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1. INTRODUCTION

This paper aims to provide an informal and intuitive
introduction to many of the concepts essential to a clear
understanding of Knuth-Bendix completion. Very few
of the ideas expressed in this introductory material are,
in essence, original to the author. A similar paper was
first pubhshed as a research report in 1984,3 and was later
expanded to form part of the author’s thesis.! The
intention is to motivate the key concept of  superposition’
from the standpoint of equational reasoning. The idea of
proof complexity is inspired by a PhD thesis by
Bachmair.! A broad survey of the field of term rewriting
can be found in a paper by Huet and Oppen.'*

For the purposes of the paper, brief, semi-formal
definitions of the terminology are given below.

2. TERMINOLOGY

Terms are constructed from unsorted, fixed arity function
symbols and variables in the usual way. For instance if
‘+7,°—"and ‘0’ are binary, unary and nullary function
symbols respectively, and x, y, z are variables, then
0+x, (——x+—y)+y and x+(y+z) are examples of
terms. Terms will be denoted by ¢, 7', ¢, 1,, t,,..., etc.

A term ¢ is a subterm of itself; and if ¢ is of the form
Sf(t,,...1,), where fis a function symbol of arity n, then
any subterm of ¢,,... or t, is also a subterm of t.

A variable x may be in;vtantiated by replacing it with
any term. The operation of substitution, denoted by
f[7'/x], instantiates every occurrence of x in ¢ by ¢
Variables will be denoted by x, y, z, u, v, w, a, b, ..., etc.

An equation is a pair of terms, {z,¢), usually denoted
by t=1. A set of equations, S, defines a relation on
terms where ¢ is related to ¢ if and only if 1 = '€ S. The
closure of this relation under symmetry, reflexivity,
transitivity, instantiation and subterm replacement is the
equality relation deﬁned by S.

Given terms ¢ and ¢, matching t to ' is the process of
finding substitutions of terms for variables in ¢ that
render ¢ identical to ¢'; unifying t and t’ is the process of
finding substitutions of terms for variables in both ¢ and
¢’ that render the two terms. identical.

Other terminology will be introduced as needed.

3. EQUATIONAL REASONING

Equations provide a natural framework in which to
express abstractly the properties of functions and how
they interact in algebraic systems. The ability freely to
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interchange equal terms in whatever context they may
appear gives rise to a very important method of
mathematical reasoning —the ability to explore the
properties and implications of a set of equational axioms
by repeatedly replacing equals for equals. Such - aS
technique is widely reflected in the presentation ofS
algebraic proofs Figure 1 shows a typical proof oﬁ
— —a=a in group theory defined by left and I'lghta
identity, left inverse, and assomatmty

A close examination of the reasoning process embodled3
in Fig. 1 reveals that there is a great deal going on behmdcj
the scenes of an apparently simple proof. To 111ustrate\
just one aspect, consider the application of axiom A3 i 1n0
step 2, in which 0 is replaced by —a+a. At this stage on
the proof the motivation for 1nstant1at1ng the variable x3
to a is not obvious.* Its purpose is only revealed at step®
4, where the second application of A3 requires such a2
binding. Perhaps it is misleading to represent the proofS
as a sequence of such steps when, in reality, the author ofS
the proof may have used a quite different intuition to—
derive it (from step three outwards, for 1nstance) )
However, a more accurate rendering of the step-wise
proof may be as found in Fig. 2.

Such observations suggest that, in considering the
automation of such reasoning, the following basic
processes are necessary:

/Z/L/VS/GI

Unification

6Aq Le6.21

Finding variable instantiations that will unify a term
with one side of an axiom. The brief discussion of stepso
3 and 4 above showed that variables in both the ax1om_\
and the term to which the axiom is being matched must 5
be instantiated. Matching, which will only instantiate=.
variables in the axioms, is therefore not sufficient.

J,sen
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Rewriting

Replacing one side of an axiom by the other side within
the context of a term. (Replacing equals by equals.)

Strategy

Finding the sequence of axiom applications that show
two terms to be equal. This is where the major difficulty
lies. There is an infinite network representing the closure
of the equality relation. This search space is ridden with
infinite sequences and loops requiring a very cautious

* One can envisage a strategy in which variables are only bound to
existing elements of the original terms. Such a technique would, it
seems, work sansfactonly in this case, but it does not provide a solution
to the binding problem in general.
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Given the four axioms

O+x =x (A1)
x+0 =x (A2)
—x+x=0 (A3)
x+y)+z=x+(y+2), (Ad)
prove that -—-a=a for any a.
Proof :- 1) -—a = -—a+0 by A2
2) = ——a+(-a+a) byA3
3) = (-—a+-a)+a byA4
4) = O+a by A3
5) = a by Al
Figure 1. A typical proof of — —a =a.
Proof:- 1) --a = —--a+0 by A2
2) = ——a+(-x+x) DbyA3
3) = (-—a+-x)+x by A4
4) = O+a by A3 with x instantiated to a
5) = a by Al
Figure 2. An alternative representation of the proof of — —a =a.

approach. At the very least, one must (a) record the path
followed through the search space, and avoid repetition;
(b) adopt a ‘breadth first’ strategy which favours ‘less
complex’ terms, to avoid getting lost in ever divergent
paths.

A naive strategy such as this one is totally non-
deterministic, and requires full backtracking. For any-
thing but the most trivial problems, a vast amount of
searching is likely to be required before a proof is found.

