Integrating Human Computer Interaction with

Jackson System Development

A.G.SUTCLIFFE* anD I. WANGH

* Department of Business Computing, City University, Northampton Square, London EC1V OHB

+ BIS Banking Systems

Procedures for integrating task analysis and design of the human computer interface with a structured system
development method, Jackson System Development (JSD), are described. Process Structure Diagrams, the major
modelling notation of JSD, were used to specify tasks which were analysed to predict cognitive complexity. Task
complexity analysis helped allocation and design of human tasks to produce task support specifications. The cognitive
dimension of task analysis highlighted the need for task support actions, especially design of information displays to

support working memory.

Dialogue specification for dialogues and interface displays were based on the task analysis and information
requirements. Further analyses addressed the timing constraints on human and computer actions, and derivation of
display requirements from task-related information needs. Preliminary evaluation of the method showed the method

proved easy to learn even for non HCI specialists.

Received October 1990

1. INTRODUCTION

Human Computer Interaction (HCI) is acknowledged to
be an essential component software development!® yet
the practice of HCI in software engineering is minimal.? 4
One reason for the poor spread of the HCI principles and
practice is lack of integration between HCI research and
practice with methods in software engineering.

Many HCI specification and design methods have
been proposed'®!*!® but these have paid little or no
attention to system development methods (see Wilson et
al.*). Likewise, authors of system development methods
have not considered design of the human computer
interface, as can be seen in the study of method concepts
by Olle et al.** More recently integration of HCI and
software engineering methods has been recognised as a
necessary goal.?® It is the contention of this paper that
practice of good human computer interface design will
only result from integration of HCI principles and
procedures within existing system design methods. By
using the notations and tools familiar to software
engineers, the HCI community may influence the creators
of human computer interface software by supplementing
their methods with good HCI practice.

It is beyond the scope of this paper to propose a
complete methodology of HCI design, consequently only
two topics will be considered : task analysis and dialogue
specification. Experiences in adapting a commonly
practiced structured system development method, Jack-
son System Development,!®?® for task analysis and
dialogue design are reported. Brief details of JSD are
presented before extensions to the method for HCI
specification are described. Use of the method is
illustrated with a banking application.

2. JACKSON SYSTEM DEVELOPMENT
AND ITS MODELLING NOTATIONS

JSD is an entity life-history oriented method which
makes it appealing for HCI specification since tasks and
user-system dialogues can be modelled as event sequences

which happen to objects. One objective of this study was
to use JSD, or more specifically its notations, for the
purposes of HCI specification whenever possible. JSD
makes extensive use of structure diagrams for process
specification. These diagrams describe event sequences in
terms of three control primitives: sequence, selection and
iteration; thereby expressing a process structure which
becomes the template for a program design.

JSD attaches considerable importance to time ordering
in specifications. JSD starts by describing entities which
are modelled as a life history of events. Fig. 1 illustrates
a life history of a foreign exchange transaction from its

Deal
Register Deal-body
Process [1
0 . 0
structure Approve Reject
hierarchy
Deal-life End-life
i oht O 0 o] 0|
Outright Option Mature Cancel
deal
¥l | Amend Part
Amend || oty || tife
1 | Partial
Change take-up
v
>

Life history sequence

Figure 1. Process structure diagram: deal entity.

132 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

¥20z Iudy 01 uo 1senb Aq G82£ZG/ZE L/Z/vE/eIPme/|ufwoo/wod dnosolwepeoe//:sdiy wolj papeojumoq

HUMAN COMPUTER INTERACTION AND JACKSON SYSTEMS DEVELOPMENT

inception through to maturity. The process structure
diagram shows a series of actions which happen to the
Deal entity in a time order starting with Register and
ending with either Mature, Reject or Cancel. The second
main JSD notation is the System Specification Diagram
(SSD). JSD describes systems as an asynchronous
network of concurrent processes. All significant events to
which the system must respond are modelled with
datastreams. Another communication construct, the
State Vector, is provided to model access to a process’s
data by another, inspecting process. JSD advises that the
system specifications should be built by first modelling
the entities and then adding function processes for
system functionality such as input validation, algorithms
and report/output generation.

2.1. Approach

The intention was to design user-system dialogues and
information displays to support user’s tasks and to take
into account the limitations of human information
processing. The prime motivations were to explicitly link
analysis of users’ tasks to design of the human computer
interface; to introduce cognitive analysis of user-system
interaction into the design process; and to produce a
method for defining interface displays. Display design, in
particular, has been ignored by both HCI and SE
methods. Other concerns, which indicated the need for
analytic techniques, were specification of timing con-
straints on interactions and design to accommodate
human cognitive limitations, such as working memory.

The approach taken was to establish the specification
components for user-system interaction which an inte-
grated HCI-SE conceptual model would have to capture,

The HCI literature was then reviewed by appropriate
techniques and procedures advised by HCI methods.
Then JSD and its notations were investigated for the
purposes of HCI specification.

