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The subject of this paper is rewriting in an LCF-like general theorem proving framework. It is shown how rewriting of
both terms and formulae can be implemented by simple tactics in the generic theorem prover Isabelle. These tactics can
easily be combined with induction to yield powerful theorem proving primitives. As a sample application the verification

of an n-bit ripple-carry adder is demonstrated.
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1. INTRODUCTION

At the heart of all systems concerned with equational
reasoning (and many theorem provers in general) we find
a ‘rewrite engine’, i.e. some module which rewrites or
normalises terms w.r.t. some set of rules. In most
implementations this rewrite engine has two character-
istics: it operates directly on the internal representation
of terms, and it is not easily extensible. Consequently the
correctness of rewriting depends on the correctness of
this code and needs to be re-established for every
extension.

An alternative approach to rewriting proceeds via
explicit invocation of equational logic inference rules:
rewriting a term s to a term ¢ is achieved by constructing
a proof of s = 1. Hence the title of this paper. To enforce
this style of rewriting, equations are abstract data types
whose values can only be generated by composition of
equational logic inference rules. Provided that all rules of
inference and their composition mechanism are im-
plemented correctly (and provided the abstract data type
mechanism of the implementation language cannot be
subverted), this implies correctness of all derived
theorems. Thus any extension by new proof procedures
is admissible since the theorems they produce are by
definition correct. The advantage of this approach is
guaranteed soundness, its disadvantage is a possibly
serious loss in efficiency.

The above discussion can be generalised from rewriting
to theorem proving. In particular one can categorise
theorem provers according to the mechanisms they offer
for introducing new proof procedures. Interestingly
enough, none of the equational logic based systems like
REVE,* LP,” RRL or RAP? offer facilities for sound
user-level extensions. The reason is that they were
originally designed to solve special problems efficiently
and not so much with a general theorem proving
perspective. Systems that do allow sound extensions use
one of two approaches:

1. New proof procedures must be verified in a formalised
meta logic. If the object logic is strong enough, this
verification may even be carried out within the system.
In the Boyer-Moore system? this is possible because
both levels are expressed in terms of Lisp, in Nuprl*’
the rich type theory allows this reflection.

2. Theorems are abstract data types whose generators
are the primitive rules of the logic. Proof procedures
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are so called tactics which construct inferences by
reduction to the primitive rules. Hence any tactic isS
sound by definition. This concept goes back to LCF?-265
and is also used in Isabelle,> Nuprl® and HOL.°

This paper is dedicated to the second approach. First it
is shown how term rewriting tactics can be derived from S
the laws of equational logic. In order to turn these tactics =
into general theorem proving procedures they are lifted 3
to predicate logic, and integrated with inductive theorem g?:
proving. Finally a simple ripple—carry adder is verified 2
with the resulting tactics. The whole development isS
carried out within the Isabelle system but the principles 2
are equally applicable to other LCF-like systems. In facts
a similar study done in LCF is reported in Ref. 24. 8

The structure of the paper is as follows. Section 2 =
introduces the generic theorem prover Isabelle. Section 3 S
explains in some detail how various rewriting techniques =
can be implemented as tactics for first-order logic.
Section 4 presents the user-interface of rewriting and
induction tactics which are used in section 5 to verify a
ripple—carry adder.

A word concerning the typographic conventions: for
most formulae ordinary mathematical notation in math-
italics is used. We resort to typewriter style only for
ML code and Isabelle 1/0.
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2. ISABELLE

Isabelle is an interactive theorem prover developed and
implemented in ML by Larry Paulson at the University
of Cambridge. This section gives only a very sketchy
account of Isabelle, just enough to make the paper self-
contained. A more detailed introduction can be found
for example in Refs. 11 and 21. A first explanation of the
principles underlying Isabelle is contained in Ref. 25, a
formalisation of Isabelle’s meta—logic using higher-order
logic is given in Ref. 27. The version of Isabelle described
in this paper is Isabelle-86. Meanwhile Isabelle has been
extended significantly and Ref. 27 pertains to the latest
version.
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2.1. Representing Logics

What distinguishes Isabelle from most other theorem
provers is the fact that it can be parameterised by the
object-logic to be used. The definition of a logic consists
of the declaration/definition of all

e basic types (for example terms, formulae, etc.);
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e logical constants (operators like =, = and V) with
their arity; valid arities are the basic types and
function types over them;

e inference rules.

