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We give an overview of rewrite rule based calculi for reasoning about Horn clause specifications. Such reasoning
consists in computing (normal forms), proving (theorems) or solving (goals). Computations are performed by term
reduction, proofs are carried out by goal reduction, solutions are obtained by narrowing. The presentation follows our
book ‘Computing in Horn Clause Theories’ where we took the viewpoint that most results in this area centre around
the soundness or completeness of an inference system. Besides the general calculi of reduction and narrowing we discuss
specialisations, which embody particular strategies. For applications to data type specification and program verification,
we present the foundations of inductive proof methods based on reduction and narrowing.
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INTRODUCTION

Let us first recall the case where all axioms are equations.
Given a signature SIG and a set of E equations, the term
reduction relation — is the least reflexive, transitive and
SIG-compatible (monotone) closure of the set of
instances of equations of E. (The transitive and mono-
tone, but non-reflexive, closure will be denoted by —%.)
If two terms t and t’ satisfy t -, t’, one says that ¢ rewrites
into ¢’ via E. The original purpose of term reductions is
to solve the word problem of E: Under which conditions
on E is the set of valid equations decidable? Validity
means, from the semantical viewpoint, validity in all
(SIG-) models of E, or, equivalently, from the proof-
theoretical viewpoint, derivability from E via the in-
ference rules of the equational calculus (cf. Birkhoff &
Moore).? Let us call an equation t = t’ an E-theorem if it
is derivable from E by applying these rules. (= stands for
an equality predicate symbol, in contrast to =, which
expresses identity on the meta-level of reasoning about
formulas.)

The difference between a reduction t—,t" and an E-
theorem t=1t" is the symmetry rule involved in the
equational calculus, but excluded from — . The core of
rewriting theory lies in proving t = t" as an E-theorem
by rewriting t and t” into a common term u:t—;u and
t"—>gu. E is called Church-Rosser if every E-theorem
t=1t" can be proved in this way. If, in addition, -}
is a well-founded relation, the validity of t = t’ becomes
decidable: Construct reductions t—- u and t—-4u’ such
that u and u’ are E-normal forms, i.e., if u—, v and
u -V, then u=v and u’" = v’; and check whether u
and u’ are identical. If they are, t = t’ is an E-theorem,
otherwise it is not.

In fact, the Church—-Rosser property can be expressed
in a more abstract way. Instead of regarding the terms t
and t’ as the basic units to be modified we may view
reductions, analogously to inferences via the equational
calculus, as transformations of equations, constituting
the inference relation +, of goal reduction. So we
combine t—zu and t— u’ (see above) into a goal
reduction t=t" — u=u’. Given that t=1t" is the
theorem to be proved, derivations via the equational
calculus start out from axioms of E and try to achieve
t =t’, whereas goal reduction proceeds from t =t’ by
term replacement down to a reflexive equation of the

form u = u. So I is generated by two inference rules on
equations. The first defines single reduction steps:

(RED) For all equations e, variables x, u = u’€E and
substitutions f, e[u[f]/x] g e[u’[f]/x].

Here u[f] denotes the instance of u by the substitution f.
Moreover, x is a variable occurring in the equation e, and
e[u[f]/x] denotes the equation obtained from e by
substituting u[f] for x.

The second rule closes a sequence of reduction steps
successfully and hence is called the success rule:

(SUC) Forall terms t, t =t .

Using goal reduction we may define: E is Church-
Rosser if t=t" J whenever t = t’ is derivable from E
via the equational calculus. Hence saying that E is
Church-Rosser is another way of stating that the calculus
of goal reduction, given by RED and SUC, is complete
with respect to the equational calculus and thus with
respect to validity in the class of all models of E. An
important consequence of the Church—-Rosser property
is the uniqueness of E-normal forms: If t = t’ is derivable
from E via the equational calculus, but t and t’ are
irreducible with respect to —, then t and t" must be
equal.

This concept will be generalised in several respects.
First, axioms are allowed to be arbitrary Horn clauses.
Equality predicates carry on playing a dominant role,
but other predicates may occur as well. Second, we will
prove by reduction not only equations, but also other
(atomic) formulas, as far as the signature includes non-
equality predicates. Third, we want to cope with cases
where not the entire proof of a theorem can be carried
out by goal reduction. In other words, we want to
weaken the notion of a succeeding goal reduction: why
should the reduction process be finished only if a
reflexive equation has been obtained? A more general
approach would allow us to stop already if, for a suitable
set BAX of base axioms, a (not necessarily reflexive)
BAX-theorem has been achieved.

The fourth extension of classical rewriting theory leads
from proving equations to solving equations. If goal
reduction is extended to a rule that transforms pairs
consisting of a goal and a substitution, one comes up
with the narrowing rule for computing substitutions that
validate a given goal. Hence narrowing generalises goal
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reduction. From the viewpoint of automated theorem-
proving, however, where the basic rule of term replace-
ment is paramodulation, narrowing is a specialisation:
Given an equational axiom, narrowing allows applying it
from left to right, but not from right to left.

The paper is organised as follows. Section 1 provides
syntactical conventions and states a general assumption
on all specifications we are dealing with. Section 2 is
about the notions of theory and model of a Horn clause
specification. The cut calculus with equality serves as a
reference for all deductive systems given later. Section 3
presents conditional reduction in three variants: Goal
reduction, conditional (term) reduction and term re-
duction. The Church—Rosser property of a set of Horn
clauses, its applications and basic criteria are treated in
Section 4. Section 5 shows how reduction strategies like
‘innermost’, ‘outermost’, etc. specialise goal reduction.
Basic reduction yields another specialisation. The topic of
Section 6 is narrowing, as a calculus both for solving
goals and for proving inductive theorems. Section 7
continues Section 5 by proceeding to narrowing strategies
and sketching the refinements of narrowing called basic
narrowing and optimised narrowing. Section 8 combines
approaches to ‘demand-driven’ narrowing into a calculus
called lazy narrowing.

Emphasis is laid on a unified presentation, which
reveals the basic facts, their interrelations and differences.
For this purpose, the main issues are expressed in terms
of (properties of) inference systems, all handling the
same type of formulas. The reader probably expects
examples of specifications and concrete derivations using
these inference systems. For several reasons, we did not
include such running examples (except in Sections 1 and
2). The first is lack of space. The second is that we do not
consider them really helpful. Relevant ideas in this field
often become more transparent when they are expressed
abstractly rather than encoded into special examples.
Thirdly, the whole matter has evolved on the ground of
very few examples. (This seems to distinguish reduction
and narrowing from classical theorem proving.) In fact,
assessing a method or result on the basis of application-
oriented criteria, is, at least at the moment, rather difficult
because practical applications or comparisons of different
methods under a practical viewpoint are rare. The latter
is not least a consequence of the lack of unifying
approaches.