3. TASK ANALYSIS

The objectives of task analysis are open to many
interpretations (see Bailey,! Wilson et al.?® for a review).
Two common themes are specification of functionality
and analysis of cognitive complexity.'® Tasks in HCI are
a description of goal-related human activity. Task
analysis describes human activity as procedures com-
posed of actions and has similarities with functional
decomposition espoused by structured systems analysis
methods.® However, task analysis has the additional
objectives of analysing human performance and the
knowledge necessary to carry out an activity. Cognitive
complexity evaluates tasks from the perspective of human
psychology. By attempting to specify how mentally
difficult a task will be, the difficulties in learning a task
can be anticipated.

It was not the intention to create a sophisticated
cognitive task analysis,? since the aim was to create a
simple, easy to use method of immediate practical benefit
for systems analysts.

JSD notation was used to describe tasks in terms of
sequences of actions. Process structure diagrams (PSDs)
provided a suitable means for task specification because
actions are modelled in an event sequence which can map
to task steps or components of user-system conversations.
As PSDs were selected to represent tasks, the investi-
gation continued to see what other aspects of HCI
specification could be added to this notation.

Make-deal
Decide Gather Poss
deal-type info Evaluate try broker Compare
*
Buy °|| sen ° Phone — 91 Phone® ng(rjr;p
0 Quote® Good © Bad © Poss Check
Busy body quote quote look-up body
: ! List FindO _ © Comp*
Calculate Select risks risks
Econ Politics 0 0
Good©| | Bad © risks bdy| | risk bdy Abandon| | Accept
quote quote I [I
L Find*| |Find * Confirm
List risks polit-risk| body
[. 1
Agree Poss Record
edit
Edit T| | Addto Sum
posn ccy

Figure 2. Initial task description: make deal.

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

A.G.SUTCLIFFE AND L. WANG

3.1 Task analysis

The scope of investigation in systems analysis is inevitably
influenced by the potential for automation. Human
activity, such as negotiating a selling price for a deal over
the phone, is usually considered to be outside the
Software Engineering (SE) conceptual model. However,
a complete task analysis should consider specification of
human as well as computer activity and no pre-emptive
decisions should be taken about allocation of activities to
people or computers. Hence the first change brought
about by the addition of HCI is to widen the scope of the
system investigation.

The identity of some tasks is implicit within the
event/actions in JSD entity model, for instance Register,
Cancel and Mature a Deal (see Fig. 1). However, JSD
event/actions in the entity model do not describe
procedures, consequently the human activity necessary

Application
domain and
user requs

Task
analysis

Initial
task
descriptions

Task
complexity
analysis

User manual Allocate

Functions

to carry out the task which result in a life-history event
(e.g. Register on the Deal entity) is described in JSD
function processes. This is consistent with JSD phil-
osophy that entity and functional modelling should be
separated.

The process structure diagram (PSD) notation easily
accommodates task modelling. Task process structures,
more properly termed ‘interactive functions’ in JSD,
describe human activity as a time ordered sequence of
actions. Judgement has to be exercised when modelling
human activity because JSD states that actions are
conceptually instantaneous, essentially an event. Some
actions, e.g. Evaluate deal, were indeterminate and did
not match the JSD concept. The definition of JSD
actions had to be relaxed to allow inclusion of human
oriented, less determinate actions. As granularity of the
definitions of actions is a matter for the analyst’s
judgement in JSD, this change does not infringe the

JSD
entities

Automated
functions

Fully automated
tasks

op. procedures actions

Joint

tasks

Information
analysis

Task-info
requs

Info disp
support
analysis

Display
requs

HCI
method
steps

human-computer

system
specification

Timing
analysis

Task
timing
constraints

Integrated
Dialogue HCI design
& display
design
Code
JSD method

steps

Figure 3. Summary of steps in JSD-HCI method.

134 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

¥20z Iudy 01 uo 1senb Aq G82€zG/Z€ L/Z/ve eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

HUMAN COMPUTER INTERACTION AND JACKSON SYSTEMS DEVELOPMENT

Make-deal
-Gather Poss
info- :Evaluate try broker Compare

Computer action

Comp
body
Check
body
. 0 Comp ™
Human action risks
& ‘Q
Human—computer Abandon
action

Add to
posn|

Figure 4. Allocation of actions to human or computer for make deal task.

method’s principles. Actions performed by people are
frequently not deterministic because different individuals
do actions in different ways. These actions are unlikely to
be computerised, so the impact of less precise specification
on software quality is minimal. The initial task de-
scription of the Make-Deal task is shown in Fig. 2.

After initial description, tasks were allocated to either
users or the computer system according to well es-
tablished human factors criteria, e.g. algorithmic verses
heuristic reasoning, need for judgement, quantity and
quality of date —see Bailey,! Sutcliffe,?” for further
details. As many tasks involved both human and
computer activity, allocation was performed at the action
level. Each action was assigned as a system or user
action, or a joint cooperating action which required
further elaboration to specify computer support for
human actions. The output from this step was two sets of
PSD diagrams. One set described users’ tasks which were
not to be computerised and the other set describing JSD
functions either fully computerised with no interaction
(fully automated tasks) or interface functions for semi
automated tasks. The steps in the extended method are
illustrated in Fig. 3.