The central notion in Isabelle is that of a rule, written as

P,..,P

P b
where the P, and P are simply-typed A-calculus terms
over the logical constants and variables. The P, are called
the premises and P the conclusion. If m = 0, the rule is
called theorem and the horizontal line is omitted.
In this paper we use an OBJ-like syntax (Ref. 6) to
present logics. A simple example is:

EQLog=SORTS term, form

OPS_=_:termxterm—form

RULES

X=y Xx=y y=z P(x) x=y
X=X

y=x X=z P(y)

Equational logic, a fragment of first-order predicate
calculus, is based on the two basic types term and form
of terms and formulae. The only logical constant is = of
type termxterm—form, which is equivalent to term—
term—form. The four inference rules of equational
logic are reflexivity, symmetry, transitivity and congru-
ence. Notice that x, y, and z are variables of type term,
whereas P is of type term—>form.

In the rest of the paper OBJ’s modularisation facilities
are used to present logics incrementally. This feature is
not available in Isabelle-86 and was only introduced in
later versions.

2.2. Theorem Proving

Theorem proving in Isabelle amounts to combining the
basic rules to form derived rules. The principal method
for combining two rules is resolution: given two rules

Pl’ P’Pm and qg= Ql’ 'é’Qn’
and a substitution ¢ which unifies P with Q, for some i,
resolving p and g yields the new rule

&) )

O'(Ql’ cery Qi—l’ Pl’ tee Pm’ Qi+1’ b
Q

To support resolution, Isabelle is based on unification
rather than just matching (as for example LCF). Since
Isabelle formulae are A-terms, Isabelle contains an
implementation of higher-order unification which is
described in Ref. 25. This means that unification may
yield a potentially infinite stream of unifiers; it may even
be undecidable. Fortunately, this turns out not to be a
problem in practice, in particular if all terms are first-
order.

Isabelle provides two kinds of variables: ordinary and
logical variables. The latter can be instantiated during
the resolution process whereas the former act like
constants. Logical variables are distinguished from
ordinary ones by being prefixed with a ‘?’. For readability
reasons we have omitted most of the ?’s. In the sequel we
follow the convention that, unless noted otherwise, the

p:

letters P and Q and u through z denote logical variables,
other letters stand for arbitrary expressions.

All this sounds very much like logic programming, and
in fact Isabelle can be seen as an implementation of typed
higher-order logic programming.?®

In Isabelle the state of a proof is just a rule, where the
premises should be thought of as the goals to be solved,
and the conclusion the formula to be proved. The proof

. .. R
of some formula R starts with the trivially correct rule R

and seeks to transform it into R by successive resolution

with other rules. Due to this backwards style of theorem
proving inference rules should be read as transformations
which replace the conclusion with the premises. In order
to automate this tedious process, algorithmic sequences
of rule applications can be coded as ML functions which
are known as tactics. Tactics are a concept originating
with LCF.*?® They are the functional programmer’s
answer to the challenge posed by the length and
repetitiveness of proofs from first principles.

An Isabelle tactic is a function of type tactic=
rule—rule sequence, where sequence is an
abstract type implementing lazy lists. Tactics need to
produce sequences of rules to allow for backtracking and
also because resolution may produce an infinite number
of results due to higher-order unification. The most basic
Isabelle tactic performs resolution:

>val res_tac=fn:rule list—tactic

Applying res_tac rl to some rule r yields the stream
of resolvents of rules in rl with the first premise of r.
There is a corresponding infix operator RES: rulex
rule—>rule; given two rules p and q, ¢ RES p yields
the result (provided it is unique) of resolving p with the
first premise of q as in (1) but with i = 1.

Although all derived rules are ultimately proved via
single resolution steps, Isabelle provides tacticals (func-
tions for combining tactics) to build up complex proof
strategies. The basic ones perform sequencing, alter-
nation and repetition: tacl THEN tac2 applies tacl
and then tac2 to the result; tacl ORELSE tac2
applies tac1 or, if that fails (returns the empty sequence),
tac2; REPEAT tac applies tac until it fails. In
addition there is the basic tactic al1l_tac which is the
identity element w.r.t. THEN because it maps any rule to
the singleton sequence containing just that rule. A precise
definition of the functionality of these and other tacticals
can be found in Refs. 28 and 21. For the understanding
of the simple tactics in this paper the above intuitive
explanation should suffice.