So we hope the reader is able to get through our
presentation without being provided with concrete
examples, but, nevertheless, feeling challenged to make
practical experiments with the calculi provided.

1. PRELIMINARIES

We start out from a many-sorted signature SIG
= (S, OP, PR) consisting of a set S of sorts and S*-sorted
sets OP and PR of operation (or function) symbols and
predicate symbols, respectively. For all se S, PR contains
an equality symbol = with sort ss.

Given a fixed S-sorted set X of variables, T(SIG)
denotes the set of fterms over SIG, while GT(SIG)
comprises all ground, i.e. variable-free, terms over SIG.
var(t) is the set of variables occurring in t.

As usual, the S-sorted functions from X to T(SIG) (or
GT(SIG), respectively) are called (ground) substitutions.
The instance of a term t by a substitution f, denoted by

[ f1, is obtained by replacing the variables of t according
to f. If dom( f), the domain of f, given by all variables x
with fx % x, is finite, say dom(f) = [x,, ..., X,], we write
fx,/x,....fx,/x,] instead of ¢[f]. f is a unifier of two
terms t and t’ if t[f] = t'[f].

In addition to SIG, a (Horn clause) specification
(SIG, AX) contains a set AX of axioms each of which is
a (Horn) clause of the form p <= y where the conclusion p is
an atom(ic formula) over SIG and the premise y is a
goal, i.e. a finite set of atoms over SIG. A clause with an
empty premise such as p<= ¢J is simply written as p.
Hence special clauses are equations like t=1t" and
conditional equations such as t =t"<=y. (The predicate
symbols occurring in y need not be equations.)

General Assumption. Throughout the paper, we fix a
specification (SIG, AX). For reasons already mentioned
in the introduction we separate from OP a set BOP of
base operations and from AX a set BAX of base axioms.
Terms over BOP are called base terms. The conditional
equations of BAX are assumed to be symmetric, i.e. if
t = t' <= Jis a base axiom, then t’ = t <= J is a base axiom
as well. The remaining clauses of AX are assumed to be
conditional equations and are called rewrite axioms.
RAX denotes the set of these axioms.

The base signature BSIG = (S, BOP, PR) is assumed to
be inhabited, i.e. for all seS there is a ground term over
BSIG with sort s. (BSIG,BAX) is called the base
specification. W

A base specification of sequences and multisets (bags)
of natural numbers may read as follows. Equality
predicates are not listed explicitly.

SEQ&BAG

sorts nat,seq,seq®,bag
symbol type

opns O nat
—+1 nat — nat
€ seq
& nat,seq — seq
conc(_,-) seq,seq — seq
o) seq,seq — seq>
1% bag
add(_,-) nat,bag - bag
seqToBag(.) seq— bag

preds _ < _ nat,nat
_<_ nat,nat
isSorted(_)  seq

vars m,n:nat; s:seq; b:bag

axms conc(e,s) =S

conc(n&s,s”) = n&conc(s,s’)
add(m,add(n,b)) = add(n,add(m,b))
seqToBag(e) = &

seqToBag(n&s) = add(n,seqToBag(s))
0<n+1

m+l<n+l<=m<n
m<n<m<n

m<n<ms=n

isSorted(e)

isSorted(n&e)

isSorted(m&n&s) < m < n, isSorted(n&s)

As an example of (SIG,AX), let us specify the quicksort
algorithm.
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QUICKSORT
base SEQ&BAG
symbol type
opns sort(_) seq — seq
halve(_) seq — seq?

halveProc(_) seq,seq,seq — seq?
partition(_,_) seq,nat - seq?
m,n:nat; s,s’,s”,left,right,less,greater : seq
sort(e) = ¢
sort(m&s) = conc(sort(less),n&sort(greater))
<= halve(mé&s) = (left,n&right),
partition(conc(left,right),n)
= (less,greater)
halve(s) = halveProc(s,z,¢)
halveProc(e,s,s”) = (s,s")
halveProc(n&e,s,s”) = (s,n&s’)
halveProc(m&né&s,s’,s”’) =
halveProc(s,m&s’,n&s”)
partition(g,n) = (&,¢)
partition(mé&s,n) = (m&less,greater)
<m < n, partition(s,n) = (less,greater)
partition(mé&s,n) = (less,m&greater)

vars
axms

<n < m, partition(s,n) = (less,greater).

The reader should convince himself that QUICKSORT
satisfies the General Assumption.

2. HORN CLAUSE THEOREMS

Definition. The cut calculus with equality consists of the
congruence axioms for all equality symbols (w.r.t. SIG)
and two derivation rules:

(CUT) {p<=yU{q},q=diFp<=yUd.
(SUB) For all substitutions f, p <=y p[f] < y[f].

Let - denote the corresponding inference relation. A
clause p<«=y is an AX-theorem if AX+_.p<y. BAX-
theorems are also called base theorems. Two terms t and
t" are AX-equivalent if t =t is an AX-theorem. Two
substitutions f and g are AX-equivalent if for all xe X, fx
and gx are AX-equivalent. W

In the case of pure equational specifications (PR being
empty and AX being a set of equations), each step in a
derivation via the cut calculus with equality corresponds
to a step in a derivation via Birkhoff’s equational
calculus that we mentioned in the introduction.

A SIG-structure A interprets each seS as a carrier set
A,, each FeOP, as a function F*: A, > A, and each Pe
PR, as a relation P* = A,. We assume familiarity with
the evaluation of terms and the validity of Horn clauses
in a SIG-structure. A SIG-model of AX is a SIG-structure
that satisfies all clauses of AX. Let us denote by
Mod(AX) the class of all SIG-models of AX. The basic
completeness result for . reads as follows.

Theorem 2.1. (Padawitz,®® Corollary 4.2.4).
Mod(SIG,AX) satisfies a clause p <= y iff p can be derived
from AX U y via the cut calculus with equality such that
the variables of y need not be instantiated.

For this result, the assumption that BSIG and thus
SIG are inhabited is crucial. Otherwise the many-
sortedness of SIG could lead to the incorrectness of
w.r.t. Mod(AX) (cf. Goguen).?* For coping with non-
inhabited signatures (cf. Section 1),!! proposes a modified
calculus where each equation is equipped with a variable

declaration to be taken into account by the inference
rules.