An example of an interface function is shown in Fig.
4. Note that the structure is based on the initial task
description (Fig. 2), and that actions unsuitable for
automation, i.e. Gathering-information, Deciding-deal-
type have been omitted. Although allocation of actions
to people or computers uses general human factors
heuristics, JSD actions can give some guidance. The
actions which conformed well to the JSD concept were
more suitable for computerisation, whereas actions with
less precise boundaries suggested allocation to people.
Other actions were added as a consequence of the
cognitive dimension in task analysis.

3.2. Task complexity analysis

The second addition of JSD was a set of simple metrics
for estimating the potential cognitive problems in user-
system interaction. Following production rule ap-
proaches to complexity,!® task actions were counted and
conditional statements scored for the complexity of their
logic. This gave an overall metric for each PSD diagram,
as illustrated in Table 1 for the Make-Deal task.

Table 1. Calculation of task complexity for the Make Deal
task

Component Average Range
Actions 9 8-10
Simple conditions 5 4-6
Complex conditions 1 —
Overall complexity* 16 14-18

* Complexity = actions + simple conditions + (complex con-
ditions x 2).

Not all actions or conditions would be invoked in each
task execution (e.g. trying the broker was often not
necessary) hence a range of actions and conditions is
given. The metric does not allow for the number of
iterations for an action as this is difficult to estimate. All
the conditions were simple apart from Comparing Risks.

The complexity metric was used for several purposes:
to indicate the need to decompose complex tasks; to
allocate tasks to people matching user skills to task
complexity ; and to provide variety in an individual user’s
work by giving a mixture of tasks at different complexities.
Given the small number of user roles analysed in the case

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 135

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

A.G.SUTCLIFFE AND L. WANG

Make-deal
Decide Gather Poss
deal-type info Evaluate try broker Compare
0| ol |Give * 0| 0 Com
Buy Sell instructs Phone - Phone bodyp
Busy ° Quote®] #[Good 0] [Bad © Poss Check
usy body quote quote look-up body
Find © .0 Comp *
Enter Select risks 4 risks
quote

Good 0f | Bad 0
quote quote

10 secs

© 40

Max 5 minutes

0 o]
Abandon| | Accept

Confirm
bdy
I 1

] [

Record

Edit

©) 4O,

5 seconds

Figure 5. Timing and breakpoints — user task description: make deal.

study (Dealer and Head dealer) it was difficult to take
much initiative in task/work design. However, where
possible, less complex tasks were interspersed with more
complicated ones.

3.3. Timing analysis

PSDs were used to specify the timing constraints
imposed on task operation. This facilitated review of
task descriptions to ensure that people can carry out a
task in the necessary time, and to plan computer response
times that are sufficiently fast for effective operation.
Subsequences of actions were marked with timing
constraints as illustrated on the PSD in Fig. 5, to answer
the question ‘ when must these actions be done’. The task
specifications were examined to determine whether it
would be possible for the human operator to complete
certain actions in specified time. The same diagrams were
also used for computer system response time planning to
ensure the user-system dialogue allowed task to be
completed within the time constraints.

Timing analysis prompted further specification in
several parts of the dealing system. For instance, in the
evaluate deal task entering and selecting quotations had
to be achieved within 10 seconds. It was doubtful
whether this would be possible using a conventional
keyboard for data entry. Consequently voice data entry
and special dedicated function keys were investigated. It
was determined that dealers could reasonably be expected
to perform only 4-5 keystrokes per quotation. The
design solution was to have broker-IDs on dedicated
keys and to require the dealers to enter only the last few
digits of the rate. Rates for foreign-exchange quotations

136 THE COMPUTER JOURNAL, VOL. 34, NO. 2,

usually differ in least significant decimal places, e.g.
£1 = 9.8275 or 9.8281 French francs.

The task-action sequences were analysed for overall
length. Long sequences of actions can cause fatigue, loss
of concentration and stress. It is important to design
natural pauses in tasks to allow users to do a ‘mental
reset’, thereby forestalling loss of attention and fatigue.
Reset points, alias closure events, were planned for long,
continuous task by inserting breakpoints into long
sequences. This analysis was used to plan response times
and screen messaging to encourage closure events in
dialogues. Longer response times (2-4 seconds) are
appropriate for breakpoints, especially at the end of
groups of logically related actions. While the positioning
of breakpoints is based on the analyst’s knowledge of the
task domain, the JSD specification can help as break-
points as indicated at the end of sub tree sequences.

In the Evaluate-Deal task (see Fig. 5) breakpoints
would naturally be suggested at the end of the Evaluate
sub tree. However, the overall timing constraints on the
dealing task meant that longer response times could not
be used. In this case the realities of the dealer’s hectic and
stressful job could not be avoided. Representation of
timing constraints on the main specification document
helped investigation of these issues.

3.4. Information analysis

Whereas task specifications can provide the basis for
design of the user-system dialogue, another starting
point is required for design of interface displays. This
involves analysis of the information requirements necess-
ary for successful operation of a task.