3. REWRITING

We will now show, first for equational logic and then for
full predicate logic, how rewriting can be reduced to the
basic laws of a logic. We assume that the ML identifiers
refl, trans and cong are bound to the corresponding
rules of equational logic as defined in Section 2.1.

3.1. Term Rewriting

Traditionally, term rewriting is seen as a process which
takes a term s and produces some equivalent term ¢. In
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an LCF-like theorem proving context that is not enough:
we also need a proof of the fact that s = ¢. In Ref. 24
Paulson introduces the type of conversions which are
functions from a term s to a theorem s = ¢. Then he
shows that conversions behave a lot like tactics and
presents combinators for them which mirror the ones for
tactics: sequencing, alternation, repetition. In Isabelle we
can achieve the same elegance by equating conversions
with certain special tactics. In the sequel a conversion is
a tactic which performs the following transformation:

s=r H t=r H
=
R R

()

Here s, ¢ and r are terms, H is a list of formulae and R
a formula. In particular we assume that the trans-
formation from s to ¢ is insensitive to what r, H and R
look like. Therefore we often identify a conversion with
the transformation from s to ¢ it achieves.

The simplest conversions are the ones that can be
extracted from rewrite rules, i.e. rules of the form /= r.
The function

fun mk_trans rule=trans RES rule;

r=z

maps any rule / = r to . If this rule is resolved with

the first premise of the left-hand side of (2), and s is an
instance of /, the result is the right-hand side, where ¢ is
the corresponding instance of r. An example should
make this clear.

Example 1. If s_rew is the rule s(?x)+?2y=s(2?x
s(?x+?y) =%z
S(?X)+2y=%z
Applying the conversion res_tac [mk_trans
s_rew] to the left-hand side we obtain the right-hand
side of the following transformation:

$(0)+0=r H_s(0+0)=r H
R R

+°?y), mk_trans s_rew yields

The conversions extracted from rewrite rules are basic
building blocks which can be combined by tacticals:
given two conversions convl and conv2 which trans-
form r to s and s to ¢ respectively, convl THEN convZ2
transforms r to ¢. Similarly a conversion conv can be
applied until it fails by REPEAT conv. A perfect example
of this style of combining conversions is a tactic for
normalising a term completely w.r.t. some conversion.
In order to apply conversions not just to the root of a
term (as the ones we have seen so far do) but also to its
subterms, we assume the existence of a tactical ALL_
SUBTS which maps a conversion to a conversion: if
conv transforms each s, to f, ALL_SUBTS conv
transforms a term f{s,,...,s,) to f{t;,...,¢,). Thus we
obtain the following simple definition of a bottom-up
normalisation tactic:

fun BU conv rule=
(ALL_SUBTS(BU conv) THEN ((conv THEN
BU conv) ORELSE all_tac)) rule;

This can be paraphrased as: First convert all subterms. If
the resulting term can be converted, start the conversion
process again; otherwise return the result.

BU is practically identical to REDEPTH_CONV in Ref.
24, except that the former is expressed in terms of tactics

and tacticals instead of the special type of conversions
with their own combinators.

It should be emphasised that BU is not a conversion
but a particular term traversal strategy. Many other
strategies are possible and Ref 24 gives an example of a
more top-down oriented one which could also be
translated almost literally. To be truly general one might
introduce a parameter determining the reduction strategy
in many of the tactics to come. I have chosen to follow
the implementation and use BU throughout the paper.

We still have to explain the working of ALL_SUBTS
conv. It relies on congruence rules of the form

X1 =YXy =V,

ﬂxl’ "'7xn) =f(yl’ ""yn)

which can be obtained by composing » instances of the
general rule cong:

Sx,ux,) =fx,..,x,) x, =y,

f(xl,...,x") =f(_)/1,---,xn) x2=y2

xﬂ=y7l

Rt e = fomsonyn) 3)

Let this rule be called fcong. Resolving mk_trans
fcong with some premise f{s,,...,s,) =r yields the
premises s, = y,, ..., 8, = Yo fV1s--.»¥,) = r. The first n of
these are solved by conv THEN res_tac [refl],
instantiating y, with ¢, and leaving the premise f{¢,, ..., t,)
= r. The exact definition of this function can be found in
Ref. 21.