In applications to data type specification and program
verification, one is rarely interested in the class of all
SIG-models of AX. Instead, one deals with term-
generated models, where each carrier element is obtained
by evaluating a ground term. Let Gen(4X) denote
this class of models. Proof-theoretically, it is character-
ised as follows:

Theorem 2.2. (Padawitz, Corollary 4.3.3).% Gen(AX)
satisfies a clause p <=y iff for all ground substitutions f,
AXUf]=cplf]l W

Horn clause specifications admit a greatest term-
generated model (up to isomorphism), called the initial
model of AX. Each two of its carrier elements are equal
only if their term representations are AX-equivalent (see
above). With regard to the set of valid ground atoms, the
initial model of AX is the least one: it satisfies a ground
atom p only if p can be derived from AX. The clauses
satisfied by the initial model are called inductive theorems:

Definition. A clause p <=y is an inductive AX-theorem if
for all ground substitutions f, AX - y[f] implies AX
plf]. A SIG-model A of AX is initial if every SIG-model
B of AX admits a unique (SIG-) homomorphism from A
to B. Ini(AX) denotes the (isomorphism) class of initial
SIG-models of AX. W

The correctness of a sorting algorithm like quicksort
falls into the conditions that (1) the result of applying
quicksort to a sequence yields a sorted sequence and (2)
the sorted sequence is a permutation of the original
one. Formally, these conditions hold true if the
QUICKSORT-equations (cf. Section 1)

isSorted(sort(s)) and seqToBag(sort(s)) = seqToBag(s)

are inductive AX-theorems where AX is the set of axioms
of QUICKSORT.

Theorem 2.3. Ini(AX) satisfies a clause p<y iff p<y is
an inductive AX-theorem. W

In contrast to the cut calculus, reduction and
narrowing lead to backward proofs starting from the
theorem to be proved and closing with a reduced goal.
This applies to inductive theorems as well, although we
distinguish between two categories of proof methods,
namely explicit ‘structural’ induction on the set of
ground substitutions (cf. Burstall,* Boyer & Moore® and
Padawitz?*) on the one hand and proofs ‘ by consistency’
on the other hand, where the latter is based upon the
following fact.

Theorem 2.4. (Padawitz, Theorem 2.2).2° A clause p<=y
is an inductive AX-theorem iff AXU{p<=7y} is a
conservative extension of AX, i.e. iff for all ground atoms
q, AXU{p<y}t.qimplies AX+.q. W

3. CONDITIONAL REDUCTION

The main difference between term rewriting in the
equational case and a suitable generalisation to Horn
clauses lies in the premises axioms can be equipped with.
(The existence of non-equality predicates is not that
important, especially as the General Assumption does
not admit rewrite axioms for specifying such predicates,
unless they were encoded into Boolean functions.)
Premises enforce the choice between two possibilities of
performing a conditional reduction step. Given a term t
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and an axiom u = u’ <= $ that is applicable to t, i.e. some
instance u[f] of u is a subterm of t, one may either

(1) replace the occurrence of uin t by u’ and store the
premise 3, or

(2) replace the occurrence of u in t by u’ only if [f] is
valid and forget 3 after the replacement.

In the second case, one has to make precise the notion
of validity used here. Several proposals were given in the
literature (cf. e.g. Kaplan,'*** Zhang & Remy,?® Bergstra
& Klop' and Jouannaud & Waldmann'®). 9[f] may be
called valid if it can be derived from AX via the cut
calculus (cf. Section 2). Then one actually uses two
inference systems, reduction and the cut calculus,
simultaneously, although the aim is to avoid the forward
proofs via CUT and SUB. An alternative is to define
validity as reducibility. Hence one naturally comes up
with the notion of goal reduction. In the introduction, we
have already seen what the rules of goal reduction look
like in the equational case. RED performs reduction
steps by applying rewrite axioms (see the General
Assumption). SUC, which determines when a goal
reduction succeeds, admits not only reflexive equations
as final goals, but arbitrary base theorems, thus exploiting
previous knowledge about properties of the base specific-
ation. A variant of goal reduction allows to carry out
reduction steps modulo base theorems. The Congruence
Class Approach is not handled here, but studied in detail
in Padawitz.?®

Weakening the notion of a succeeding goal reduction
in the way described poses some problems, which can be
managed by requiring that the terms in a reduced goal be
RAX-normal forms. This excludes reflexive equations like
t =t from the set of reduced goals whenever t can be
rewritten by RAX. In summary, the two rules of goal
reduction read as follows.

Definition. For all goals (or terms) J, let single(6) be the
set of variables of d, which occur exactly once in J. Given
a set R of conditional equations, the goal reduction
calculus w.r.t. R consists of two derivation rules:

(RED) for all goals d, x esingle(d), u = u’ <= $eR and
substitutions f,

olulf]/x] = o[u’[f]/x] U Y[f].

For all unconditional and R-normal base
theorems y, y— &.

(SUC)

Let 5 denote the corresponding inference relation.
Derivations via + are called R-reductions. A goal y
admits a successful R-reduction if y—, . R

What is an R-normal goal? To make this precise we
must refer to conditional term reductions in the sense of
(1):

Definition. Given a set R of conditional equations, the
set of conditional reductions t— ot <y is inductively
defined as follows:

e For all terms t, xesingle(t), u=u'<39eR and
substitutions f, t[u[f]/x] — t[u’[f]/x] < J[f].
o Ift>pt'<=yand t' > t" <y, thent— t"<=yUy.

A term t is an R-normal form if there is no conditional
reduction t >, t'<= 3. A goal y is R-normal if all its
subterms are R-normal. A substitution f'is R-normal if all
its values are R-normal. W

Both conditional reductions and goal reductions are
necessary for defining (unconditional) term reductions:

Definition. Given a set R of conditional equations,
term reductions are all expressions of the form t—pt’
such that t = t’ or there is a conditional reduction t >
t" <= p such that y admits a successful R-reduction. In the
second case, we also write t—>%t’. W

In some cases, one needs —; and —}, as relations on
goals. So we write y > y" if t > t’ for some t,t’,y = J[t/x]
and y” = J[t’/x] for some 4.

We hope to have given enough motivation for
distinguishing between goal reduction, conditional re-
duction and term reduction. What remains to be
questioned is whether y in SUC needs to be R-normal. In
fact, there are several reasons for this requirement. Other
approaches avoid it, but handle only restricted classes of
specifications such as hierarchical (cf. Zhang & Remy)?®
simplifying (cf. Kaplan),? reductive (cf. Jouannaud &
Waldmann)'? or normal ones (cf. Dershowitz et al.).®

The first reason is a practical one. If SUC could be
applied even if y is not R-normal, goal reduction would
lead to a larger search space: there will be subgoals where
both SUC and RED apply to, and it might be necessary
to pursue both ways. On the other hand, reducing the
number of checks for the applicability of SUC might be
desirable because they involve deciding the base theory.