1991

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

HUMAN COMPUTER INTERACTION AND JACKSON SYSTEMS DEVELOPMENT

Specification of the data necessary for actions is part
of the JSD method in which input messages are described
as ‘action attributes’. JSD also recognises status and
descriptive data, belonging to a process, as ‘entity
attributes’. JSD function processes access entity attri-
butes (or state vectors) belonging the entities in the
model sub-system. State Vector accesses are discovered
by asking the question ‘what information is required at
this step in a task?’. The information requirements are
found in the definition of JSD entity attributes for SV
access and in the attributes for each action.

Action attributes contain much redundancy as data
items are often shared between several actions. The
initial action/attribute lists were slimmed down into
information groups by linking logically related data
items (see Table 2). These groups are frequently
associated with an entity or an input transaction.
Standard practices of data analysis, e.g. entity, attribute,
relationship modelling can help here. In the dealing
system the information groupings for the Evaluate-Deal
task were related to entities such as Counterparty, and

Table 2. Task design: information requirements

Number Action Attributes

Action attributes

1. Decide deal Trans type

2 Gather-info Currency type, duration,
amount, trans-type

3. Phone Counterparty-code,
phone number

4. Quote Rate, duration,
curr-type

S. Calculate Rate, duration, amount,
yield

6. Select (broker) Counter-party, yield
Broker ID

7. Find risks Counterparty, Econ risk,
political risk

8. Compare Counterparty, yield,
risks

9. Add sum Currency-type amount,
duration

Main group Sub group

Information display units
1. FX transaction
Currency type
Amount
Duration
Trans-type
2. Counterparty
Counterparty-code
Phone number
3. Option-list
Counterparty-code
Yield
4. Broker-list
Broker-ID
Yield
5. Risks
Political risks
Economic risks
6. Position
Currency amount, duration

Counter-part-reply
Quoted-rate
Duration, yield

the FX transaction. The users were consulted about their
views on display requirements which elicited other
information groupings not directly related to entities or
transactions (e.g. Position, Option-list, Risks — which are
attributes of a counterparty entity). Generally, HCI
advises taking the user’s model of information and
tasks,? %" so the users’ suggestions were incorporated
into the design.

The action sequence was traced to specify which
information groups were required for each action in a
task. The result was recorded in a bar chart format as
illustrated in Fig. 6, to show when and for how long
information should be displayed in relation to the action
sequence actions in a task. Most information groups
were only required by one or two contiguous actions,
hence the display order approximately matched the
action sequence (see Fig. 6). Transaction-related in-
formation was required for nearly every action so this
data was preserved on the screen throughout the task.
The task-information specification was transformed into
display screens, windows and messages, etc. embedded
within a dialogue sequence. Information analysis allowed
the screen display sequence to be planned so that display
elementary operations could be added to the appropriate
PSD actions, and ensuring that the necessary information
was preserved on-screen once it has been displayed.

A further refinement of this analysis was to calculate
the loading on the user’s working memory at each task
step. A general human factors heuristic is that people
should not be required to memorise too many facts
which are necessary for completion of a task.?? It is
necessary to decide how much information has to be
displayed on the screen and how much could possibly be
held in the user’s memory. The JSD concepts of action
and entity attributes can be generalised in this context to
information held in working and long-term memory
respectively. To evaluate memory loading, tasks were
examined to describe the information necessary for
human decision making. Approximate quantification of
memory loading was carried out by recording data items
by size, complexity of data structure and probable
familiarity of the item to the user.

If either the quantity of data exceeded working memory
using the simple, seven plus or minus two metric,’” or
most of the data was expected to be unfamiliar to the
user, then this suggested that users’ memory should be
supported with computerised information displays.
When this metric predicts excessive memory loading,
further consultation with user is indicated to investigate
possible computerised support. While it is impossible to
give accurate quantification of memory loading based on
simple counts of data items;? this approach does allow
quick and simple estimates of possible memory loads to
help design of task support displays.

Memory loading analysis of the Compare step in the
Make-Deal task is illustrated in Table 3. Three groups of
information were required, the FX transaction, counter-
party quotes on the option list and risks. Even assuming
the users were familiar with the data, which reduces the
memory load; the minimum memory loading was 8 units
which exceeded the limit. The loading becomes progress-
ively worse with a longer option list. Furthermore this
may be compounded by the need to hold partial results
in memory (e.g. that the first three counterparties were
bad while considering the next one). Further consultation