The aim of Knuth-Bendix completion is to provide, if
possible, a ‘ deterministic’ strategy for solving the equality
problem expressed by a given set of axioms. This is only
possible in certain cases; in others, Knuth-Bendix
completion may provide only a semi-decision procedure.
The purpose of this paper is to introduce informally the
principles involved.

4. COMPLEXITY OF TERMS

First some important observations are made about the
axioms in Fig. 1 which will help in understanding the
nature of proofs.

Suppose there exists an ordering on terms, >, which
describes their ‘complexity’. For example, in axioms Al,
A2 and A3,

O+x>,x O+x ‘is more complex than’ x)
x+0>, x (x+0 ‘is more complex than’ x)
—x+x>,0 (—x+x ‘is more complex than’ 0).

It is easy to see how ‘complexity’ could somehow be
related to size. The associativity axiom A4, however, is
more difficult, since both sides appear to be of exactly the

same size. The notion of complexity could be extended,
so that, in the case where terms are of the same size, their
structure is taken into account. For instance, a term
could be regarded as being simpler than another, if,
viewing terms as trees, its left-most subtree is less
complex than the corresponding subtree in the other
term, as illustrated in Fig. 3. Axioms may now be viewed

+ +
/\ /\
+ z ‘‘is more complex than’> x +
/\ I\
x y y 2

Figure 3. Complexity of terms in the associative axiom.

as simplification rules, or rewrite rules, i.e. rules that
allow complex terms to be rewritten in some simpler (but
equivalent) form. Rules are written as ¢—t, meaning
that t =t and ¢ >, ¢. Figure 4 shows the axioms of

0+x —>x R1)
x+0 5 x R2)
-x+x—0 R3)
x+y)+zox+(y+2) R4)

Figure 4. Group axioms as rewrite rules.

Fig. 1 expressed as rewrite rules. The process of repeatedly
applying a rewrite rules to a term is known as reduction,
or normalisation. If no rules apply to a term, then it is
said to be in normal form.

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 3

¥20z Iudy g uo1senb Aq L£6/21/2/)LIvE/e1o1e/|ulwoo/wod dnoolwapede//:sdiy wol papeojumo(q



A.J.J.DICK

A set of rewrite rules, R, defines a relation on terms
where ¢ is related to ¢ if and only if 1 - ¢’ € R. The closure
of this relation under instantiation and subterm re-
placement is the reduction relation defined by R, also
denoted by —.

Requiring that the rewrite rules alone be complexity
reducing with respect to some well-founded reduction
ordering is not sufficient to ensure that the reduction
relation is well-founded. Since the reduction relation is
closed under instantiation and subterm replacement,
then the reduction ordering must be so too.

For any terms ¢,¢/,t” and variable x, an ordering on
terms is said to be stable (with respect to term structure)
if

' >_t" implies that #[z/x] > .t"[t/x],
and monotonic (with respect to term structure) if
¢ >_t” implies that f[¢'/x] > t"/x].

Any set of rewrite rules, R, in which each rule /->reR
satisfies / > r for some well-founded, stable and mono-
tonic ordering on terms, defines a well-founded reduction
relation.? A set of rewrite rules with this property is
said to be Netherian.

Treating equations as rewrite rules greatly decreases
the space of possible applications. Indeed, with a well-
founded reduction relation, the space is finite, because
there are no infinite rewriting sequences ¢ — 1" — " -

There are, of course, many ways of defining such
orderings. The reader is referred to the work of
Dershowitz? for an excellent survey of various methods.
The reduction ordering used here and in subsequent
sections is the Knuth-Bendix ordering.?® It works by
weighting terms according to the symbols that occur in
them, weightier terms being considered as more complex.
Where two terms are of equal weight, either operator
precedence is used, or subterms are considered lexico-
graphically, having a similar effect on the associativity
axiom as shown in Fig. 3.

Because of the nature of reduction orderings, all
variables that occur in the right-hand side of a rewrite
rule must also occur in the left-hand side. If this were not
s0, a stable reduction ordering could not be constructed,
since the rogue variable on the right-hand side could
always be replaced by a term of sufficient complexity to
make the ordering unstable.

There is an advantage attached to this restriction on
variables: no new variables are introduced into terms as
they are rewritten. This means that the kind of
instantiation problem discussed in Section 2 does not
occur. When applying rules, therefore, variable instanti-
ations need only occur in the rule, and not in the term
being reduced, making full unification unnecessary.
Matching alone is sufficient, which is a special case of
unification, and a much more efficient process. Such a
constraint is not at all unreasonable, since it is natural to
create rules that eliminate variables rather than introduce
new ones. However, there are some cases in which this
restriction is undesirable, and ways of overcoming this
limitation will be discussed later. Note that rules R1-R4
do satisfy the constraint.

Figure 5 shows the proof of Fig. 1 arranged in a way
that demonstrates changes in term complexity. Position-
ing of terms is in approximate accordance with their
relative complexity, the more complex terms being higher

(——a+-a)+a
Re

——a+(-a+a) R3
R3 /
--a+0 O+a
rR2
-—a RI
a
Figure 5. Term complexity in the proof of — —a = a.

on the diagram. Viewed in this light, the whole essence of

the proof seems to be the top, most complex term (—

—a+ —a)+a. Starting from — —gq, the complexity of

the terms builds up to a peak, and is then simplified ing
another direction. A proof that does not contain a peak =
term is called a rewrite proof, because both sides of the®
theorem reduce to the same normal form by mmplea
application of the rewrite rules. All non-rewrite proofsd
contain at least one peak term, called a critical term,>

which can be rewritten in two different ways. Note thatn
the theorem being proved is represented by terms m\
normal form, — —a and a. Figures 6 and 7 give other;D
examples. In the first is a rewrite proof, and in the&
second, two critical terms are involved in a non-rewrite =
proof.