The second reason for sticking to normal forms can be
put forward already for unconditional equations. A set R
of equations is Church-Rosser (see the introduction)
if - is confluent. Unfortunately, this does not hold any
more if R includes base axioms or if we allow arbitrary
base theorems as reduced goals. When adding the
requirement that reduced equations be R-normal, how-
ever, the result is retained, provided that R is BAX-
compatible and normalising (cf. Padawitz,?® Proposition
7.4.1).

Definition. Given a set R of conditional equations, two
terms u and u’ are R-convergent modulo BAX if u— v,
u’ -, Vv’ for some base theorem v=v'. R is confluent
modulo BAX if for each two ‘ branching’ reductions t -, u
and t—u’, u and u’ are R-convergent modulo BAX.
R is BAX-compatible if for all reductions t - u and base
theorems t=vu’, u and u’ are R-convergent modulo
BAX.

A term (or goal) is R-normalisable if t - u for some
R-normal term u. R is normalising if all terms are
R-normalisable. W

In Padawitz,?® the notion of BAX-compatibility refers
to a kind of base reductions, which is stronger than the
one given here. For the purpose of this paper it is
sufficient to keep to base theorems.

Confluence and BAX-compatibility are indeed essen-
tial for the Church—Rosser property. The requirement
that R be normalising, however, can be weakened by
confining the Church-Rosser property to normalisable
goals.

4. THE CHURCH-ROSSER PROPERTY

Definition. Given a set R of conditional equations, AX
is R-Church—Rosser if all unconditional and R-normal-
isable AX-theorems admit a successful R-reduction. [

By this definition, the Church-Rosser property of AX
does no longer ensure that non-normalisable AX-
theorems have a proof by reduction. But this seems to be
a less serious restriction than presupposing that R is
normalising.
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The R-Church-Rosser property of AX implies that
R-normal forms are unique ‘modulo BAX’:

Proposition 4.1. If AX is R-Church-Rosser, then each
two AX-equivalent R-normal forms are BAX-
equivalent. Moreover, the Church-Rosser property can
be used for proving inductive theorems (cf. Section 2).
For this purpose, R must be ‘functionally complete’ in
the sense that all ground instances of the left-hand side of
the theorem to be proved are reducible:

Definition. A conditional equation e=t=t' <y is
ground R-reducible if for all ground substitutions f there
is a term reduction t[f]—>;u whenever y[f] admits a
successful (R U {e})-reduction. W

The following theorem (first proved in Jouannaud &
Kounalis'” for the case of equations) allows us to reduce
proofs by induction to proofs of the Church-Rosser
property. Its assumptions are only needed for ground
terms (goals) : ground normalising means that only ground
terms must have normal forms; ground Church—Rosser
means that only ground theorems must admit successful
reductions.

An inference relation - is well-founded (Noetherian) if
the rules of — do not generate infinite derivation
sequences.

Theorem 4.2. (Padawitz, Theorem 3.6).? Given a
conditional equation e, suppose that AX U {e} is ground
(RAX U {e})-Church-Rosser, g, is well-founded,
RAX U {e} is ground normalising and e is ground RAX-
reducible. Then e is an inductive AX-theorem. [l

Let us now turn to a general criterion for the
Church—Rosser property. In addition to confluence and
BAX-compatibility we have to require that base theorems
respect normal forms:

Definition. Given a set R of conditional equations,
BAX respects R-normal forms if for all R-normal terms
t, BAX .t =u implies u>,t" and BAX .t =t for
some R-normal term t'. |

In the case of equations, the general Church—-Rosser
criterion is the following.

Theorem 4.3 (Padawitz, Proposition 7.5.2).2* Given
that AX consists of unconditional equations, AX is
RAX-Church-Rosser if RAX is confluent modulo BAX
and BAX-compatible and BAX respects RAX-normal
forms. W

If R is normalising, then BAX-compatibility of RAX
implies normal form respection of BAX, and the converse
of Theorem 4.3 holds true as well.

Before presenting the generalisation of Theorem 4.3 to
conditional equations let us point out a third reason for
calling goal reductions successful only if they end up with
normal forms. Given an equation t = t'eR and a term
reduction vV, there are two non-overlapping
reductions

tlv/x] >g t'[v/x] and t[v/x]->gt[v'/x]. 1)
The ‘reducts’ t’[v/x] and t[v/x] are convergent: both
terms can be reduced to t’[v’/x]. This simple fact allows
us to conclude the confluence of R from the convergence
of finitely many critical (term) pairs.

Unfortunately, the argument does not apply to
conditional equations, unless we add the normal form
requirement. If t =t has a premise, say u=u’, we
obtain the conditional reduction

tv/x] > tIv/x] <= (u = u') [v/x] )]

and, if the premise instance (u=u’)[v/x] admits a
successful R-reduction, (1) holds true as in the equational
case. Again, t'[v/x] can be reduced to t'[v’/x]. However,
the complementary reduction t[v’/x] - t'[v'/x] depends
on a successful R-reduction of the new premise instance
(u=u)[v'/x].

Since (u = u’)[v/x] admits a successful R-reduction,
there are term reductions u[v/x] > t, and w'[v/x]>gt,
and an R-normal base theorem t, =t,. Furthermore,
v—>g V' implies u[v/x] - u[v’/x] and u’[v/x] -, w'[v'/x].
Hence, assuming that the premise terms of (2), u[v/x]
and u’[v/x], are ‘smaller’ than the left-hand side instance
of (2), t[v/x], we conclude by the induction hypothesis
that t, and u[v’'/x] as well as t,, and u’[v'/x] are
R-convergent modulo BAX, i.e. there are reductions
to—>rte U[V/X] > tg, t,>5t] and u’[v//x] > t] as well
as base theorems t, = t; and t; = t;.

Since t, and t, are R-normal, we actually have t, = t;.
Provided that BAX respects R-normal forms, t; and t
are R-normal as well and thus yield a successful R-
reduction of (u = u)[v'/x].

Without the normal form requirement this argument
would not work and thus we could not ensure that non-
overlapping reductions have convergent reducts.

In order to generalise Theorem 4.3 to conditional
equations, replacing the conclusion instance of an axiom
by the corresponding premise instance must preserve
normalisability.