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 137

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

A.G.SUTCLIFFE AND 1. WANG

Duration of display during task i
g;g‘ffg;"‘i°" Decide | Gather | Phone | Quote | Calculate [Select | Find-risks | Compare | Add Sum
FX transaction s
Optional
display
Counter-party
Counter-part-reply
Option-list
Broker-list
Risks
Position
Figure 6. Display bar chart.
Table 3. Working memory analysis comparison counterparty quotes are weighed up against
p . quotes a .
the risks. This suggested that this information needed to
Task: Make Deal be placed together and aligned for quick visual scanning.
Action/Decision: Compare risks
M Famil 4. TRANSFORMATION TO DIALOGUE
ax amil-
Info Groups Min units iar? Notes DESIGN
. First, task specifications were elaborated to add actions
FX Transaction necessary for operation of the human computer interface.
Currency type 1 Y Set code JSD specifies the input subsystem with function pro-
gmo?.nt f ? 21 Set d cesses. There are two types of functions called filter
Trl::s l? n " 1 1 v Bit -:e)l,ls processes. Context filters deal with validating event input
. ,yp Y with reference to the life histories of entities; whereas
Opélon :‘m 1 3 v Max 3/li simple filters implement the user interface and other
Y?;;g erparty 36 9.18 N * ax 3/list forms of validation. The task design proposed in this
. study essentially elaborated the simple filter. The task
Rlls)ksl. tical | 3 v S d design represents a model of what the computer should
Egc:nlgfni c 1 3 v Tet codes do to help the user achieve a job of work. Actions to
. control the computer operation have to be added to the
Total units 14 38

* Value of yield may be variable.

t Assumes risks aligned with counter party IDs. Risk code
may not be present for all counterparties.

Notes : Information groups are taken from Table 2. Minimum
working memory requirements assuming only 1 counterparty
on the option list and maximum familiarity with items exceeds
the limit. Information support displays are suggested for all
three groups, with counterparty information aligned to reduce
the need for searching.

with the users confirmed the need for information
support displays. In addition, this analysis also focused
attention on how the information was used, e.g. in the

PSDs. This is effected by modelling the user’s operation
of the interface by asking the question ‘what might the
user want to do at this point in the dialogue?’.

HCI guidelines are used to inform the answer.?* %7 The
PSDs were elaborated to add validation checks on input
and user control actions such as:

Escape — might the user want to exit from this
operation?

Help - information to guide the user at this step.
Undo — go back to a previous state undoing recent
processing, etc. ...

Because much user interaction is uncertain the JSD
design construct of backtracking was used to deal with

138 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

HUMAN COMPUTER INTERACTION AND JACKSON SYSTEMS DEVELOPMENT

Make
deal

Posit)
OK-deal

Enter
instructions

Check
Instruct

! Quit
Invalid input

Enter
quote

|

Validate

! Quit
Escape

Good 9| | Bad °

quote quote quote
! Quit

Invalid in|

! Quit

Escape

Al

Politics

risk bdy

;:;:n;l I Delete | |Conﬁrm|

[0|
Abandon| | Accept

{wﬂww
[
[ca J

Add to Sum
ccy
mpul

posn

! Quit: Invalid input, Escape

Figure 7. Task design: make deal.

run time uncertainty e.g. the indeterminate arrival of
invalid data and escape commands.

The next step was to add display requirements using
the information analysis bar chart (Fig. 6). Display
instructions were included as elementary operations and
assigned to PSD components. For this purpose the PSD
is not ideal because, although it shows when information
is displayed, it does not show for how long it should be
displayed. Display requirements were taken from the
display bar chart and the description of information
groups. Then user support displays were added, following
HCI guidelines.?*?” For example:

* User feedback messages: add messages after input
actions to acknowledge data entry and commands.

* User guidance: add messages before input actions to
inform user of expected actions or options available

* Error messaging: explicit and informative messages
should be added on invalid actions

* User guidance-status information : messages should be
added at the start of task sequences and at the
boundary of sub-tasks to inform the user of any
changes in system status.

In this way PSDs were elaborated into program
specifications by addition of further design detail. An
alternative method of design, or a valuable cross check,
is to diagram the user-system dialogue as a transition
network diagram. The nodes correspond to display states
and arcs match to actions (e.g. transition between states).
The Jackson process structure diagram is formally
equivalent to a state transition diagram even thought it
records events rather than states. Dialogue network (as
state transition) diagrams make tracing of error and
escape pathways easier ; however, they are not so suitable
for display specification, especially if several messages
have to be displayed concurrently over long time periods.

A filter process PSD for the Make-Deal task is
illustrated in Fig. 7. Quit operations allow the user to
escape from an option if it has been entered by mistake.
Other quits trap validation errors and switch control to
the Admit Bad input part of the process. At this stage
specification of the dialogue and display was combined
on one PSD diagram by the addition of elementary
operations for display, data entry, and similar design
details.

Elementary operations for dialogue and display con-
trol have been included on the diagram, although some
have been omitted for sake of brevity and simplicity of
the specification. A particular case in point is the Help
system which has to be available at nearly every step.

(\
Bank of Tokyo
Date 12.09.89
FX Deaking System

Time 12.35 Status FX: ready

Transaction No. 45

Client Code 1C24

Curr STG---->FF AMt 0.5 M 7 days Buy
Option List Yield Risks
1. AMRO 9.90431 4,952,155 7 days
2. CDLY 9.90429 4,952,145 7 days CrLim 1
Enter Option number []
E Escape
H Help
- J

Figure 8. Prototype dealing screen.