Given the rules R1 to R4,

prove that (~a+a)+a=(a+-b)+bforalla
and b.

Proof :-
(a+-b)+b
R4
(—a+a)+a a+(-b+b)
RIN( pa:

O+a a+0
N2
a

Figure 6. An example of a rewrite proof.

zoz [udy g uo1senb Aq L£6/Zv/2/LIvE/eIome/|ulwoo/wod dno-olw

The ‘eureka’ step of devising a proof would seem to be =
the discovery of one or more critical terms, from which
proofs could be constructed by reducing these terms to
alternative normal forms.

How can these critical terms be generated? For a term
to be rewritten in two different ways there must be two
rules that apply to it (or one rule that applies in two
distinct ways). In other words, a critical term must
contain two separate instances of left-hand sides of
rewrite rules. Such terms could perhaps be found, then,
by the unification of the left-hand sides of rules. This idea
is treated in the following section.

S. SUBSUMPTION, UNIFICATION AND
SUPERPOSITION

If a term ¢’ can be formed from another term ¢ by making
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Given axioms R1, R3 and R4,

prove axiom R2, i.e. thata+0=a forall a. (See Figure 4.4).
Proof:-
((-—a+-a)+a)+0
R4
(-—a+(-a+a))+0
R3
. (==a+0)+0 (-—a+-a)+a
\m R4
--a+(0+0) --a+(-a+a)
\Rl Ry”
-—-a+0
(0+a)+0 R3
RI1 /
a+0
O+a
\ Ri
a

Figure 7. An example of a non-rewrite proof with two peaks.

substitutions for the variables of 7, then we say that ¢ is
an instance of ¢. In other words, ¢ is more general then ¢,
or ¢t subsumes #. This forms the basis of a relation on
terms called the subsumption ordering, written ¢ >,¢,
meaning that ¢’ is an instance of ¢.

The subsumption relation is closely related to the
ability to match one term to another. For instance, if ¢
= t'[t"/x], then the substitution [¢"/x] matches ¢ to ¢. If
t >, ¢ then there exists a substitution which matches ¢ to
t. If t >t and ¢ >,¢, then ¢ and ¢ differ only by the
names of their variables. The matching substitutions in
this case do no more than rename the variables. Thus the
subsumption relation is in fact a pre-ordering, since it is
only anti-symmetric upto the renaming of variables. If
neither ¢>,¢ nor ¢ >,¢, then ¢ and ¢ cannot be
matched, and are said to be unrelated.

Let t* stand for the set of all instances of a term ¢. In
general, r* is infinite, and is represented diagrammatically
in Fig. 8.

Figure 8. Representation of ¢*, the set of a term z.

The two sets of instances ¥ and 7, of terms ¢, and ¢,,
respectively, may intersect as represented in Fig. 9.
Although ¢, and ¢, may themselves be unrelated, there
will often be instances of each that are related. These lie
in ¢} () 13, the set of terms that are instances of both 7,
and ¢,.

Figure 9. Representation of the intersection of ¢} and r}.

The unification of ¢, and ¢, is the process of finding
elements of 7} () 13. If ¢, and ¢, are the left-hand sides of
rewrite rules with distinct variables,t then the set of
unified forms of ¢, and ¢, is a (usually infinite) set of
critical terms to which both rules can be applied.

Simple unification, however, is not sufficient to find all
critical terms, because a rule may be applied to any part
of a term, not just the whole of it. For this reason, the
left-hand side of each rule must be unified with all
possible subterms] of left-hand sides.

For example, the critical term (— —a+ —a)+a in the
proof of — —a = ain Fig. 5 can be rewritten by rule R3

t If ¢, and ¢, share variables, then their set of unified forms is, in
general, a subset of, and not identical to, ¢} ﬂ t¥. As an example of this,
consider the two terms f{x, 2) and f{3, x): an instance of both is f{3, 2),
but this is not a unified form. Since the variables occurring in all rewrite
rules are universally quantified, variable conflict can always be avoided
by renaming the variables in one of the rules.

1 In practice, a subterm that is a simple variable is not unified, since
this yields a critical term of no practical value. The two instances must
overlap in the superposed form (see the Knuth-Bendix paper,?® Section
5).
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and rule R4, and therefore contains instances of the left-
hand sides of both these rules. Discovery of this critical
term would necessitate the unification of the subterm
(x+y) of the left-hand side of R4, with the whole of the
left-hand side of R3, (—x’+x’) (variables have been
renamed to avoid confusion). A possible substitution is
[— —a/x][—a/ylla/z][—a/x] giving — —a+ —a when
applied to the left-hand side of R3, and the critical term
(= —a+ —a)+a when applied to the left-hand side of
R4.

The critical term (— —a+ —a)+a may now be
rewritten by the two rules used in its formation, giving
two new terms called a critical pair-:

(-—a+-a)+a

R4/ \RS

——a+(—a+a) O+a

The process of finding a critical pair by unifying subterms
of the left-hand sides of two rules is called superposition.

If superposition is proposed as a means of discovering
critical terms, the question arises as to which super-
positions should be selected. Generating and processing
an infinite set of critical terms does not seem to offer any
advantage over the naive strategy suggested in Section 3.

Fortunately, it is a well-known fact, dating from the
work of Robinson,?® that unification of first-order terms
is unitary; that is, if the unification of two first-order
terms is possible, it yields a single, most general unified
form, unique to within renaming. This most general
unified form is the one that subsumes all other unified
forms, and is the term ¢, in Fig. 9.