Definition. Let R be a set of conditional equations. AX
preserves R-normalisability if for all substitutions f the
following holds true:

e For all g <= 3e AX, if q[f] is R-normalisable and AX
¢ 9[f], then 9[f] is R-normalisable too.

e Forallu =u’ <« 3eAX, terms t and x e var(t), if t{u/x]
or tfu’/x] is R-normalisable and AX - J[f], then J[f]
is R-normalisable as well. W

Theorem 4.4. (Padawitz, Theorem 7.8.2).2* Suppose
that RAX is confluent modulo BAX and BAX-com-
patible, BAX respects RAX-normal forms, AX preserves
RAX-normalisability and for all u = u’ <= 3e RAX, the
leftmost symbol of u is not a base symbol. Then AX is
RAX-Church-Rosser. W

For proving inductive theorems (cf. Theorem 4.2) or
guaranteeing the completeness of narrowing for ground
substitutions (cf Theorem 6.1) we only need the ground
Church-Rosser property. For that purpose it is sufficient
to assume the conditions of Theorem 4.4 only for ground
terms (goals).

The practical applicability of Theorem 4.4 depends on
decidable criteria for its assumptions. Sometimes the one
or the other vanishes completely. For instance, if BAX is
empty, then BAX-compatibility of RAX and normal
form respection of BAX hold true trivially. However, in
this case we would have to show that the whole set of
axioms is confluent (modulo the empty set).

If RAX is normalising, then, of course, AX preserves
RAX-normalisability, and BAX-compatibility of RAX
implies normal form respection of BAX. Another
criterion for the latter property consists of three
conditions:

e For all u = u” <= 3e RAX, the leftmost symbol of u is
not a base symbol,

e for all u = v’ <= 3eBAX, var(u) = var(v),

o all RAX-normal terms are base terms.
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REDUCTION AND NARROWING FOR HORN CLAUSE THEORIES

As mentioned above, the proof of confluence (and
BAX-compatibility) must be reduced to the convergence
of a finite number of critical (term) pairs. However, this
criterion works only under additional assumptions like
left-linearity of RAX or well-foundedness of ,, (see
above). Left-linearity, the property that a variable does
not occur twice in the left-hand side of a rewrite axiom,
can be avoided if one turns to the Congruence Class
Approach (cf. Section 3). Well-foundedness of g,y is
not necessary if the critical pairs are convergent in a very
strong sense, which nearly means that RAX is non-
overlapping (cf. strong confluence in Padawitz).2 If -,
is well-founded, then RAX is normalising and thus AX
preserves RAX-normalisability, which is another as-
sumption of Theorem 4.4.

Sometimes these criteria can be fulfilled by changing
the set of base axioms or by adding further axioms.
Knuth—Bendix completion is the way of deriving such
axioms from the set of non-convergent critical pairs. A
special case is inductive completion where the Church—
Rosser property is used for proving inductive theorems
(cf. Theorem 4.2). Here the convergence checks for
critical pairs often correspond to the cases of an explicit
proof by induction (cf. Fribourg,® Kiichlin,?! Hofbauer
and Kutsche!* and Padawitz?®).

In fact, many specifications do not pose serious
problems concerning the choice and proof of suitable
Church-Rosser criteria. For instance, if RAX is non-
overlapping and left-linear and +,, is well-founded,
the proof obligation concentrates on the critical pair
criteria for BAX-compatibility (cf. Padawitz,? Exercise
9.9.2). Nevertheless, sticking to a single set of conditions
would exclude specifications whose axiom sets are
Church-Rosser, but do not satisfy some of the con-
ditions. In Padawitz,* Section 9.9, we have presented an
algorithm that guides through the variety of Church-
Rosser criteria.

5. REDUCTION STRATEGIES

Besides serving as a criterion for the Church-Rosser
property, a confluent set of conditional equations allows
us to restrict the applications of RED to a predefined
strategy such as ‘innermost’, ‘outermost’, etc. Let us
define a strategy as a function S from the set of goals to
the set of positions. A position of a goal y is a pair (J, t)
consisting of a goal J with the distinguished variable x,
and a term t such that d[t/x,] = y.

Definition. Given a conditionalequatione = u = u’' <= §
and a substitution f, the position (J,u[f]) is called a
reduction redex of the goal d[u[f]/x,] induced by e. Given
a set R of conditional equations, a position (,t) is an R-
reduction redex if it is induced by some eeR. If (J,u[f]) is
a reduction redex induced by u=u'<«<3€eR and J[f]
admits a successful R-reduction, then (d,u[f]) is called
R-feasible.

A function S from the set of goals to the set of
positions is an R-reduction strategy if for all goals y,

e S(y) is a position of p,

e S(y) is an R-feasible reduction redex of y whenever y
has an R-feasible reduction redex. W
The restriction of RED to applications controlled by
S reads as follows:

(RED-S) for all

goals y, u=u <3J3eR and

substitutions f such that for some 4,f, S(y) =
(0,u[f]), 6+ S[u’[f1/x,] U If].

Let ¢ denote the inference relation generated by
RED-S and SUC. A goal y admits a successful S-
controlled R-reduction if y+g ( .

Theorem 5.1. (Padawitz,* Theorem 7.9.2). Let R be a
set of conditional equations and S be an R-reduction
strategy such that R is confluent modulo BAX, BAX
respects R-normal forms and g is well-founded. Then
a goal y admits a successful S-controlled R-reduction if y
admits any successful R-reduction. W

If R is confluent modulo the empty set of axioms, the
assumption ‘BAX respects R-normal forms’ can be
dropped. If y is a ground goal, it is sufficient to assume
that R is confluent on ground terms and that the
reduction strategy is defined only on ground goals.

The strategies defined here depend on redex positions,
but neither attach priorities to the elements of R nor
take into account the history of reduction sequences.
They only consider the actual goal when determining the
next reduction step. An important ‘computation rule’
which uses information about previous reduction steps is
basic reduction (cf. Hullot,’> Section 4).}> The corre-
sponding restriction of RED transforms only those
reduction redices (d,t) where t is not a subterm of the
term substituted for some variable occurring in the right-
hand side of the axiom which caused the preceding
reduction step. Consequently, each goal y in a reduction
sequence must be associated with the location in y of the
respective right-hand side. Provided that , is well-
founded, basic reduction is complete with respect to goal
reduction: A goal admits a successful basic R-reduction
if it admits any successful R-reduction (cf. Padawitz,
Lemma 7.10.2).28

6. NARROWING

Goal reduction is a calculus for proving goals, narrowing
adds the possibility of substituting for variables and thus
extends goal reduction to a calculus for solving goals.
The purpose of instantiating a goal y is to complete a
reduction redex only a prefix of which occurs in p. The
substitution must be normal (cf. Section 3) so that the
prefix cannot be a empty. It must contain at least the
leftmost function symbol of the left-hand side of an
equation applicable to y. Otherwise every reduction
redex could be generated, just by replacing a variable of
y with the left-hand side of an arbitrary equation. Of
course, the restriction to normal substitutions entails
that we obtain only normal solutions of the initial goal.
Under the assumption that all objects defined by the
specification have normal form representations this is
not really a restriction because then the set of normal
solutions covers the set of all solutions.

