Order-sorted Term Rewriting

A.J.J. DICK* aND P. WATSONY

* Informatics Dept, Systems Engineering Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX14 4LZ.}

t RHBNC, University of London (now at University of Glasgow).

In this article we look at the motivation for order-sorted term rewriting by considering some of the very natural
equational theories in which single-sorted (unsorted) and many-sorted rewriting lack sufficient expressiveness, for
various reasons. However, order-sorted rewriting is not without problems of its own, and we consider some of these
along with a brief description in each case of some current approaches to their solution.

Received August 1990

1. UNSORTED OR SINGLE-SORTED
REWRITING

We assume some familiarity with the general idea of term
rewriting, and in particular with the Knuth-Bendix
completion algorithm, as found in, for example, Refs 1
or 2. A brief summary follows.

We assume that we have a set of equations E, whose
terms are composed of constants, variables, and function
symbols, all of which are defined in our signature. Let V'
be our set of variables and T our set of terms. A ground
term is one which contains no variables.

In unsorted term rewriting, all constants and variables
are considered to belong to some set .S and a function
symbol f of arity » is defined:

f:8"=>S

We orient each equation into a rewrite rule in
accordance with some ordering > on terms. Each rule
has a left hand side, /, and a right hand side, r, chosen so
that / > r. Then we write the rule:

I=r

These rules may now be used in two ways. A rule may
reduce a term in another rule or equation if some term ¢
in that rule or equation is matched by I, i.e. there exists
a substitution

o:V->T

such that ¢ is defined on every variable in /, and
al=t

Then we replace ¢ by or at the position p where ¢
occurred in the rule or equation. Suppose ¢ is a subterm
of s in the equation

s=u

Then we write
s = s[p<oar] =ou

We will try to choose a well-founded ordering so that
no term can be reduced infinitely often. For a review of
termination orderings see Ref. 3.

A term which cannot be reduced by any rule is said to
be in normal form.

The other use we make of rules is in generating new

1 Now at: Bull SA, 68 route de Versailles, 78430 Louveciennes,
France.

equations which we add to E. Consider the case where
there exist rules
Li>r

and ly—>r,

and a term ¢ which can be reduced by the first rule at
position p, and by the second rule at position top. Then
t rewrites to both

ty=1tp <ol

and t, =0,r,

for some substitutions a,, g,. Since the rules are really
equations, we deduce that ¢, = ¢,. We say ¢, and ¢, form
a critical pair. If 1, and t, can be reduced to the same
normal form by the rules they form a convergent critical
pair. Otherwise ¢, = t, is added to E as a new equation.

When all critical pairs are convergent and every
equation has been ordered into a rule we say the set of
rules is confluent.

For many sets of equations, no confluent set of rules
can be found. This can be due to the confluent set being
infinite, or it can be because some equation cannot be
oriented.

The process of finding critical pairs involves unifi-
cation, which we do not discuss further here — see Ref. 1
for an introduction to this highly complex area.

1.1 Problems of unsorted term rewriting

There are many natural sets of equations which unsorted
term rewriting cannot handle satisfactorily. The most
commonly seen example is that of a stack, the signature
of which follows.

emp:—>S
(emp is a constant, representing the empty stack)

V={x,x1,x2,....,y,y1,y2,...}
(V is the set of variables)

push: Sx S-S

pop:S—>S

top:S—D

(The three usual functions on stacks)
The equations are:

pop(push(x, y)) = y

top(push(x, y)) = x
there are two equations in E

16 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

¥20Z Iudy 60 U0 1senb Aq 216.21/91/11vE/8101e/|ufwoo/wod dno-olwsapede//:sdiy wolj papeojumoq

ORDER-SORTED TERM REWRITING

Now already we have a problem. If we attempt to apply
top or pop to the empty stack, we should get an error. So
we introduce the additional function symbol error and
additional equations as follows:

error: - #

pop(emp) = error
top(emp) = error
push(x, error) = error
top(error) = error
pop(error) = error

This does not yet solve our problem. Consider the
term

top(push(x, error))

This rewrites to both x and error, so we have the critical
pair

X = error
which is not what we intended.

The problem arises because error is qualitatively
different from all other terms, just as stacks and stack
elements are qualitatively different. This leads to the idea
of many-sorted term rewriting.

2. MANY-SORTED TERM REWRITING

The problems we faced in the example above were caused
by our attempting to apply functions to constants to
which they should not be applied, in other words
generating errors.