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 139

¥20z Iudy 01 uo 1senb Aq G82EZG/2€ L/Z/vE eI/ |ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

A.G.SUTCLIFFE AND I. WANG

This requires pseudo-concurrent specification which,
although possible in JSD notation, is not very tractable.

At this stage two routes are possible. Either the
specification could be coded in a third generation
language using the detailed specification which JSD
produces or the user interface could be prototyped using
4th-generation tools. The latter course was chosen as a
better way of validating the design before expensive final
implementation decisions were made. Prototype displays
were designed for the Make-Deal task as shown in Fig. 8.
The main transaction details are placed at the top and
held there throughout the task. The deal options and
risks are aligned for easy scanning.

This work is still in progress, although preliminary
results suggest that the designs are sound and that most
problems have been anticipated by the JSD-HCI analysis.

5. EVALUATION OF THE JSD-HCI
METHOD

This section reports experience in using the method on
the dealing system application.

The method was easy to use even though it was used
by a developer with no formal HCI training. Task
analysis using the PSD notation worked well and focused
specification on the users’ needs. Task complexity
analysis was useful within the limitation that the length
of tasks varies according to how many actions are
executed in iterations and selections. It proved helpful as
a rough guide when allocating tasks to users. The PSDs
did help planning breakpoints in tasks which were
manifest later in the design of response times.

Information analysis helped specification of interface
displays; although, the memory loading analysis proved
to be problematic. The procedures and guidelines for
calculating memory loading were unsatisfactory because
it was hard to discover users’ familiarity with data items.
Furthermore, the metric is open to criticism because
actual storage of information in working memory is not
a simple matter of units. In hindsight this analysis may
not have paid off in improved quality of design, although
it did focus attention on important HCI issues.

Overall it was estimated that addition of the HCI
components added 20-30% to the specification effort
compared with using JSD alone. It was felt that this
effort was well worth while in creating a better-quality
design.

6. DISCUSSION

Solving the complex human factors issues raised in
systems development requires extensive HF skills train-
ing; however, experiences reported in this study suggest
that improvements in HCI practice can be delivered by
HClI-software engineering method integration. Ideally,
HCI design should be supported by intelligent human
factors CASE tools. Prototype tools incorporating HCI
guidelines have been produced®® but their value has yet
to be proven and the application of guidelines in correct
contexts is known to be difficult.?” Furthermore, these
tools are not integrated with CASE environments, so
industrial practice is doubtful.

A more profitable approach may be expert systems to
support HCI design;* although considerable theoretical
development is required before practical products can be

delivered. In the meantime, HCI-software engineering
method integration is necessary to plug the human
factors expertise gap. It is notable that movements are
being made in this direction both by HCI researchers
who are making methods more relevant to system
development practices”'®3® and authors of commercial
structured system development methods who are be-
ginning to address the issue of integrated HCI-SE
development.'®3°

In spite of these advances, much still needs to be done.
The majority of software engineering methods pay no
attention to the cognitive aspects of designing interfaces
for people. Indeed, most software engineering methods
do not consider user centred issues (see Olle ez al.?* ! for
surveys of method qualities). On the other hand, HCI
methods are driven by a variety of analytic and evaluative
motivations (see a review by Simon??®) and none cover all
the analysis and design issues in systems development.?®
Furthermore their track record of practice is poor.*

Only a few HCI methods have approached the
integration problem. Of these Task Knowledge Struc-
tures (TKS!*) presents a comprehensive task analysis
with procedures for transforming the task knowledge
specification into a software design. At present, TKS
specifies the procedural, structural and planning knowl-
edge about tasks and inter alia systems. The design/
implementation transformations of TKS are oriented
towards knowledge based languages (e.g. frames, Lisp/
LOOPs) which limits its applicability to current com-
mercial practice, i.e. methods such as SSADM and JSD,
and procedural languages.

The USE method of Wasserman®? is closer to standard
software development practices, being based on data
flow diagramming techniques derived from Structured
analysis.® Unfortunately USE delivers little cognitive
input into design of interface software and relies on a
dual approach of data flow diagrams and ‘outside in’
development of dialogues with transition network
diagrams.®® The harmonisation of these techniques and
their relative contribution to a design is not clear.

If integration is to be approached from the software
engineering side, Jackson System Development,' 2¢ has
many attractive qualities. First, the PSD notation of JSD
is particularly suited to the state/event nature of dialogue
design and provides a clear description of tasks. Process
structure diagrams are appealing in providing a consistent
notation for task analysis and dialogue design. With
suitable annotations the same diagram can be used for
several aspects of HCI specification. This has the virtue
of enhancing consistency throughout the specification by
creating a diagrammatic lingua franca. This approach
also links dialogue and display design, creating an
integrated interface specification not found in any
previous HCI or SE method.

