the empirical results obtained, namely an
O(N4) average-case bound for Shellsort using
any almost geometric increment sequence for
which consecutive increments are relatively
prime. Any technique used in this proof would
probably also work for Sedgewick’s increment
sequence. Indeed, we conjecture that for O(log
N) increment sequences, a ®@(N*) worst-case
running time translates into a @(N**1/2)
average-case running time. This result has
been proven for poor increment sequences,
where consecutive increments are divisible (k
= 2), and seems to apply for the increments in
Sections 3 (k = 2) and 4(k = 3). If this were the
case, then combined with the likely (though
unproven) lower bound on Q(N1*¢/Vv 16¥) for
the worst-case running time of Shellsort!®
(with O(log N) increments), we would get an
Q(N1*e/v1eNy Jower bound for the average-
case running time of Shellsort.

Another important question concerns the fits
themselves. Although they are very accurate
in general, for values of N near an increment,
the fits are all consistently underestimates, and
for values of N halfway between increments,
our fits are all consistently overestimates.
Indeed, the error in the fit seems to be a fairly
smooth curve that oscillates from positive to
negative and depends on distance of N from
the nearest increment. We have thus far been
unable to determine the form of this error.

Finally, and probably most importantly,
our results suggest a direct link between the
theoretical bounds obtained in Refs 7 and 17
and suggest that some new increment sequence
might exist which would make Shellsort run
in, say, O(N§) expected time, and also give a
practical improvement. Such an improvement
in Shellsort could make it even faster than
quicksort.

SHORT NOTE

Acknowledgements

The author would like to thank Paulette
Johnson and Sam Shapiro for their assistance
in fitting the data. I also thank Bob Sedgewick
for comments on an early draft of this paper.
This work was supported by an FIU Foun-
dation Summer Research Grant.

M. A. WEISS

School of Computer Science, Florida Inter-
national University, University Park, Miami,
FL 33199, USA

References

1. A. Aho, J. Hopcroft and J. D. Ullman.
Data Structures and Algorithms. Addison-
Wesley, Reading, MA (1983).

2. J. Bentley, Programming pearls. Com-
munications of the ACM 30 (9), 754-757
(1987).

3. J. Esakow and T. Weiss, Data Structures
— An Advanced Approach Using C. Pren-
tice Hall, Englewood Cliffs, NJ (1989).

4. G. Gonnet, Handbook of Algorithms and
Data Structures. Addison-Wesley, Read-
ing, MA (1984).

5. P. Helman and R. Veroff, Walls and Mir-
rors — Intermediate Problem Solving and
Data Structures. Benjamin-Cummings,
Menlo Park, CA (1988).

6. E. Horowitz and S. Sahni, Fundamentals
of Data Structures. Computer Science
Press, Rockville, MD (1977).

7. J. Incerpi and R. Sedgewick, Improved
upper bounds on Shellson. Journal of
Computer and System Sciences, 31 (2)
210-224, (1985).

8. D. E. Knuth, The Art of Computer Pro-
gramming. Volume 3: Sorting and Search-
ing. Addison-Wesley, Reading, MA
(1973).

9. K. Melhorn, Data Structures and Algo-
rithms 1: Sorting and Searching. Springer.
New York (1984).

10. V. Pratt, Shellsort and Sorting Networks.
Garland Publishing, New York (1979).
(Originally presented as the author’s Ph.D.
thesis, Stanford University, 1971).

11. R. Sedgewick, A new upper bound for
Shellsort. Journal of Algorithms 2 159-
173, (1986).

12. R. Sedgewick, Algorithms.
Wesley, Reading, MA (1988).

13. D. L. Shell, A high-speed sorting pro-
cedure. Communications of the ACM 2 (7)
30-32, (1959).

14. B. Singh and T. L. Naps, Introduction to
Data Structures. West Publishing Co, St
Paul, MN (1985).

15. H. F. Smith, Data Structures — Form and
Function. Harcourt Brace Jovanovich,
New York (1987).

16. D. Stubbs and N. Webre, Data Structures
with Abstract Data Types and Pascal.
Brooks/Cole, Monterey, CA (1989).

17. M. A. Weiss and R. Sedgewick, More on
Shellsort Increment Sequences, Infor-
mation Processing Letters 34 267-270
(1990).

18. M. A. Weiss and R. Sedgewick, Journal
of Algorithms 11 242-251 (1990).

19. UNIX Programmers Manual.

Addison-

Announcements

8-12 APRIL 1991

Fourth International Joint Conference on the
Theory and Practice of Software
Development, Brighton

TAPSOFT °’91-the Fourth International
Joint Conference on the Theory and Practice
of Software Development — will be held in
Brighton, UK, 8-12 April 1991.

TAPSOFT 91 will include colloquia on
‘Trees in Algebra and Programming (CAAP)’
and on ‘Combining Paradigms for Software
Development’, a number of keynote talks
from invited speakers and a programme of
tutorials on topics of interest to those attend-
ing the advanced seminars.

Colloquium on Trees in Algebra and
Programming (CAAP)

The following topics will be included:
o Logical, algebraic and combinatorial pro-
perties of discrete structures (strings, trees,

graphs, etc.) including the theory of formal
languages, considered in the broad sense as
that of sets of discrete structures, and the
theory of rewriting systems over these
objects.

@ Application of discrete structures in Com-
puter Science: syntax and semantics of
programming languages, operational sem-
antics, logic programming, algorithms and
data structures, structures, complexity of
algorithms and implementation aspects,
proof techniques for non-numerical algo-
rithms, formal specifications, visualisation
of trees and graphs, etc.

Colloquium on Combining Paradigms for
Software Development

A major feature of research in software
engineering over the past few years has been
the trend towards unification and synthesis,
combining theory and practice and merging
hitherto diverse approaches.

Examples include:

@ Types, objects and databases, using ideas
and techniques from type checking and
type inference as developed in program-
ming language semantics.

@ Abstract interpretation and other semantics-
based techniques for the compile-time
analysis of programs, combining theor-
etical work on semantics with practical
issues in language implementation.

® Specification of systems from multiple
points of view, perhaps combining different
formalisms, to provide a more effective
basis for software development.

©® Applying process analysis and description
techniques to study software development
itself as a formal object of enquiry.

For further information contact:

TAPSOFT 91 Secretariat, PPL Conference
Services, 2 Savoy Hill, London WC2R 0BP,
UK. Tel: 071-240-1871, ext. 222. Telex:
261176 IEELDN G. Fax: 071-497 3633.

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 91

¥202 Iudy G0 uo 1senb Aq G518z /1 6/1/vE/e10me/|ulwoo/wod dno-olwsapede//:sdiy wolj papeojumoq