Superposition being a form of multiple unification
likewise yields a finite set of maximal critical terms. So
given a finite set of rules, it is possible to generate a finite
set of critical terms which subsume all others. Figure 10
shows the set of critical pairs between the rules of Fig. 4.

0+0

Rl (R
0 0

The normalisation of these critical pairs reveals that all
but two of them have rewrite proofs; that is, the normal
forms of both terms in each pair are identical, as shown
in Fig. 11. The two critical pairs that have no rewrite
proof are nonetheless sound with respect to the original
axioms, and it is reasonable to orient these equations
using the reduction ordering >, and consider them as
new rewrite rules:

—-0->0 (R9)

—Xx+(x+2)>z (R10)

There are several consequences of adding these new
rules. Amongst other things, the proof of — —a=ain

Fig. 5 can now be simplified. The terms involved in the
three-step proof of RI10, as given in Figure 11, all
subsume the corresponding terms in the last three steps
of the proof of — —a = a in Fig. 5 by the substitutions 9
[— —alx] and [a|z]. Therefore, the last three steps can be 5
replaced by a single step using rule R10, forming the new O
proof shown in Fig. 12. This proof is obviously less & Q
complex, in the sense that it has fewer steps. It still has =
a peak, and thus is not a rewrite proof. e

Another consequence of introducing new rules, is that =
new superpositions are possible. They are summarised in
Fig. 13. Simplification of these new critical pairs allows
the derivation of more theorems, including the one
shown in Fig. 14.

Again, this proof subsumes that of Fig. 12 by the
substitution [a/x], and so including this as a new rule

— —Xxo>Xx (R11)

allows the proof of — —a = a to be simplified to a single
application of rule R11, as shown in Fig. 15. It is now a
rewrite proof.

It is not hard to see that, if this process is repeated for
long enough, any proof can be simplified into a rewrite

~0+0

Ry N3
0 0

¥20z Mdy g1 uo 1senb Aq L £6/2Zv/2/LIvE/eIome/|ulwod/wod dno-ojwspede//:sd

O+y)+:z x+0)+:z
AN Ry N\
y+z 0+(y+2) xX+z x+(0+2)
(x+y)+0 (—=x+x)+z
R2/ \R4 R4/ \R3
x+y x+(y+0) —xX+(x+z) 0+:z
((x+y)+2)+u
R4 R4
x+(+2)+u (x+y)+(z+u)

Figure 10. Superpositions possible from rules in Fig. 4.
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0+0 -0+0
RI ¢ ¢ R2 R2 / \ R3
0 0 0
O+y)+2z x+0)+z
R4 R4
RI 0+(y+2) R2 | x+(0+2)
/Rl /Rl
y+z X+z
(x+y)+0 (—=x+x)+z
R4 R4 / \R3
R | x+(y+0) x+(x+z) O0+z
K2 \ R1
xX+y z
((x+y)+z)+u
R4 R4
x+@+2)+u  (x+y)+(z+u)
R4 R4
x+Q@+(z+u))
Figure 11. Normalised critical pairs from Fig. 10.
——a+(-a+a) derived after 2 successful superpositions, and 6 successful
R3 / rule applications.
——a4+0 However, a far more interesting problem is the
a R10 discovery of a proof. In this case, all superpositions must
R2 / be considered at every stage, until enough rules have

-—a
a

Figure 12. Simplification of the proof of — —gq = q.

proof. Indeed, if the process is driven by the need to
simplify a particular proof, then it is very efficient, since
the required superpositions can be deduced from a
simple examination of the critical terms occurring in the
proof. In this way, the rewrite proof above can be

-0=0
—O+z=z
-x+x=0+0
-—x+0=x
—(x+yH(x+(y+2)) =z
O+z=2
X+y = ——x+y

been generated to form a rewrite proof. To discover the
proof above, for instance, it may have taken 12 successful
superpositions, and 10 successful rule applications.
Ensuing sections elaborate on the latter process.

6. CONFLUENCE

What exactly is happening when new rewrite rules
derived from critical pairs are introduced ? The decreasing
complexity of proofs has already been discussed;

from R3 and R9
R1 R10
R2 R10
R3 R10
R4 R10
R9 R10
R10 R10.

Figure 13. Superpositions possible from the addition of new rules.
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——x+(—=x +x)
/R3
——x+0 R10
/Rz
——x

Figure 14. Superposition of rules R10 and R3.

RIL |
a
Figure 15. A rewrite proof of — —a = a.

eventually all proofs will become rewrite proofs. This is
because the repertoire of rewrite rules is being extended
by others which are equational consequences of the
existing rules, thus counteracting the loss of completeness
suffered in using rules unidirectionally, and producing a
more powerful simplifying engine.

Consider for a moment the critical term ((x + »+2)+u
derived from unifying the left-hand side of R4 in Fig. 4
on itself. Its critical pair has a rewrite proof, as shown in
Fig. 11. For this reason, there is no point in trying to
form a new rule as a result of this superposition ; it would
not increase the ‘ power’ of the set of rules. Now consider
the critical term —040 derived from rules R2 and R3,
with critical pair (—0,0>. This critical pair had no
rewrite proof, and the new rule R9, —0 — 0, was formed.
When R9 was superposed on R3, the same critical term
was derived. On processing  —0,0) the second time, the
presence of R9 gave the critical pair a rewrite rule proof,
as shown in Figure 16, thus demonstrating the increasing
‘power’ of the set of rules.

