Editorial — Term Rewriting

A term rewriting system consists of a set of rules which
defines a rewriting relation between terms. Usually, the
rules represent directed equality : we rewrite when we can
replace equals by equals. This paradigm is very similar to
functional programming ; however, in general, rewriting
is non-deterministic in the sense that no restrictions are
placed on the selection of rules to be applied or on the
selection of the redex. Moreover, there is no restriction
on overlapping rules.

This generality makes rewriting a very powerful
computational paradigm: current uses of rewriting
include solving word problems in universal algebra,
automatic theorem proving of equational and inductive
theorems, generation of solutions to equations (nar-
rowing), prototyping of equational specifications, syn-
thesis of rewrite rules (these may be regarded as programs,
or implementations of more abstract specifications),
proving properties of equational specifications such as
sufficient completeness and consistency (together these
two properties are called persistency), and a framework
for logic and functional programming.

The papers presented fall into three categories: the
crucial issues in term rewriting, implementations of term
rewriting systems, and term rewriting based theorem
proving.

Confluence, termination, and typing are three crucial
issues in term rewriting. The confluence property ensures
that the order of rule application is irrelevant, whereas
the termination property ensures that reduction seq-
uences are well-founded. A set of rules which is confluent
and terminating is called complete, and makes equality
decidable, since repeated application of the rules reduces
any expression to a unique normal form; two terms are
equal if and only if they have the same normal form. The
first paper is by the author of the ERIL term rewriting
laboratory, Jeremy Dick. He gives a gentle and well-
motivated introduction to term rewriting and the
Knuth-Bendix completion algorithm, which for a given
termination ordering tests for the confluence property.
The algorithm not only tests for confluence, but may also
be regarded as a semi-algorithm which generates a
confluent set of rules. The algorithm is called a
‘completion’ algorithm because if it terminates it
generates a confluent and terminating set of rewrite rules.
The Knuth-Bendix algorithm is only one of a family
of completion algorithms, and the paper concludes
with an overview of some of the other completion
algorithms.

MUFFY THOMAS

The second paper, by Phil Watson and Jeremy Dick,
investigates how to incorporate type systems in equa-
tional reasoning. The paper presents us with a series of
problems and solutions. They begin with the problems of
one-sorted rewriting and then consider many-sorted
rewriting (first proposed over a decade ago) as an
improvement. After pointing out the inadequacies of the
raany-sorted approach, order-sorted rewriting is pro-
posed. For example, the ERIL system is order-sorted.
This approach too has its restrictions: the typing system
is too syntactic and static, and we are finally presented
with the recent approaches to order-sorted rewriting
which use the ideas of dynamic or semantic sorts.

The third paper is a survey of rewriting techniques and
implementations. The authors, Miki Hermann, Claude
Kirchner and Helene Kirchner, have extensive experience
of both the theoretical and practical issues involved in
term rewriting and they have designed the REVEUR
rewriting laboratory. They introduce the capabilities and
efficiency of term rewriting systems in general, and they
conclude with a catalogue of term rewriting laboratories
available for general distribution.

The final two papers are concerned with theorem
proving. In the first of these, Tobias Nipkow discusses
rewriting from a general theorem-proving perspective.
He points out that most of the equational logic-based
systems surveyed in the previous paper cannot be
extended to include new proof procedures. Nipkow
adopts the approach taken by the LCF theorem prover
(and later Isabelle and HOL), where proof procedures
are tactics, and shows how term-rewriting techniques,
which can be derived from equational logic, can be
implemented by tactics for first-order logic. He concludes
with an example taken from the area of hardware design:
the verification of a ripple-carry adder.

The final paper by Peter Padawitz extends rewriting,
theorem proving and equation solving to the context of
Horn Clauses. The results are based on a recent book
devoted to the topic by the author. This area will be of
great interest to the computer scientist, who often finds
Horn Clauses more appropriate than equational logic.
Thus, signatures are extended to include predicates (as
well as functions) and equations may be regarded as
either conditional or unconditional. Within this context,
Padawitz develops conditional reduction, narrowing,
lazy narrowing, and inductive proof methods based on
reduction and narrowing.

My thanks to all the authors for their contributions.

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 1

CPJ 34

¥20Z Iudy 01 uo 1senb Aq £z26.21/L/1LIvE 8101 e/|ulwoo/woo dnoolwapede//:sdiy woly papeojumo(q