3.2. Formula Rewriting

Now it is time to generalise from term rewriting to
formula rewriting. The syntax of our language is that of
ordinary predicate logic with the connectives -, A, V, =,
<>,V and the constants 7 and F. In Isabelle they are
written as ~,&,|, =, <>, ALL. The inference rules used
below are derived rules in some suitable axiomatisation
of predicate logic.

Due to careful design, the above ideas and tactics are
general enough to deal with both term and formula
rewriting. The key is the simple observation that <> is a
congruence relation on formulae just as = is one on
terms. Thus it suffices to provide both kinds of reflexivity,
transitivity, symmetry and congruence rules wherever
either might be required. The result are conversion
tactics which transform the left-hand sides of both
equalities and bi-implications. What remains to be done
is to turn them into tactics which simplify whole formulae.
In the sequel let iff_refl be the rule ?P <> ?P. Using

the rule 2P<>2Q  ?Q

iff_elim= o

we define the formula normalisation tactical NORM:

fun NORM conv=res_tac [iff_elim] THEN
conv THEN res_tac [iff_refl];

Applying NORM conv to some rule with first premise R
we can observe 3 distinct stages. Resolution with
iff_elim replaces R by the two formulae R<>?Q and
?R. Then conv rewrites the first premise to S<>?Q for
some formula S. Finally resolution with iff_refl
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removes the first premise while instantiating ?Q with S,
thus leaving S as the new first premise.

The complete translation from a list of rewrite rules
rwrls of the form /=r or P<>Q to a simplification
tactic for formulae can now be expressed as

fun SIMP_TAC rwrls=NORM(BU(res_tac
(map mk_trans rwrls)));

In order to complete the picture we need to explain
how term rewriting arises as a subtask of formula
rewriting. The transition is achieved by the following
congruence-like rule:

X=u y=v
X=y<su=v

4)

Together with the proper congruence rules it is used in
ALL_SUBTS to turn the task of rewriting a formula s = ¢
into two term rewriting tasks for s and 7. If s and ¢ have
the same normal form, say r, then s = ¢ has normal form
r=r.

Ideally, simplification should rewrite valid formulae to
T, an immediately solvable goal because it is a predicate
calculus axiom (stored in the ML identifier T). If we also
supply the rewrite rule x = x<> T, r = r above can be
rewritten one more time to 7. In general we have the
following tactics for proving the first premise by
rewriting :

fun PROVE conv=NORM conv THEN
res_tac_[T];

This concludes the description of the unified machinery
for term and formula rewriting. In the sequel all
discussions about equality are phrased in terms of = but
apply to any congruence, especially <>.

3.3. Extensions

There are 3 important extensions to the basic rewriting
methodology presented in the previous sections: con-
ditional rewriting, rewriting with assumptions, and
rewriting modulo equations, all of which are presented in
some detail in Ref. 21.

Conditional rewriting allows rewriting with impli-
cations R=> S, where S is an equality between terms or
formulae. This rule is applicable if R can be proved. This
leads to a short but highly recursive function for
conditional rewriting involving the basic tactics BU and
PROVE.

Rewriting with assumptions is based on a sequent
calculus formalisation of predicate logic as for example
in Ref. 26. Formulae in this logic are of the form ' R,
where I is a list of formulae (the assumption) and R a
formula (the conclusion) as we know them. Any rewrite
rule among the assumptions may be used to simplify the
conclusion. This extension is of particular interest for
rewriting formulae: in rewriting an implication R=> S
on¢ may assume R (or its normalised form) while
rewriting S. The justification is the derived sequent
calculus rule

I'PsP TI,PHQ<=Q
I'(P=>Q)<= (P =0Q)

Although rewriting with ‘local assumptions’ is most
important for =, similar rules hold for conjunctions and
disjunction.

Both conditional

rewriting and rewriting with

assumptions is subtle in some details but on the
whole straightforward. The interested reader is referred
to Ref. 21. It is less obvious how to achieve rewriting
modulo equations in an LCF-like framework, which is
why we look at it more closely.

The general idea of rewriting modulo equations is to
build certain equational theories into the rewriting engine
by providing special purpose matching algorithms for
them. These algorithms are taken into account when
matching the left-hand sides of rules and the term to be
rewritten. This is motivated by troublesome axioms like
commutativity which cannot be dealt with by ordinary
rewriting.