—0+0
R/
-0
R9\
0

Figure 16. A critical pair with a rewrite proof.

R3

If all critical pairs have rewrite proofs, no new rules
need to be produced, and the existing set of rules is said
to be locally confluent.

In general, a set of rewrite rules is confluent, if,
whenever a term 7 can be rewritten to different forms, ¢,
and 1,, then ¢, and ¢, have a rewrite proof. Figure 17
illustrates the concept of confluence, often referred to as
a ‘diamond lemma’ from the shape of the diagram. In
these figures, — is the reduction relation, and —* its
transitive and reflexive closure, i.e. reduction by zero or
more rules.

Without loss of generality, we can fill in the detail of
Figure 17 to pinpoint the exact divergence of the two
rewrite sequences ¢ —>* ¢, and 1 —-*t,, as shown in Fig. 18.
Here ¢” is a critical term with critical pair {1}, 1>, and it
is easy to see that, with Noetherian rewriting systems,
confluence is equivalent to local confluence as expressed
in Fig. 19. This was first proved by Newman.?*

tl;/t‘\itz
N2

Figure 17. Confluence.

~

1 4
/
1 ')
\ *
I,

Figure 18. Detail of confluence.

t

t / \12

Figure 19. Local confluence.

A key theorem form the Knuth—Bendix paper,?® known
as the critical pairs lemma, showed that, to test for local
confluence, it is sufficient to consider only those critical
terms found by the superposition of the left-hand sides of
the rules at non-variable occurrences. The reason for this
is clear from the observation that superposition yields
terms of minimum interaction between rules, and that, as
observed in Section 5, all other critical terms are
subsumed by them.

A Noetherian and confluent set of rules is said to be
canonical, in the sense that every term has a unique
normal form, known as its canonical representation ; and
Church-Rosser, in the sense that any two terms, ¢, and ¢,,
are equal if and only if 7, and 7, have a rewrite proof.
Therefore, if the set of rewrite rules is Noetherian and
locally confluent, the validity of any theorem t, =t,can
be tested by reducing ¢, and ¢, to normal form. If the
normal forms are the same, the theorem holds; if
different, the theorem is proven false. Thus a canonical
set of rules provides a decision procedure for reasoning
in an equational theory. What is more, the normal forms
of terms can be found by applying the rules in any order.
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(The data consists of :-

the axiom set, a set of equations initially containing the given axioms; and

the rule set, an initially empty set of rewrite rules).

while the axiom set is not empty

do

begin Select and remove an axiom from the axiom set;

Normalise the selected axiom;

if the normalised axiom is not of the form x =x then

begin

Order the axiom using the reduction ordering, >r,

and introduce it as a new rule in the rule set;

Superpose the new rule on all existing rules (including itself)

and introduce each critical pair into the axiom set;

end

end.

Figure 20. A simple form of Knuth-Bendix algorithm.

7. KNUTH-BENDIX COMPLETION

Many variations of the Knuth-Bendix completion
algorithm are possible. They all use the method of
superposition described in Section 5 to create new
rewrite rules from a given set of rules or axioms. Figure
20 describes a very simple form of Knuth-Bendix
algorithm. The algorithm may behave in one of the
following ways:

Converge

The algorithm stops having found a finite canonical set
of rewrite rules.

Fail

The algorithm stops because a particular axiom cannot
be ordered by >, For example, no well-founded
reduction ordering can orient the commutativity axiom,
a+b = b+a.If such an axiom is generated, the algorithm
(in the form above, at least) cannot continue.

Diverge
Many canonical sets are infinite, and in attempting to

complete them, the algorithm never terminates. As shall
be described in Section 9, divergent completion algor-
ithms may be used as semi-decision procedures, but full
decision procedures are only found when the algorithm
converges.

A usual enhancement to the algorithm is to ensure that
all rewrite rules are normalised with respect to each
other. To achieve this, a normalisation step may be
placed in the algorithm before the superposition step, to
apply the new rule to the existing rule set. Rules that are
reduced only on the right-hand side are unaffected in
orientation, or in the way they superpose, and thus may
remain as rewrite rules. If, however, a rule is reduced on
its left-hand side, it may need to be re-oriented, and new
superpositions will have to be considered; for this
purpose, such rules are removed from the set or rewrite
rules, and become equations. If the introduction of new
rules causes existing rules to disappear, the set of rules
does not grow consistently with every iteration. Rules
that never disappear, and thus form part of the final
confluent set, are called persisting rules. In the algorithm
of Figure 20, all rules persist.

Efficiency is affected considerably by the order in
which (a) axioms are selected from the axiom set for the
formation of a new rule; and (b) subterms of the left-
hand sides of rules are selected for superposition.
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In the algorithm portrayed above, the two consider-
ations (a) and (b) are closely linked: as an axiom is
selected and formed into a rule, all possible superpositions
between the new rule and existing ones are considered. In
other forms of the Knuth-Bendix algorithm as given by
Huet,'® for example, these two considerations are kept
quite separate. The most flexible arrangement would be
to have complete freedom, not only in choosing which
axioms to consider as the next rule, but also which
particular subterms of left-hand sides of rules to
superpose next; and to be able to freely interleave single
superpositions with axiom selections.

Given axioms :-

Al: O+x=x
A2: -x+x=0
A3 (x+y)+z=x+(y+2)

Operation of the algorithm:-

The particular method an algorithm uses in regard to
these considerations is called its selection strategy. For
Knuth-Bendix completion to be ‘complete’, its selection
strategy must satisfy certain fairness constraints. In
relation to the considerations above, the constraints are
(a) every axiom must eventually be considered as a rule
(no axiom can be ignored indefinitely); and (b) every
possible superposition of persisting rules must be
considered.