JSD has been augmented by a separate method for
HCI specification - ATOM Analysis for Task Object
Modelling.?! This approach still maintains the traditional
separation of HCI-SE specification which may well
militate against its acceptance by software engineers. A
further criticism of ATOM is that it adds little in the way
of a cognitive task analysis. The utility of this method
has yet to be proven. ‘

While specification of dialogues by JSD may not rival
the comprehensivity of languages designed for that
purpose,’* there is evidence that PSDs are a more

140 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

HUMAN COMPUTER INTERACTION AND JACKSON SYSTEMS DEVELOPMENT

tractable notation for software developers than state
transition diagrams and other formal HCI notations in
CLG"® and CCT.* Although the PSD notation is effective
for describing sequences of interaction, specification of
concurrent events is often necessary. JSD can show
concurrency in the SSD notation, but this is not adequate
for specifying synchronisation of dialogue events. This
will be necessary for specification of complex multi-
tasking interfaces in which concurrent events may take
place in two or more windows.

Although software engineering methods can address
task specification and design of interactive software,
there are issues which in their present form, they can not.
First, is cognitive task analysis to ensure design takes
account of the limitations in human information pro-
cessing. The simple approach presented in this study may
be justified in cost/benefit terms ; although more research
is required to establish the trade off between the costs of
more sophisticated cognitive analyses, and the conse-
quent improvements in design quality. Synthesis of HCI
techniques within SE methods may improve usability in
software designs. In requirements engineering and
cognitive analysis, method symbiosis may be more
advantageous.?®

Analysis of human activity, i.e. user characteristics-
task matching, and specification of jobs, all require
addition of HCI methods and techniques to JSD, as

REFERENCES

1. R. W. Bailey, Human Performance Engineering: A Guide
for System Designers. Prentice Hall, Engelwood-Cliffs
(1982).

2. P. Barnard, Cognitive resources and the learning of human
computer dialogues. IBM Hursley Research Centre Report
No. HF 118 (1986).

3. V. Bellotti, Implications of current design practice for the
use of HCI techniques. In People and Computers, vol. 1v,
edited D. M. Jones and R. Winder, pp. 13-34. Cambridge
University Press (1988).

4. V. Bellotti, A framework for assessing applicability of HCI
techniques. In Proceedings INTERACT — 90, edited D.
Diaper, D. Gilmore, G. Cockton and B. Shackel. North
Holland, Amsterdam (1990).

5. P. Checkland, Systems Thinking, Systems Practice. J.
Wiley, London (1981).

6. T. De Marco, Structured Analysis and System Specification.
Yourdon Press, New York. (1978).

7. L. Damodaran, K.Ip and M. Beck, Integrating human
factors principles into structured design methodology: a
case study in the U.K. civil service. In Information
Technology for organisational systems, edited H.J.
Bullinger et al., pp. 235-241. Elsevier (1990).

8. C. Fowler, M. Kirby, L. Macaulay and A. Hutt, User skills
and task match (USTM): a human factors based meth-
odology for determining product requirements. In
Proceedings of the 4th Alvey Conference. Swansea, Wales
(1988).

9. G.J. Hitch, Working memory. In Applying Cognitive
Psychology to User Interface Design, edited B. Christie and
M. Gardiner. J. Wiley, London (1987).

10. M. A. Jackson, System Development.
Englewood Cliffs, NJ (1983).

11. R.J. K. Jacob, A specification language for direct ma-
nipulation user interfaces. ACM Transactions on Graphics
5 (4), 283-317 (1987).

12. P. Johnson, Towards a task model of messaging: an
example of the application of TAKD to user interface

Prentice Hall,

noted by Walsh ez al.*® Methods exist to address these
concerns, for example USTM,® SSM,® and see Sutcliffe2?
for further detail. Inter-method cooperation is a realistic
means of encompassing the range of requirements
elicitation, task analysis and organisational issues,
considering that single methods are usually targeted on a
small number of well defined issues.

The challenge for specialists in Human Computer
Interaction is to deliver practical, useful techniques
which will help software engineers produce more usable
products. It is contended that the approach of incorpor-
ating HCI procedures and practice with structured system
development methods is essential to improve the usability
of software, given the low acceptance of specification and
design methods created within the HCI community.
While the theoretical validity of integrated HCI-SE
methods, and indeed structured methods themselves,
remains to be proven; method synthesis followed by
evaluation in commercial practice is essential to make
progress. Accordingly, the proposals in this study are
being subjected to further tests of industrial practice.

Acknowledgements

The authors are indebted to helpful suggestions on parts
of this work from Paul Walsh, and Keong Lim at the
Ergonomics Unit, University College, London.

design. In People and Computers : Designing the Interface,
edited P. Johnson and S. Cook, pp. 46-62. Cambridge
University Press (1985).

13. H. Johnson and P.Johnson, The development of task
analysis as a design Tool. A method for carrying out task
analysis. Internal Report, Dept of Computer Science,
Queen Mary College, University of London (1987).

14. P. Johnson, H. Johnson, R. Waddington and A. Shouls,
Task related knowledge structures : analysis, modelling and
application. In People and Computers, vol. 1v, edited D. M.
Jones and R. Winder, pp. 35-62. Cambridge, Cambridge
University Press (1988).

15. D. E. Kieras and D. Polson, An approach to the formal
analysis of user complexity. International Journal of Man
Machine Studies 22, 365-395 (1985).