We solve these problems by defining every function to
have a domain, which includes one or more sorts, and
never applying the function outside this domain. Each
sort will have its own set of variables, and we restrict
substitutions so that any variable can only be substituted
by a term of the same sort. Let S be our (finite) set of
sorts.

Then the example of stacks can be expressed as
follows:

S = {STACK, E, NSTACK}
(representing the three sorts of stacks, elements and
non-empty stacks, respectively)
Ve ={e,el,e2,...}
Vorack = {0, p1,32,...}
V,

nstack = {2,21,22,..}

(representing the (disjoint) sets of variables for the
three sorts)

emp: - STACK
pop: NSTACK - STACK
top: NSTACK - E
push: E x STACK - NSTACK
pop(push(e, y)) = y
top(push(e, y)) = e
We have introduced the sort NSTACK to avoid the

possibility of applying top or pop to emp, which would
lead to the same problems as in the unsorted case.
However, now we cannot push elements onto a non-
empty stack. For example, push(el, push(e2, y)) is ill-
sorted because push(e2, y) is of sort NSTACK, which lies
outside the domain of push. Clearly we need a further
refinement, in order to make terms of sort NSTACK be
of sort STACK as well. Thus we arrive at an order-sorted
signature.

3. ORDER-SORTED TERM REWRITING

Sorts are defined as before, except that now we specify a
partial order > between sorts (not to be confused with
the term ordering >). If 4 and B are sorts and A4 > B,
we say that B is a subsort of A. The reflexive closure of
> is denoted >_. We denote 4 >_B diagrammatically
by: A

|

B

If B is a subsort of A4, then every variable or constant
of sort B is also a variable or constant of sort 4. If a
function fis defined on domain 4, then f'is defined on B
and f(b) = f(a), where b is a term of sort B and a is that
term regarded as a term of sort A. This extends easily to
the case where f takes more than one argument.

We make the further requirement that substitutions
are sort-preserving, i.e. if v is a variable of sort A, ¢ must
be a term of some sort B <_A if ¢ is to be substituted for
v.

We mention in passing that whereas two terms in the
unsorted and many-sorted cases can be unified in at most
one way, terms in the order-sorted case can be unified in
finitely many ways. The reader is referred to Ref. 4 for
details.

Now we can specify operations on stacks as follows.

S = {STACK, NSTACK, E}

NSTACK <_,STACK
(NSTACK is a subsort of STACK)

Ve ={eyel,e2,..}

Vorack ={»y1,»2,...}

Vistack = {2,21,22,...}

emp: - STACK

pop: NSTACK — STACK
top: NSTACK - E

push: E x STACK - NSTACK
pop(push(e, y)) = y

top(push(e, y)) = e

It seems as though everything is in order, as z is a
variable of a subsort of STACK, so it is also a variable
of STACK.

However, we still cannot write

pop(pop(push(el, push(e2, emp)))

for example. One solution to this is to introduce a rop or
universal sort U, with the intention that 4 <_U for every
other sort 4, and every function f'is defined on U.? This
has the result that even semantically meaningless terms
become syntactically well-sorted, which is obviously

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 17

CPJ 34

¥20Z Iudy 60 U0 1senb Aq 216.21/91/11vE/8101e/|ufwoo/wod dno-olwsapede//:sdiy wolj papeojumoq

A.J.J.DICK AND P. WATSON

undesirable. Since the solution which we will propose to
the problem of sort-decreasingness (see later) also solves
the above problem, but without defining functions on the
universal sort, we do not pursue the idea of the universal
sort here.

4. PROBLEMS OF ORDER-SORTED
REWRITING

We now consider some of the problems of order-sorted
rewriting, and some current approaches to their solutions.

In general, these problems arise because of the
considerable difference between the syntactic world of
term rewriting and the semantic world of the underlying
algebra, so we begin by defining the initial or Z-algebra
of an order-sorted term rewriting system. In this section
we follow Ref. 6.

Definition

Let X be an order-sorted signature, with sorts S. Let E be
our set of equations. Then the initial algebra </ consists
of denotations &4 and f4 for the sort and function
symbols of Z, respectively. Let

§={t|s =t is provable in E and ¢ is a ground Z-term}

Then &* = {f|tis a ground Z-term of sort &}.

C, = J{¢&*|Ee S} is called the carrier of <.

S* is a mapping D}“ ->C 4 whose domain D7 is a subset
of C!, where |f] is the arity of f.

Iffiéyx...x¢,~¢eX and aqeé, fori=1,...,n

Then (@,...,a,)eD} and f“a,...,a,)e&!
Further, f4a,...,a,) =fla,...,a,)
if a,...,a, are all ground terms.