Figures 21 and 22 show the operation of a Knuth—
Bendix algorithm on two different sets of axioms. The
first example is initiated with the group axioms: left

Derived rules :- Derivation :- Rules applied to.
Critical term From LHS RHS

R1l: O+x—o«x Al

R2: -x+x—>0 A2

R3: (x+y)+z-o3x+(y+2) A3

R4: —x+(x+y)—>Yy (=x+x)+y R3R2 R3 R2,R1

R5: -0+x —>x —0+(0+x) R1R4 RI R4

R6: —-—x+0-ox ——x+(—x+x) R2 R4 R2 R4

R7: ——x+y o x+Yy ——x+(—x+(x+y)) R4R4 R4 R4

R8: x+0->«x ——x+(—x+x) R2 R4 R2,R7 R4

R9: -0-0 -0+0 R8R2 RS R2

R10: ——x 5 x ——x+0 R8R7 RS R7,R8

R1l: x+-x >0 ——Xx+—x R7R2 R7 R2

R12: x+(—=x+y) >y ——x+(—x+y) R7R4 R7 R4

R13: x+(y+-(x+y))—0 x+y)H—(x+y) R3R11 R3 R11

R14: x+—(y+x) > -y -y+(y+(x+(y+x))) R4RI13 R4 R13,R8

R15: —-(x+y) > -y+—x —-y+Hy+—(x+y)) R4R14 R4 R14

TERMINATES WITH SUCCESS.

Figure 21. Operation of a Knuth-Bendix algorithm on axioms of Fig. 2.
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Given axioms :-

Al: ex=x

A2: xe=x

A3: xXx=e

Ad:  (xy)yz=x(yz)

Operation of the algorithm:-

Derived rules :- Derivation :- Rules applied to:-
Critical term From LHS RHS

Rl: ex 5 x Al

R2: xe 5 x A2

R3: xx > e A3

R4: (xy)z = x(yz) A4

RS: x(xy) >y (xx)y R4R3 R4 R3,R1

R6: x(y-(xy)) > e (xy)(xy) R4R3 R4 R3

R7: y(xy)—>x x(x(y-(xy))) RS5R6 RS R6,R2

R8: yx ?=7x-y x(x-(y-x)) RS5R7 RS R7

TERMINATES WITH FAILURE

Figure 22. Operation of a Knuth-Bendix algorithm on a commutative group.

identity, left inverse, and associativity. In this case, the
completion algorithm converges. The second is a group
in which every element is of order two, which is
commutative; the completion algorithm generates the
commutativity axiom, and terminates with failure when
that axiom is considered as a rewrite rule. The algorithm
of Fig. 20 is used, but with the rule normalisation step
described above, and so not all rules persist. The strategy
used to select axioms is by size; the simplest or shortest
axiom in the current axiom set is selected first. This
strategy is fair and nearly always leads to convergence in
fewer iterations than selection on a first-come first-served
basis.

In Figs 21 and 22, the generated rewrite rules are listed
on the left, with details of their derivations in the
remaining columns. Entries in the ¢Critical term’ column
indicate that the rule was derived by superposition; the
rules used in the superposition are then listed in the
‘From’ column. Entries under ‘Rules applied to:’
indicate rules that have been used to normalise the
critical pair. For example, rule R4 in Fig. 21 is derived as
shown in Fig. 23.

Of the 16 rules generated in the completion process
portrayed in Fig. 21, only 10 persist. Rules R5, R7, R13
and R14 are reduced to trivial identities by subsequent
rules. In the case of R6, its left-hand side is reduced, and
the resulting equation is formed into RS.

In Fig. 22, the rule R6 is reduced by R7. At the end of
the figure, it is found that y-x and x-y cannot be
ordered, and the algorithm terminates with failure. It has
been proved, however, that the group is commutative.

The implementation used to generate the data for
these examples was the default configuration of the
ERIL system, described in detail by Dick and Kalmus.®

(—=x+x)+Yy
R3S \(\R2
-x+(x+y) O+y
R
y

Figure 23. Derivation of rule R4 in Fig. 21.

8. LIMITATIONS OF KNUTH-BENDIX
COMPLETION

The limitations of the basic completion algorithm are in
four main areas:

(i) An axiom, / = r, can only be formed into rewrite rule
if />_r. In practice, it may be very hard to find a
reduction ordering to suit particular needs. It would be
very useful to be able to reason with unorientable
axioms. '
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(i) Some axioms, such as commutativity, are by their
very nature non-Noetherian. For example, either side of
the axiom x+y = y+x can be matched with the other,
and whichever way the rule is first applied, it is
immediately applicable again, thus generating an infinite
rewriting sequence. Special treatment is required for such
axioms.

(iii) In many cases of practical importance, the confluent
set of rules is infinite, and the algorithm diverges.
Frequently, it is apparent that the infinite set consists of
sequences of related rules. Finite representations of
infinite sequences would be very advantageous.

(iv) Algebraic structures involving partial functions
require some form of conditional axiom to prevent the
generation of meaningless terms. For example, Fig. 24
shows a critical pair that may be generated from axioms
describing part of a division ring. The critical term 071.0
is found, which contains, in effect, a division by zero. The
critical pair, 1 =0, causes the equational theory to
collapse.