Definition. A substitution fis an 4X-solution of a goal
y if y[f] is an AX-theorem (cf. Section 2). W

In consequence of the fact that narrowing extends goal
reduction, the completeness of narrowing with respect to
AX-solutions can be guaranteed only if AX is RAX-
Church-Rosser.

A narrowing step transforms a pair {y,f) consisting of
a goal y and a substitution f into a pair of the form
<y .f[g]) wheref[g]denotes the instance of fby g,i.e.for all
variables x, f[g](x) is defined as f(x)[g] (cf. Section 1).
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Instances give rise to the subsumption relation: A term
(or substitution) t subsumes a term t’ if t’ = t[g] for some
g. Up to a renaming of variables, the subsumption
relation is a partial order. Given a term t, the least
elements in the set of unifiers of t (cf. Section 1) are called
most general unifiers of t.

We assume that the variables of a goal subjected to a
narrowing step belong to a set GV of variables, which do
not occur in axioms. If a narrowing step brings axiom
variables into a goal, they must be renamed before the
derivation continues. g/GV denotes the functional
restriction of g to GV. id is the identity on X.

Definition. Given a set R of conditional equations, the
narrowing calculus w.r.t. R consists of two derivation
rules:

(NAR) For all goals ¢, xesingle(d), te T(SIG)-X,
u=u'<J€eR, substitutions f and most
general unifiers g of t and u,
<oft/x], £5 = <o’ /x] [g] U Ig], f[glGV]).
(SUC-N) For all unconditional R-normal BAX-

theorems of the form y[g], <y, ) =<, f[g]>.

Let = y denote the corresponding inference relation.
Derivations via b _y are called R-narrowing expansions.
A substitution f is an R-narrowing solution of a goal y if
Pidd e (S, W

Theorem 6.1. (Padawitz, Theorem 8.2.7).2* Suppose
that AX is RAX-Church—Rosser. Let y be a goal and f be
a RAX-normal substitution such that y[f] is RAX-
normalisable. Then f is an AX-solution of y iff y has a
RAX-narrowing solution, which subsumes f. W

For ground substitutions, it is sufficient to assume that
AX is ground RAX-Church-Rosser (cf. Section 4). The
ground RAX-Church-Rosser property of AX implies
that, given a ground term t, all RAX-normal forms,
which are AX-equivalent to t, are BAX-equivalent (cf.
Proposition 4.1). The set NF(t) of these normal forms
can be computed by narrowing: Theorem 6.1 implies that
the elements of NF(t) are subsumed by RAX-narrowing
solutions of the equation t = x (with x being a variable),
and, conversely, every RAX-narrowing solution of t = x
belongs to NF(t).

In Section 4, we mentioned the method of inductive
completion for proving inductive theorems (cf. Section
2). A drawback of this method is the fact that the
theorem to be proved, say e, must be considered as a
rewrite axiom (cf. Theorem 4.2). If, on the other hand,
narrowing is used for inductive proofs, the RAX-
Church-Rosser property is yet crucial, but e is not
submitted to Church—Rosser criteria. (For comparisons
of inductive completion with other inductive proof
methods, see Garland and Guttag!® and Padawitz?* )

Let us only consider the unconditional case, i.c., € is an
atom. (The generalisation to conditional theorems is still
under way; cf., e.g. Padawitz®*). We may have several
atoms which can only be proved simultaneously. So the
question is whether a goal, say y, is an inductive theorem.
The following is an immediate consequence of Theorem
6.1:

Corollary 6.2. Suppose that AX is ground RAX-
Church-Rosser and RAX is ground normalising. A goal
y is an inductive AX-theorem iff every ground RAX-
normal substitution is subsumed by some RAX-nar-
rowing solution of y. W

Well, but Corollary 6.2 does not provide an effective
proof method. In many cases, one will not obtain a finite
set of narrowing solutions that covers all ground normal
substitutions. As a first improvement of the method, one
may finish the derivation process as soon as a ground
complete set of goal-substitution pairs has been ac-
complished.

Definition. A set GS of goal-substitution pairs is
ground complete if for all ground substitutions f there are
<0,8)>€GS and an AX-solution h of § such that g[h] is
AX-equivalent to f. W

Corollary 6.3. Suppose that AX is ground RAX-
Church-Rosser and RAX is ground normalising. A goal
y is an inductive AX-theorem if and only if there is a set
of RAX-narrowing expansions

P>1d) Frax n <0158,
{7,id) Frax x -

such that {<J,, 8,),{J,, 85, ...} is ground complete. W

The next difficulty comes up when lemmas must be
applied to prove an inductive theorem. This difficulty can
be addressed differently. One may generalise Corollary
6.2 by taking into account that the inductive theory
operator is idempotent, i.e. given a set L of inductive
AX-theorems, a clause e is an inductive AX-theorem iff
e is an inductive (AX U L)-theorem (cf. Padawitz,
Corollary 2.3).%

Corollary 6.4. Suppose that L is a set of inductive AX-
theorems, AX is ground (RAX U L)-Church—Rosser and
RAX UL is ground normalising. A goal y is an inductive
AX-theorem iff every ground (RAX U L)-normal sub-
stitution is subsumed by some (RAX U L)-narrowing
solution of y. W

However, this is a bad solution because it enforces the
treatment of lemmas as rewrite axioms: the conditions
on RAX become conditions on RAX U L. In fact, sticking
to Corollary 6.4 goes into the direction of inductive
completion. An alternative solution is to keep the lemmas
away from the Church-Rosser property by using
resolution and paramodulation for the application of
lemmas and reserving narrowing for the application of
axioms. Paramodulation generalises narrowing in that it
allows applying conditional equations not only from left
to right, but also from right to left:

(PAR) For all goals d, xesingle(d), teT(SIG)-X,
u=u'<3§ (or v =u<«=9J)eL, substitutions f
and most general unifiers g of t and u,
<oft/x], £5 = <o[u’/x][g] U 9[g], f[g|GVI)

Resolution is provided for applying lemmas which are
not conditional equations;

(RES) For all goals y, atoms p, q <= €L, substitutions
f and most general unifiers g of p and q,

<y Uiph £ F gl v el felGVDD.