This leaves us with the question of how to do
equational matching in Isabelle. More generally, we are
looking for a framework for describing unification
algorithms by proof rules. For a particular case,
unification in the empty theory, an answer was given by
Martelli-Montanary :'® a unification problem is a set of
equations which are solved by repeated application of
some fixed set of transformation rules. This idea has been
generalised to arbitrary equational theories in the work
of Claude Kirchner, for example Ref. 15. In our context
the equations to be solved are the premises of some rule,
and their transformation is achieved by resolution with
rules of the form

S =l S, =1,
s=t

which are also called decomposition rules. These rules
should be read like Prolog clauses whose procedural
interpretation says: solving s =t can be achieved by
solving all s, = ¢,. In order to make this process terminate,
the equational problem should be simplified by each
resolution with a decomposition rule.

Equations of the form x = 7 can be solved directly by
reflexivity, instantiating x with 7. Notice that reflexivity
fails if x occurs in ¢ (occur-check!). Hence this principle
is only adequate for matching problems (where ¢ must be
ground) and for unification in so called simple theories,
i.e. theories where the above equation does not have a
solution. The theories discussed in this section happen to
be simple.

A second observation is that all congruence rules of
the form (3) are decomposition rules and do not
jeopardise termination.

Thus a general unification tactic is obtained : equations
of the form x = ¢ are solved by reflexivity, others are
replaced by a set of simpler equations by resolution with
some congruence or theory-specific decomposition rule.
This process continues until all equations have been
solved. The variable bindings created on the way
constitute a unifier. This is a nondeterministic algorithm
and may involve much backtracking! A precise for-
mulation as an Isabelle tactic can be found in Ref. 21.

Within this framework the search for a unification
algorithm is reduced to finding a suitable set of
decomposition rules. Suitable means complete and
terminating. Of course this is the really hard bit.
Fortunately, for a number of frequently used equational
theories, suitable decomposition rules can be found.

The simplest case is the empty theory where the
congruence rules alone suffice. Of course Isabelle’s built-
in higher order unification subsumes first-order unifi-
cation in the empty theory. Decomposition rules for a
number of practically relevant theories are listed below.
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Commutativity :
Tyt ®
Associativity:
X=uUu+w w+y=v x+w=u y=w+v ©6)

X+y=u+v X+y=u+tv

Associativity + Commutativity : rules (5), (6), and
X=v+w wH+y=u
xX+y=u+v
X=wit+w, y=24+2, Wi+z,=uU Wy,+z,=0
X+y=u+v

Xt+tw=v y=w+u
xX+y=u+v

Right-Commutativity (x+y)+z = (x+2)+y):

X=w+v wH+y=u
X+y=u+v

The decomposition rule for commutativity can be
found in Ref. 15, the one for right-commutativity in Ref.
16. The inference rules for all four theories yield a
complete unification algorithm, but only the one for
commutativity is guaranteed to terminate. Fortunately,
they all terminate if applied to matching problems, which
is sufficient for our purposes.

Examples of other equational theories which admit
this treatment can be found in Refs 15 and 20.

3.4. A Conditional

Isabelle’s higher-order features allow a rewriting-oriented
treatment of conditionals. As part of the definition of
predicate logic we have declared a constant if: form x
term x term — term and added the rule

PflQ, x,y)) = (Q = P(x)) A (- Q = P())

Note that P is of type term — form.

This rule provides a simple way of automating case
distinctions. Unfortunately, it has to be treated separately
from the first order rewrite rules considered so far. The
reason is that the left-hand side matches any formula:
given a formula R which does not contain an if-subterm,
higher-order unification will instantiate P by Au.R,
where u does not occur free in R, i.e. P becomes a
constant function. Therefore this rule is connected with
a special applicability check. The implementation is
straightforward and is not shown here.

There is a second, more practical, reason for separating
the expansion of conditionals: while the standard
rewriting tactic proceeds bottom-up, conditionals are
best expanded in a top-down fashion. Consider some
formula R A S(if(C, x, y)). Expanding the conditional at
the innermost point produces R A ((C = S(x)) A (- C =
S(»))), at the outermost point it yields (C=
(RAS(X)A(-C=(RAS(»)). Now consider what
happens if both formulae are further simplified using
rewriting with local assumptions. In the first case only
S(x) (S(»)) can be rewritten under the additional assump-
tion - C(-~ C), whereas in the second case C(-C) is
also available when rewriting R.