Recent work has attempted to meet some of these
problems in a variety of ways. Firstly, by dividing axioms
into a set of rewrite rules, R, and a set of equations, E,
the notions of rewriting and unification may be gener-
alised to operate on an E-congruence. The first published
results were by Lankford and Ballantyne?? where E
consists of permutative axioms. These are equations
between terms which differ only under the permutation
of symbols. The size of the congruence classes of terms
generated by permutative axioms are finite.

This was later generalised by Peterson and Stickel,?
who define critical pairs modulo finitary unification
algorithms (e.g. commutative/associative unification);
by this means, distributive lattices and Boolean algebras,
for example, can be completed finitely. Huet!? relaxed
some of the restrictions on the nature of the equations in
E, but requires rules in R to be left-linear, which means
that no variable is permitted to occur more than once in
the left-hand side of the rule. Then Jouannoud and
Kirchner,'>'® removed the restriction of left-linearity by
further generalisation; the E-congruence classes, how-
ever, are still required to be finite. Finally, Bachmair!
studies the case of rewriting modulo infinite E-congruence
classes.

These extensions to completion attempt to treat the
permutative axioms. There are other kinds of axiom that
cannot be oriented. For instance, there are axioms which
do not qualify as rewrite rules, because variables occur in
each side that do not occur in the other. An example of
this kind can be found in the axioms of an entropic

Given the axioms :-

.-
x0-0

1

groupoids: (x'y)-z = (x-w)-z. The occurrences of y and
w prevent the axiom from being oriented in either
direction. There is a general method of overcoming the
failure case in Knuth-Bendix completion. First published
Hsiang and Rusinowitch,! it has become known as
unfailing completion. This subject will be addressed in
the next section.

Sorted rewriting systems have been studied extensively
by Goguen and Meseguer,”® % Dick? and others. In
many-sorted systems, the set of terms is partitioned into
a finite number of subsets, one for each sort. In order-
sorted systems, the underlying sorts are allowed to
intersect, creating a sub-sorting structure. The latter have
been used to treat certain classes of partial algebra, like
the one described above, which would otherwise require
the use of conditional rewrite rules.

Conditional rewriting systems have been studied by
Lankford,? Remy?*” and Kaplan'® amongst others, but
this largely remains an open field to which researchers
are now turning their attention.

The divergence of the Knuth-Bendix completion
procedure has been studied by Hermann and Privara®
and Kirchner.?® In the latter, meta-rules and meta-
variables are proposed as a means of finitely presenting
infinite sequences of rules.

9. UNFAILING COMPLETION

An equation can only be oriented when all possible
instantiations of it are orientable with respect to a given
reduction ordering, >,. The method of unfailing com-
pletion is based on the following very simple observation
if an equation itself cannot be oriented, there may be
some instantiations of that equation which can be
oriented. This idea suggests the following generalisation
of rewriting and superposition:

Rewriting

Apply equations in either direction, but only when its
instantiated form (after matching) is orientable under
> .. In this way, termination of rewriting is ensured.

Superposition

Allow superposition on both sides of equations. Here the
instantiated equation need not be orientable after
unification, because termination is in no way affected.
However, if the superposed side turns out, after
instantiation, to be lower in the reduction ordering than

x—1

(R12)
(R13)

the following critical pair may be derived :-

olo

Rls/ \mz
0 1

Figure 24. A critical pair that demonstrates a problem with partial operators.
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KNUTH-BENDIX COMPLETION

Given the confluent set of rules generated in Figure 21,

prove that

(Y +y)+x+-x)) =x+(-(y +x) +y).

The rewrite rules are used to find the normal forms of both terms :-

—((=y +y)+x +-x))

R1
—(x+-x)+—(-y +y)
R11
(=0 +=((-y)+y)
R2
(-0)+(-0)

RON,

x+(—=y+x)+y)
/fus
x+((=x+-y)+y)
R3
x+(—=x+(-y+y))

Figure 25. An example proof of validity using a confluent set of rules.

the other side, the critical pair formed will always be
trivial.

When an equation can be oriented in its most general
form, then ordinary rewriting and superposition fall out
as special cases of their unfailing counter-parts. It is
obviously more efficient to orient all the equations that
are orientable, in order to make use of ordinary rewriting
and superposition where ever possible. The less efficient
unfailing processes may then be used on the unorientable
equations alone.

When performing unfailing completion, both sides of
unoriented axioms are matched against any term to be
reduced. If a match is successful, an attempt is made to
orient the instantiated axiom. Thus the reduction
ordering is accessed every time an unorientable axiom
has matched a term. For theoretical and practical reasons,
the reduction ordering used in this case must be total on
ground terms.

Hsiang and Rusinowitch!' show this method to be
complete as a semi-decision procedure for solving the
word problem in equational theories. They give some
examples which show how finite confluent sets involving
unorientable axioms may be generated, where other
approaches either fail or diverge.

10. KNUTH-BENDIX COMPLETION AND
THEOREM PROVING

In the case where a finite confluent set of rules can be
generated, the importance to equational reasoning is
clear. A decision procedure is found for solving the
identity problem. A two-part strategy for proving
theorems is possible.

(1) The given axioms are ‘compiled’ into a confluent set
of rewrite rules using Knuth-Bendix completion. If this
succeeds, then:

(2) New equations are shown to be theorems by reducing
both sides to normal form. If the normal forms are the
same, the theorem is shown to be a consequence of the
given axioms; if different, the theorem is proven false.

The complete set of rules in Fig. 21 can be used to
prove, for instance, the equation shown in Fig. 25. Since
the normal forms are the same, the theorem has been
shown to be a consequence of the given axioms after only
9 successful rule applications. Note that, due to con-
fluence, the same normal forms are found regardless of
the order of rule application.