Let 4, denote the inference relation generated by
NAR, SUC-N, PAR and RES. (R are axioms, L
lemmas.) Derivations via ., are called R-L
narrowing expansions.

Corollary 6.5. Suppose that L is a set of inductive AX-
theorems, AX is ground RAX-Church-Rosser and RAX
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is ground normalising. A goal y is an inductive AX-
theorem iff there is a set of RAX-L narrowing expansions

$7,1d) Frax1n <0y, 8,0
{7,1d) Fgax 1x 0, g

such that {{(d,, g,>, {(J,,8,), ...} is ground complete. W

Corollary 6.5 is not sufficient either. It is of practical
use only if one gets by with finitely many expansions to
obtain a ground complete set of goal-substitution pairs.
If y is a “proper’ inductive theorem, however, applying
induction hypotheses is necessary to get a finite proof.
Induction hypotheses of y can be treated like lemmas, i.e.
by resolution and paramodulation, but here we resolve
or paramodulate on y itself! When applying y a subgoal
of the form {t> t’} is generated, expressing that the
actual instance of y (representing the induction hy-
pothesis) is ‘smaller’ than the instance of y we are going
to prove. So the specification must include a predicate
>, defined as a well-founded relation on those ground
terms which can be substituted for variables of y.
Assumed that these variables are given by the sequence z,
7’ is a copy of z and y’ = y[z'/x], the rules for applying
induction hypotheses are as follows.

(PAR-IN) For all goals d, xesingle(d), te T(SIG)-X,
u=u (or u =u)ey’, substitutions f and
most general unifiers g of t and u, {J[t/x], )
= (ou'/x](g] v {fz > 27}, f[g| G V]).

For all goals y, atoms p, q€y’, substitutions
f and most general unifiers g of p and q,

<y uiph D = lgluifz > 273, f[g|GV]D.

Let - ., x denote the inference relation generated by
NAR, SUC-N, PAR, RES, PAR-IN and RES-IN. (R
are axioms, L lemmas, y induction hypotheses.) Deriv-
ations via b ; . are called R-L-y-narrowing expansions.

Only this calculus includes enough rules to offer
reasonable chances for the termination of inductive
proofs based on narrowing.

Corollary 6.6. Suppose that L is a set of inductive AX-
theorems, AX is ground RAX-Church-Rosser and RAX
is ground normalising. A goal y is an inductive AX-
theorem iff there is a set of RAX-L-y-narrowing
expansions

(RES-IN)

{y,id) }_RAX»L—y—N 8 g
{y,id) I—RAX»L—;'—N -

such that {<d,,8,>,<J,,8,>, ...} is ground complete. W
The proofs of Corollaries 6.5 and 6.6 have not yet been
worked in detail. But we conjecture that they go
analogously to the proof of Padawitz,? Theorem 4.7,
which states a similar result for resolution and para-
modulation (upon axioms) instead of narrowing.

7. NARROWING STRATEGIES

Extending a reduction strategy S (cf. Section 6) to a
narrowing strategy requires that the redex selection of S
be uniform in the sense that, given a goal y, the selected
redex location is the same for all instances of y by R-
normal substitutions.

Definition. Given a conditional equatione = u = u’ <= 9,
te T(SIG)-X and a unifier of t and u, the position (4, t)

is called a narrowing redex of the goal d[t/x,] induced by
e. Given a set R of conditional equations, a position (J, t)
is an R-narrowing redex if it is induced by some ecR.
A function S from the set of goals to the set of
positions is an R-narrowing strategy if for all goals y,

e S(y) is a position of y,

e S(y) is an R-narrowing redex of y whenever y has an
R-narrowing redex,

e redex selection is uniform, i.e. for all R-normal
substitutions f, S(y[f]) = S(y)[f], whenever S(y) is an
R-narrowing redex. W

The restriction of NAR to applications controlled by
S reads as follows:

(NAR-S) For all goals y, u=u"<3%€R and sub-
stitutions f such that for some d, t, S(y) = (4, t)
and f is a unifier of t and u, {y,t)H

<ou’/x,][g] U HelGV]).

Let Iy ¢y denote the inference relation by NAR-S
and SUC-N. A substitution f is an S-controlled R-
narrowing solution of a goal y if (y,id) 4 ¢ (T, f>. N

When combining Theorems 5.1 and 6.1 one obtains

Theorem 7.1. (Padawitz, Theorem 8.3.5).22 Suppose
that AX is RAX-Church-Rosser, RAX is confluent
modulo BAX and BAX respects RAX-normal forms.
Let S be a RAX-reduction and -narrowing strategy such
that 3, 5 (cf. Section 5) is well-founded. Let y be a goal
and f be a RAX-normal substitution such that y[f] is
RAX-normalisable. Then f is an AX-solution of y iff y
has an S-controlled RAX-narrowing solution, which
subsumes f. W

Again, for ground substitutions f, all assumptions are
only needed for ground terms (goals).

Note that the well-foundedness of 5 ¢ does not imply
that R is normalising. But if R is normalising, the
assumptions ‘R is confluent modulo BAX’ and ‘BAX
respects R-normal forms’ can be dropped because they
follow from the Church-Rosser property of AX.

The uniformity of redex selection is crucial for the
completeness of a narrowing strategy. A local criterion
for this property is the following: For all atoms p, goals
7, substitutions f and ground R-normal substitutions g
such that S(p) = (q, t) is an R-narrowing redex of p,

e S(yU{p}) = (y u{qht),

e S(p[f]) = (q',t") implies that x, occurs ‘at the same
place’ in q and ¢’,

e there is an instance of the form t[g] = u< 3 of some
eeR.

The third condition entails a certain functional com-
pleteness of R: If (q,t) is an R-narrowing redex, i.e., if for
some g there is an instance t[g] = u< 9 of some eeR,
then such an instance is required for every (ground R-
normal) substitution g. Syntactical criteria can be found
in Echahed,” Section 3 and Padawitz,?® Section 8.4.
Basic narrowing generalizes basic reduction (cf. Section
5) to narrowing. It confines narrowing steps to those
redices (J,t) where t is not a subterm of the term
substituted for some variable occurring in the right-hand
side of the axiom which caused the preceding narrowing
step. Consequently, each goal-substitution pair in a
narrowing sequence must be associated with the location
in y of the respective right-hand side. Provided that
is well-founded, basic narrowing is complete with respect
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to narrowing: Each R-normal R-narrowing solution of a
goal y is subsumed by a basic R-narrowing solution of 7,
L.e. a solution obtained by a basic R-narrowing expansion
(cf. Padawitz,*® Theorem 8.6.5).