Defining functions via if'and using (7) as a rewrite rule
turned out to be an important factor in automating
many proofs.

3.5. In Practice

The tactics presented above are not very efficient.
Fortunately there are two simple optimisations which
improves their performance significantly. The first one is
the use of an efficient data structure for rule selection. If
the list of rewrite rules rwrls grows long, res_tac
rwrls may take a long time to find a matching one.
Isabelle provides a data type for fast rule selection and
the required changes to the rewriting tactics are minimal.

The second improvement is on the logical level and is

connected with bottom-up rewriting. Rewriting a term ¢
at the root according to a rule / = r means that 7 is of the
form (/) and is rewritten to a(r). If bottom-up rewriting
is used, all subterms of ¢ must have been in normal form,
therefore all terms in the range of o, i.e. all variable
instances in g(r) are in normal form too. Unfortunately, o
BU as defined above does not realise this and, in rewriting %
a(r), visits all of its subterms. A simple solution to this 3
problem requires an extension of the logical system by a 2
new constant of type term—term which is used to =
indicate that a subterm is in normal form. Let us call this §
constant N. The only new axiom is that N is the identity =
function i.e. N(x) = x. Now all variables in r are tagged
with N and BU does not need to descend into subterms &
labelled with N. Let us look at an example:
Example 2. Tagging the right-hand side of the rule
s(x)+y = s(x+y) turns it into s(x)+y = s(N(x)+ N())
(using x = N(x)). Applying the new rule to s(t)+1t,
(where ¢, and ¢, are already in normal form) results in
s(N(t))+ N(1,)). Bottom-up normalisation of this term
has does not look at ¢, or #, but simply removes the N’s
(using N(x) = x) and immediately tries to rewrite L+,
at the root.

Unfortunately this optimisation is not compatible &
with rewriting modulo equations. Given the rule x+ x +y Q

= y where + is AC, the term (a+b) + (a+ b+ ¢) rewrites =
to b+ b+ c. The latter is not in normal form although all £
subterms of the former were.

The question remains how efficient the resulting tactics
are. The following data was obtained with Dave &
Matthews’ Poly/ML system on a Vax 3600 and includes &
garbage collection. Simple unconditional rewriting pro- 3
ceeds at a rate of about 5 reductions per second. The 5
speed of AC-rewriting depends largely on the size of the 2
terms and the number of AC-operators in them. For
small terms it is typically an order of magnitude slower.
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4. TACTICS

Having studied the anatomy of rewriting, we consider
the user-interface level. There are two rewriting tactics
which combine all the features introduced in Section 3:

SIMP_TAC: rule list—tactic
EQ_SIMP_TAC: tactic—rule list—tactic

Both take a list of rewrite rules but EQ_SIMP_TAC is also
supplied with a matching tactic as described above.
Although SIMP_TAC is subsumed by EQ_SIMP_TAC,
the former is significantly more efficient than the latter.
Therefore both are offered. In addition to the rewrite
rules given as an argument both tactics employ a built-in
set of rules for formula simplification. This set contains
simple rules like P A T<> P and (Vx.T)<> T, but is by no
means complete.
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Rewriting on its own is not very powerful. Most
nontrivial proofs rely on some kind of induction. In
Isabelle induction is just another proof rule, for example

PO) Vx.P(x)=P(x+1)
Vx.P(x)

P is of higher type, namely term — form. Resolution with
this rule depends on higher-order unification for instan-
tiating P. The design of a general induction tactic is
discussed in Ref. 21. A slightly revised version is

IND_TAC: tactic—rule—string—>tactic

which takes a (simplification) tactic, an induction schema,
and the name of the variable to induct on. It applies the
induction rule and tries to solve as many subgoals as
possible by simplification.

The combination of induction and rewriting is suffi-
cient to prove all theorems in Section 5.

S. AN EXAMPLE

To lend some credibility to the claim that the tactics of
the preceding sections do constitute useful theorem
proving primitives, we look at a simple example of
hardware verification: a ripple-carry adder. In order to
express the correctness of the hardware we use the
following specification of natural numbers as a reference
model:

Nat=Predicate_Logic+
SORTS nat
OPS 0, 1, 2: nat
s: nat—nat

-+, - ——, _"_, _//_: nat*nat—nat
_<_: nat*nat—form

RULES
2°0=1

2°s(n)=2"n+2"n
n<m=n//m=n
~ n<m=n//m=(n—m)//m
P(0) & (ALLn.P(n)=P(s(n)))
=A11 n.P(n)

The primitive recursive definitions of +, — and < have
been omitted and can be found in any book on algebraic
specifications, e.g. Ref. 23. m"n denotes m", although we
have only bothered to axiomatise 2", and n//m stands
for nmodm. The last formula is the induction principle
for natural numbers.