Figure 26 shows an attempt to prove a false equation.
The diffrent normal forms indicate that the theorem is
not a consequence of the given axioms.

In the case where the confluent set is infinite, no such
decision procedure is possible. However, the completion
process itself may be used a semi-decision procedure.
This means that valid equations may be proved by
running the completion algorithm long enough to
generate the rules required for a rewrite proof; invalid
equations, however, cannot be shown invalid. That
Knuth-Bendix completion may be used as a semi-
decision procedure in this manner was first shown by
Huet.'* Another proof, based on inference rules and
proof orderings, is given by Bachmair.!

The Knuth-Bendix completion procedure discovers
proofs by construction, in the sense that valid con-
sequences of the given axioms are generated until a proof
is found. A major problem with this method is that the
procedure is not goal directed. The generation of critical
pairs is based on the rules formed, and not motivated by
the equation to be proved. For this reason, the completion
procedure, in many instances, will not provide an efficient
proof method. The advantage, however, of constructive
proof is that the equational theory is not disturbed by the
proving process, and further proofs can be attempted
without having to repeat the work already done.

Interesting comparisons have been made between the
algebraic completion process and resolution theorem-
proving (see, for instance'”), and recent work by Paul*
and Hsiang/Dershowitz'® has proposed ways of using
superposition and the completion process to prove
theorems in first-order predicate logic. At the heart of
these techniques is the realisation that any clause P can
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Given the confluent set of rules generated in Figure 21,
prove that ———x = ——x+—-x :-

——x+-x

y R2

0

——=x

RIO¢,
—X

Figure 26. An example of a proof of invalidity using a confluent set of rules.

be made into an equality axiom of the form P = true. In
cases where user defined functions and equality are
embedded in the logic, these methods seem to be
considerably more efficient than resolution with para-
modulation. Both constructive and destructive proofs
are possible in this framework. Destructive proofs are
proofs by refutation in which the negation of the desired
clause is assumed (C = false) and included in the
completion process in an attempt to generate a con-
tradiction (frue = false). By contrast to constructive
proof, proof by refutation, in effect, destroys the theory
by generating consequences of a false assumption, and
every proof must recommence from the start; however,
the proof is to a certain extent goal oriented, and
experience reported by Paul®® suggests that contradic-
tions are found very quickly if the theorem to be proved
is true. Both constructive and destructive methods are
likely to behave in an infinitary manner if the theorem to
be proved is false. The author is not aware of published
work which explores strategies that are a mixture of the
two. Some advantage might be gained, for instance, by
partially completing the axioms of the theory before
refuting the theorem.
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Book Review

EpwARD R. TUFTE

Envisioning information

Graphic Press, £30.00

When I was first asked to review this book I
assumed that the title really meant ‘ Visualising
Information’, and basically that is what the
book is about. But prior to reading the book
I had also assumed that the book’s content
was concerned with scientific visualisation
using computer graphics, but that is not what
the book is about. In fact it addresses the
graphic design techniques for translating data
into information, with examples ranging from
sixth-century illuminations on vellum to the
three-dimensional distribution of man-made
debris about the Earth.

Now having read the book I feel slightly
disappointed that the author, Edward Tufte,
failed to include any real reference to scientific
visualisation using computer graphics, as this
is rapidly acquiring a maturity that will make
it a major design tool during the next decade.
The index does include three references to
‘computer visualisations’, but no more than
two dozen words are given over to this subject,
which does not seem adequate, bearing in
mind that the author has worked on in-
formation design for IBM, Hewlett-Packard,
CBS, NBC and the Bureau of the Census.

As one would expect, the book is beautifully
illustrated, with only one or two pages that do
not contain some form of colour illustration.
Within its six chapters on: Escaping Flatland,
Micro/Macro Readings, Layering and Sep-
aration, Small Multiples, Colour and Infor-
mation, and Narratives of Space and Time,
the reader is presented with various ways of
visualising data (my dictionary had no entry
for envisioning!), showing ways of depicting
eighteenth-century dance steps and Japanese
national railroad timetables. But in spite of
the excellent illustrations, I was very conscious
of the author’s descriptive style — it was, to say
the least, protracted. For example, page 106
contains the following sentence: ‘Above, two
rivers meander boustrophedonically around
a tight frame, weakening comparison of their
lengths’. Now surely there must be a simpler
way of expressing this idea without forcing
readers to retreat to their dictionaries only to
discover that there is no entry for boustro-
phedonically! I admit that this example is
over the top, but I found that I was continually
skipping sentences and looking ahead to
identify a safe point to recover the current
gist.

So what is the book really about. Well it
contains a hundred, or so, examples of how

different graphical approaches have been used
to simplify the visual interpretation of multi-
dimensional data. The written commentary
analyses why the techniques work, but does
not offer alternatives which might have im-
proved or hindered the communication pro-
cess; but to be fair, I do not believe that the
author intended it to be a tutorial on the
subject, it is simply a collection of effective
graphical techniques for communicating the
information contained within complex data
sets.

To whom is the book directed ? Well there is
no doubt that students studying graphic design
will find it a useful source of how such
techniques have evolved historically, but I am
not certain how complete the survey is, all that
I do know is that the book makes no reference
to London’s world-famous map of the Under-
ground! But the author writes on page 50:
‘Showing complexity is hard work... The
conventional economies of declining costs for
each additional data bit will usually be offset
by a proliferation of elaborate complexities
provoked by the interacting graphical ele-
ments.’

J. A. VINCE
Rediffusion Simulation Ltd.
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