We are particularly interested in initial algebras
because they have:
no junk

for every 1€ there is exactly one 7 in &4
no confusion

[=75in & iff t = 5 is deducible from E.

4.1 Regularity

The first problem we find with our syntax for order-
sorted rewriting is that it allows multiple function
declarations while in the algebra every mapping has only
one denotation. This results in problems such as the
following example.

S={S,,S,, S}
S, >,S,
Sy, >, S,
fi8,~>8,
[:8,~>S,

Sy
\53
a:.—~ S,

What is the sort of f{la)? fla) belongs to both S, and
S, and to no lower sort. We have to conclude that f{a)
has no least sort.

S)

18 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

Definition

A signature X is regular iff the subsort order > is a
partial order and every X-term ¢ has a unique least sort
LS (¢) such that:

(i) if t is a Z-term, ¢ is a term of sort LS (¢)
(i) if zis a Z-term of sort &, LS(s) <,¢.

Note that the least sort of a term ¢ can be found
effectively as it only depends on the domains and ranges
of functions and the least sort of subterms of ¢.

In particular, in the example above we might define

i8> 8,

to make the signature regular.

In order-sorted term rewriting we are only concerned
with regular signatures, for the practical reason thato
unification in regular signatures is finitary, while in non-2
regular signatures it is infinitary (in general).

4.2 Void sorts

If a sort is void, i.e. contains no ground terms, we very=
quickly run into problems, as the following example;
from Ref. 7 shows. 5

wioJy pepeoju

The signature is:
S = {VOID, BOOL}
TRUE: - BOOL
FALSE: - BOOL
Viorn = {x,x1,x2,..}
f:VOID - BOOL

Let the rewrite rules be:
fix)=TRUE
fix)=FALSE

¥B.2¥/91/1/7E/9101He/|ulw0o/woo"dno olwspese

=]
[¢]
(€]
})
=
7
(¢’]
=
&
-
a
3
o}
o
»
s
o
=4
=
!
~
c
les]
o
=
o
g3
>
h
2]
les]
b3
a

>

immediately deduce that TRUE = FALSE. However, '
this is not true in the initial algebra because f{x) has no
ground instantiation. &

We shall adopt the simplest solution to this problem ;g

we forbid void sorts. An alternative solution is given in 2
Ref. 7. >

¥202 udy

4.3 Sort-preserving rewriting

A more serious problem is that order-sorted rewriting is
not complete in the order-sorted case. Consider the
following example from Ref. 6.

Signature:
S'={4,B} with B>_4
a:—A
a:—>A
b:->B
fiA—> A4
Rules:
a=>b

a=b

ORDER-SORTED TERM REWRITING

In the initial algebra G=b=a

Therefore fla) = fa)
must also hold.

However, we cannot deduce that fla) = f{a’) by
rewriting because the term f{b) is ill-sorted. The problem
is that = does not preserve monotonicity. Namely, t = 1’
does not imply f{¢) = f(t') unless

LS (1) >.LS()

Until recently, this restriction on term rewriting was
accepted, and only signatures in which every rule /=r
was sort-decreasing, i.e. LS (/) =_LS (r), were considered.
Recently, however, a number of groups have been
working independently on this problem, including Gallier
& Isakowitz,®® Watson & Dick,’® Ganzinger! and
Duporcheel.!?

Again the problem is caused by the difference between
syntax and semantics. We have already introduced the
syntactic measure of the least sort of a term ¢, LS (7), but
in fact every term also has a semantic sort. In the initial
algebra we define 7 for every ground X-term ¢ because we
want to do substitution of equals for equals — thus 7 is
properly regarded as a congruence class. In order to
substitute equals for equals within this congruence class,
the terms which belong to this class must in some sense
have the same sort, in order that a congruence class lies
either entirely inside or entirely outside the domain of
any given function.

So we define the semantic sort of t, Sy (?), to be

N{LS(s)|5=7in o/}
Now of course 7 = 7, so we see that Sgp,(2) <,LS(2),

for every ¢. Thus our notation becomes inappropriate,
and we shall rename the syntactic (least) sort of ¢ to be

SSYN(’)'
4.3.1 Dynamic sorts

To avoid the restrictions of sort-decreasing rewrite rules
we would much rather use the semantic sort S, in
rewriting. Then, rewriting a term never causes it to
become ill-sorted. Unfortunately this is not possible, as
the semantic sort of a term cannot be found effectively,
in general. This is easily seen because for any ¢, f may
represent infinitely many terms.