Figure 1 shows the circuit of a 1 bit full adder built
from exor (4) and nand gates ("&).

Modelling hardware in predicate logic is easy: the
hardware states 1 and 0 are identified with the truth-
values T and F, gates are identified with logical
connectives. Thus we arrive at the following faithful
representation of the full adder in propositional logic;

FA=Predicate_Logic+
OPS _#_, _"&_: form*form—form
sum, carry: formxform*xform—form
RULES x#ye " (x < ¥y)
x & yeT(x & y)

sum(a, b, c)<(a#b)#c
carry(a, b, c)
<((a#b) "& c) & (a “& b)

A;
#
B;
Ci } S'

&
1 & \ 9—‘G+I
Figure 1. A 1 bit Full Adder (FA).
So Sy Sn-1
! !
o— Fa S pa LS ot FA |—C,
I 11
Ao By A B, A, B,

Figure 2. An n bit ripple-carry adder.

An n-bit ripple-carry adder is a simple cascade of » full
adders as shown in figure 2. In order to model bit-vectors
of arbitrary length we simply consider them as functions
from natural numbers to bits. Thus we arrive at the
following definitions:

Adder=FA+Nat+
SORTS bv=nat—-form

OPS add, oflow: bvxbv—bv
bin: bv*nat—nat
RULES

add(A, B, n)

<sum(A(n), B(n),
oflow(A, B, n))
oflow(A, B, 0)<F
oflow(A, B, s(n))

<carry(A(n), B(n),
oflow(A, B, n))
bin(A, 0)=0

bin(A,s(n))=if(A(n), 2°n, 0)

+bin (A, n)

The functions add and oflow correspond to the S and
C outputs in figure 2. It is easy to see that Adder is a
correct translation of the circuit diagram into logic. Note
that the syntax for function application is uncurried:
instead of add (A, B) (n) we write add(A, B, n).

If we want to prove the adder correct, the question
arises what that means. In the language of abstract data
types bit-vectors with add are a concrete realisation of
natural numbers with +. To show the correctness of this

nat (.,.) .

bin bin

bv (,) .
add

Figure 3. Relating bv and nat.
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implementation we need to exhibit a homomorphism (an
‘abstraction function’ in the terminology of Ref. 12)
from bv to nat. This missing link is the function bin
(‘bv into nat’). The required relationship between bv
and nat is expressed pictorially by the commuting
diagram in figure 3. Since n-bit arithmetic provides a
correct implementation of natural numbers only modulo
2", bin has a second parameter which determines the
number of bits to convert. The correctness assertion is
stated by the following two formulae:

bin(add(A, B), n)=(bin(A, n)

+bin(B, n)) // 2°n (8)
oflow(A, B, n)<"bin(A, n)
+bin(B, n)<2'n 9

Equation (8) expresses that the diagram in figure 3
commutes modulo 2%, (9) says that the nth carry bit is on
if and only if the »n-bit sum of the two arguments is not
less than 2". Let us now look at the proof of both
formulae.

It turns out that almost all effort goes into constructing
a lemma library for Nat. As a first step it is shown that
+ is associative and commutative. This proof is detailed
e.g. in Ref. 21. Now we can use AC-rewriting as
explained in Section 3.3 for the rest of the proofs. The
complete list of lemmas is shown below.

X<y=x<s(y)
y<z=x+y<z

x<u & y<v=x+y<u+v
"x+y<x
X+y<x+zey<z
x—x=0

(x+y)—y=x
(X+y)—(x+2z)=y—z
“y<z=>x+(y—2z2)=(x+y)—2
"z=0=x—y<zxX<z+y
X+y=0<x=0 & y=0
"2°'n=0

bin(A, n)<2°n

They constitute a terminating set of (conditional) rewrite
rules.

