (1) (1986).

. G. M. Megson and D. J. Evans, Lisa: a parallel processing
architecture. In Conpar 86, edited W. Handler et al., pP.
361-375. Lecture Notes in Computer Science 237. Springer
Verlag, Heidelberg.

6. R. P. Stallard, OCCAM - The Loughborough Implemen-

tation. Private communication (Nov. 1985).

7. G. M. Megson and D. J. Evans, The Systolic Control Ring
Instruction Processor (SCRIP). Int. Conf. on Parallel
Processing for Computer Vision & Display, Leeds (12-15
Jan. 1988) Integration, the VLSI journal. 9 (1990) pp.
287-302.

8. D.J. Evans and G. M. Megson, Matrix inversion by
systolic rank annihilation. Int. Jour. Comp. Math. 21,
319-357 (1987).

[N

THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990 569

202 I4dy 60 U0 1senb Aq €121 5¢/295/9/€¢/8101e/|ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