A further specialisation of narrowing comes up when
narrowing steps are followed by term reductions ac-
cording to a predefined R-reduction mapping RM : T(SIG)
- T(SIG). RM may assign to a term its R-normal form
if it exists, or an AX-equivalent base term. The only
requirement to RM is that it maps each term t to a reduct
of t, i.e. t—>zRM(t).

A narrowing step and the application of RM to the
resulting goal is combined into a single rule:

(NAR-RM) For all goals 4, x e single(d), te T(SIG)-X,
u =u’ <= 3R, substitutions f and most
general unifiers g of t and u, {d[t/x], > -
C(RM(d[u’/x][g] U 9g]), flgIGV]).

Let ¢ rym.y denote the inference relation generated
by NAR-RM and SUC-N. A substitution f is an RM-
reduced R-narrowing solution of a goal y if (y,id)
FR-RM—N(@’ f>

Theorem 7.2. (Padawitz,* theorem 8.7.3). given a set
R of conditional equations such that R is confluent
modulo BAX, BAX respects R-normal forms and + is
well-founded. Let RM be an R-reduction mapping. An
R-normal substitution f is an R-narrowing solution of a
goal y iff f is an RM-reduced R-narrowing solution
ofy. B

If R is confluent modulo the empty set of axioms, the
assumption ‘BAX respects R-normal forms’ can be
dropped.

S-controlled, basic and RM-reduced narrowing are in
fact specialisations of the narrowing calculus. A rather
different approach is pursued by optimised narrowing,
which transforms a goal-substitution pair according to
an optimising function before subjecting it to a narrowing
step. Optimising functions need not be combinations of
narrowing steps. Moreover, these functions may take
into account not only the actual goal-substitution pair,
but also its predecessors and sometimes even other
narrowing expansions with the same initial goal-sub-
stitution pair. An optimising function may also cut off
expansions which will fail eventually. So, given that GS
denotes the set of goal-substitution pairs, an optimising
function is a family Op = {Op(M)|M < GS} of partial
functions on GS. The corresponding narrowing expans-
ions are best imagined as paths of an optimised narrowing
tree that is given by a partial function OpT:N* -GS,
satisfying the following properties:

o OpT(e) = {y,id) for some y. (At the root we start with
the identity substitution.)

e Foralli;neN, we N<" OpT(wi) is undefined or there
is an application of NAR leading from OpT(w) to
some {4,f) such that OpT(wi) = Op(M) (4,f) for some
M c OpT(N<"). (The optimisation of a goal-sub-
stitution pair at level n+1 takes into account only
those goal-substitution pairs that were obtained up to
level n.)

The correctness and completeness of optimised
narrowing (with respect to AX-solutions) depends on
local properties of the optimising function, which ensure
that neither pure narrowing solutions are lost nor invalid

solutions are generated by inserting optimisation steps.
(See Padawitz,*® Section 8.9, for the details.)

The optimising functions which can be found in
narrowing implementations like HuBmann,'* Rety
et al.* and Fribourg® are built up from elementary
transformations like goal subsumption, subsumption of
solutions, expansion of variables, construction of sub-
stitutions, splitting, absorption and clash of equations and
the rejection of non-narrowable goals. Under certain
conditions on the specification these optimising functions
fulfil the local correctness conditions and, provided that
AX is RAX-Church-Rosser, each RAX-normal AX-
solution occurs in a corresponding optimised narrowing
tree (cf. Padawitz, Theorem 8.9.3 and Section 8.10).23

8. LAZY NARROWING

O
The elementary optimisations ‘variable expansion’ and2
‘equation splitting’ are in fact rules for lazy resolutionZ
(cf. Padawitz, Section 5.5).% The attribute ‘lazy’ indicates:%’
that an occurrence in the actual goal of the leftmost=
symbol of an axiom is already sufficient for applying thisg
axiom to the goal. A lazy inference rule demands the full>
redex by creating an appropriate subgoal. The idea stems%
from Reddy.?® The lazy narrowing calculus given below =
combines lazy paramodulation as it appears in Gallier &g
Snyder'* and Holldobler'® with the outer narrowing of e
You.?® The rules are tailored to equational goals where
the right-hand sides are base terms. Moreover, baseg
equations are not allowed and R is supposed to beg
innermost and ground term reducing. 3
Definition. A set R of conditional equations is ground%
term reducing if all ground R-normal terms are base=S
terms. A term t is innermost if its leftmost symbol is not &
a base symbol and all other symbols of t are base S
symbols. R is innermost if for all t=t'«<3€R, t is
innermost, var(t’) U var(3) cvar(t) and forallu=u'e 9, =
u’ is a base term. W
Definition. Given a set R of conditional equations, the
lazy narrowing calculus w.r.t. R consists of SUC-N (cf.
Section 6.1) and three further derivation rules:

w

(L-NAR) For all goals y, functions F, equations of the
form Ft = u and Fu’ = t' < 3€eR,
(yU{Ft=u},f)

Fu{t=u,t  =uu 3, H.

¥202 Iudy 01 uo1senb Aq 9,08Zv/2Y,

(SPLIT)  For all goals y, functions F and equations of
the form Ft = Fu,
YU{Ft=Ful, )= u{t=ul, .

(BASE)  For all goals y, base functions F, xe X and

equations of the form Ft = x,
yU{Ft=x}1)

F<(r U {t = z}) [Fz/x],f[Fz/x])
where z is a sequence of variables not
occurring in y U {Ft = x}.

Let - .y denote the corresponding inference relation.

Derivations via t, . are called lazy R-narrowing
expansions. A substitution fis a lazy R-narrowing solution
Of a goa] y lf <)” ld> |_R-LN<®’ f> .

A more general lazy narrowing rule was proposed by
Martelli et al.** where F need not be the leftmost symbol
of the actual goal:

(MMR) For all goals y, functions F, equations of the
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form v[Ft/x] = u and Fu’ =t’ <= 9€R,
<y U{v[Ft/x] = u}, )
Fyuf{t=u, vt /x] =uju $, .

L-NAR only admits the case v = x. By admitting proper
subterms of the goal as redices,?? is somewhat closer to
NAR than L-NAR. However,? may lead to more
(eventually failing) expansions than L-NAR because it is
applicable to each goal that anywhere contains the
leftmost symbol of an axiom.

The following completeness result for lazy narrowing
is a special case of Padawitz, Theorem 8.11.6.23

Theorem 8.1. Suppose that AX is RAX-
Church-Rosser, BAX does not contain conditional
equations, RAX is innermost, ground term reducing and
confluent on ground terms (cf. Section 3) and b, is
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