REFERENCES

1. G. Huertand D. C. Oppen, Equations and rewrite rules — a
survey. In Formal Languages: Perspectives and Problems,
edited R. Book, Academic Press, London (1980).

2. A.J.J.Dick, An introduction to Knuth-Bendix com-
pletion. Computer Journal 34 (1), 2-15 (1991).

3. N. Dershowitz, Termination of rewriting. J. of Symbolic
Computation 3, 69-116 (1987).

4. R.J. Cunningham and A. J. J. Dick, Rewrite systems on a
lattice of types. Acta Informatica 22, 149-169 (1985).

5. J. A. Goguen and J. Meseguer, Order-sorted algebra, 1.
Partial and over loaded operators, errors and inheritance.

6. G. Smolka, W.Nutt, J. A. Goguen and J. Meseguer,
Order-sorted equational completion. SEKI report SR-87-
14. Universitit Kaiserslautern, West Germany (1987), also
in Proceedings of Colloquium on Resolution of Equations
in Algebraic Structures, Austin, Texas (May 1987).

7. J. A. Goguen and J. Meseguer, Completeness of many-
sorted equational logic. SIGPLAN Notices —16 (7), 24-32
(1981).

The idea of Ref. 10 is to approximate the semantic sort
of a term using dynamic sorting. At stage s+1 in the
Knuth-Bendix algorithm, after generating more equa-
tions by the critical pairs procedure, we calculate the
dynamic sort of each term which occurs in the rules and
equations, defined to be

SHvs(?) = N{Shyn(t) 1= in E}
where E’ is the set of all rules generated up to stage s,
Shyn(?) = Ssyn(?) for every t.

Note that Siyy <, S%yx(0) for every term ¢, stage s.

Now by the completeness of a fair Knuth-Bendix
procedure which does not fail,

Lims»oc Shys() = SSEM(t)
The use of dynamic sorts ensures that at no stage do we
rewrite a term to an ill-sorted term. The use of dynamic
sorts also has consequences for unification, proof by
contradiction and other facets of term-rewriting, the
details of which are covered in Ref. 10, where a formalism
(with inference rules) is given in the style of Ref. 13.

The method developed independently by Gallier &
Isakowitz®® is based on the same idea, except that they
do not explicitly change the sort of a term during
rewriting, but rather allow rewriting to (syntactically) ill-
sorted terms, which they justify with a rigorous proof.

This method is fast and brutal compared to ours; the
normal form of a term may be ill-sorted, for instance,
and no new information about the semantic sort of a
term is produced during the completion procedure. On
the other hand their method is obviously much easier to
implement, and quicker than the method of dynamic
sorts.

Both methods remove the requirement that order-
sorted rewrite rules must be sort-preserving.

5. CONCLUSION

We have attempted to introduce the essential aspects of
order-sorted term rewriting in a well-motivated semi-
formal fashion. We have highlighted some of the
particular problems such an approach creates, and
discussed possible solutions. The reader is referred to
Ref. 6 for a thorough grounding in order-sorted
rewriting.

8. J. H. Gallier and T. Isakowitz, Rewriting in order-sorted
equational logic. In Logic Programming, Proceedings of
the Fifth International Conference and Symposium, edited
R. A. Kowalski and K. A. Bowen, vol. 1, pp. 280-294,
MIT Press (1988).

9. T. Isakowitz and J. H. Gallier, Congruence closure in
order-sorted algebra. Technical Report, Computer and
Information Sciences Department, University of Pennsyl-
vania, Philadelphia, PA (1987).

10. P. Watson and A.J.J. Dick, Least sorts in order-sorted
term rewriting. University of London, Royal Holloway
and Bedford New College, Technical Report TR-CSD-606
(Jan. 1989).

11. H. Ganzinger, Order-sorted completion: the many-sorted
way. Bericht, Nr. 274. Forschungsberichte des Fach-
bereichs Informatik der Universitit Dortmund (1988).

12. L. Duporcheel, ‘Typed Algebra (Back to the Future)’.
Unpublished lecture notes, Alacatel Bell Telephone, 1989

13. L. Bachmair, Proof methods for equational theories. Ph.D.
thesis, University of Illinois at Urbana-Champaign (1987).

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 19

2-2

¥20Z Iudy 60 U0 1senb Aq 216.21/91/11vE/8101e/|ufwoo/wod dno-olwsapede//:sdiy wolj papeojumoq