To give the reader a better impression of how these
proofs were carried out we look at a particularly simple
example. The following two lines are input to the Isabelle
system, i.c. they are calls of ML functions in the interface
to the system.

goal ‘x—x=0’;
by (IND_TAC N_IND (SIMP_TAC RWLS) ‘x’);
The function goal establishes the formula x—x=0 as
the current goal, by takes a tactic and applies it to the
current goal. In this case the tactic is an induction over
x. The ML identifier N_IND holds the induction schema
in the definition of Nat and rwrls contains the current
list of rewrite rules. In this example a single induction
suffices. In many of the proofs one or two additional case
distinctions are required. A more detailed exposition of
this style of theorem proving can be found in Ref. 22.
Having built up the lemma library above, it may come
as a bit of a surprise that the proofs of (9) and (8) (in that
order!) go through with a single induction on n.
Analysing the proofs in detail one discovers that, apart
from the proper choice of lemmas, this is largely due to

automatic case splits caused by the use of if in the
definition of bin.

The above correctness proof is only a first step towards
verified hardware. More ambitious efforts are reported in
Refs. 4 and 13 which describe the correctness proofs of
two microprocessors in HOL and the Boyer—-Moore
system respectively. In those proofs the adder is just one
subproblem among many.
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Book Review

DAviD S. MIALL (ed.)

Humanities and the Computer : New Directions
Clarendon Press, Oxford, 1990. £25.00
0-19-824244-1

This book consists of seventeen papers arising
out of the CATH (Computers and Teaching in
the Humanities) conference held at the Uni-
versity of Southampton in December 1988.
The plethora of computer-related conferences
and the accompanying rash of conference
proceedings has led to a devaluation of such
publications in the academic market place.
The editor is therefore at pains to point out
that all the chapters in this book were specially
commissioned, subjected to a review process
by editorial committee and, in most cases,
partly rewritten as a result.

The chapters are organised so that the
reader moves gradually from considerations
of the broader theoretical issues to specific
projects or pilot schemes. However, in spite of
the obvious effort to weld a heterogeneous set
of papers into a coherent whole, it is perhaps
inevitable that the reader emerges with the
impression that the domain is as yet somewhat
unfocused. As the editor points out in his
introduction, the question of whether some-
thing called ‘ Humanities Computing’ exists as
a mature discipline is an open one.

Nevertheless this is an interesting and
rewarding book. The overall impression is
that the contributors have approached the

business of using computers in the humanities
with enormous enthusiasm and imagination.
The result is a fascinating and versatile
repertoire of applications spread across the
whole range of humanities disciplines.

Happily the enthusiasm is tempered by
realism. None of the contributors is seduced
by the illusion that the application of in-
formation technology is a cure-all for what
has become an increasingly embattled area in
higher education. Arthur Stutt in particular
proposes two governing criteria for design of
systems for the humanities, namely:

(i) Any system which is to be used in the
humanities must take account of the nature of
the humanities.

(ii) Any system which is to be used in the
humanities must provide something by com-
putational means which could not easily be
provided in any other way.

In addition, other contributors point out a
number of important practical difficulties. For
example, the development of good-quality
educational software is enormously time-
consuming and is arguably at least as demand-
ing as the writing of a large academic work.
How therefore is the enterprise to be re-
sourced? As David A.Bantz observes:
‘These...examples represent quite substantial
commitments of resources, most especially the
time of faculty authors. Most faculties con-

tinue to believe, however, that such activity is
inadequately supported or rewarded by their
institutions; so long as this perception con-
tinues, the number of elaborate innovative
software packages will remain small.’

In addition, crucial pedagogical and design
criteria must be investigated and determined —
a not inconsiderable task given the lack of
concensus in the field. For example, con-
siderable attention is given in the book to the
empowering of students, which is made poss-
ible by the employment of non-directive
techniques, especially through the use of
hypertext as a delivery system. However,
although the effect may be exhilarating, there
is a real danger of student disorientation in
some areas where the abandonment of a linear
format can lead to navigational problems.

The occasional stylistic lapse (‘new innova-
tions’ on page 3) and typographical error
(‘Gendel” for ‘Grendel’ on page 98) do not
detract from the real merits of this book. It is
a shame however that the bibliography is
amalgamated at the end of the volume. It
would have been much more reader-friendly if
specific bibliographical references had been
given at the end of the chapters to which they
related. None the less, this work will be
required reading for all those who believe that
the computer has a significant réle to play in
the enhancement of humanities teaching.

ToNY DRAPKIN
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