16. Learmont and Burchett Management Systems, LBMS
Structured Systems Development Methodology, Version 3.
LBMS, London (1986).

17. G. A. Miller, The magical number seven, plus or minus
two: some limits on our capacity for processing in-
formation. Psychological Review 63, 81-97 (1956).

18. T.P. Moran, The Command Language Grammar: a
representation for the user interface of interactive computer
systems. International Journal of Man Machine Studies 15,
3-50 (1981).

19. D. G. Morgan, D. N. Shorter and M. Tainsh, Systems
engineering; a strategy for the improved design and
construction of complex IT systems. DTI, London (1988).

20. T. W.Olle, H.G. Sol and A. A. Verrijn-Stewart (eds),
Information Systems Design Methodologies: Improving the
Practice. North Holland, Amsterdam (1986).

21. T. W. Olle, J. Hagelstein, I. G. Macdonald, C. Rolland,
H. G. Sol, F.J. M. Van Assche and A. A. Verrijn-Stuart,
Information Systems Methodologies: A Framework for
Understanding. Addison-Wesley, Reading, MA (1988).

22. B. Christie and M. Gardiner, (Eds), Applying Cognitive
Psychology to User Interface Design. J. Wiley, London
(1987).

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 141

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

23.

24.

25.
26.
27.

28.

29.

30.

A.G.SUTCLIFFE ANDI. WANG

T. Simon, Analysing the scope of cognitive models in
human computer interaction: a trade-off approach. In
People and Computers, vol. iv (HCI — 88), edited D. M.
Jones and R. Winder, pp. 79-96. Cambridge University
Press (1988).

S. Smith and J. N. Mosier, Design Guidelines for User-
System Interface Software. Mitre Corp, Bedford, MA
(1986).

B. Shneiderman, Designing the User Interface. Addison
Wesley, Reading, MA (1987).

A. G. Sutcliffe, Jackson System Development. Prentice Hall,
London (1988).

A. G. Sutcliffe, Human Computer Interface Design. Mac-
millan, London (1988).

A. G. Sutcliffe, Task analysis, systems analysis and design:
symbiosis or synthesis? Interacting with Computers 1, 6-12
(1989).

P. Walsh, M. K. Carver, K. Y. Lim and J. B. Long, An
approach to specifying the user interface using human
computer interaction in conjunction with Jackson System
Development. Ergonomics Unit Report, University Col-
lege, London. To appear in Software Engineering, edited
J.Hemsley. Pergamon Infotech, Oxford (1988).

P. Walsh, K. Y. Lim, J. B. Long and M. K. Carver, Inte-
grating human factors with system development. Ergo-
nomics Unit Report, University College, London. In
Designing End-User Interfaces, edited N. Heaton and M.

31.

32.

33.

34.

35.

36.

P. Walsh, Analysis for Task Object Modelling (ATOM):
towards a method of integrating task analysis with Jackson
System Development for user interface software. In Task
Analysis for Human Computer Interaction, edited D.
Diaper, pp. 186-209. Ellis Horwood (1989).

A. 1. Wasserman, Developing interactive systems with the
user software engineering methodology. In Proceedings
Interact — 84, vol. 1, edited B. Shackel, pp. 471-477. North
Holland, Amsterdam (1984).

A. 1. Wasserman, P. A. Pircher,D. T. Shewmakeand M. L.
Kersten, Developing interactive information system with
the User Software Engineering methodology. In Readings
in Human Computer Interaction: A Multi-disciplinary
Approach,edited R. M. Baecker and W. A.S. Buxton.
Morgan Kaufman, Los Altos, CA (1987).

A. Whitefield, Models in human computer interaction: a
classification with special reference to their uses in design.
In Interact — 87, edited H.-J. Bullinger and B. Shackel, pp.
57-64. North Holland, Amsterdam (1987).

M. D. Wilson, P. J. Barnard and A. Maclean, Task analy-
sis in human computer interaction. IBM Hursley Research
Centre Report No. HF 122 (1986).

P. Pettitt, INTUIT, A knowledge and structured design
approach to user-centred design. In Proceedings of Esprit
Technical Week ’89, pp. 903-914. Kluwer, Dordrecht
(1989).

Sinclair. Pergamon Infotech, Oxford (1988).

Announcement

2—6 SEPTEMBER 1991

Eurographics ’91, Annual Conference of the
European Association for Computer Graphics,
Hofburg, Vienna, Austria

Call for participation

Eurographics '91 is the twelfth annual event of
the Eurographics Association. It is the leading
international computer graphics conference in
Europe, and a vital meeting point for
researchers, practitioners, teachers, vendors
and users. It is a forum for the latest
developments in graphics technology, for case
studies in graphics systems and applications,
and for surveying the state of the art. The
location for this event is Vienna, Austria, the
door to Eastern Europe, whence many
participants and visitors are expected. One
year before the establishment of the Common
European Market this is your great chance to
get an overview of what’s going on in the field
of computer graphics in Europe.

Themes of the conference include: Image
Synthesis and Animation, Scientific Visual-
isation, Graphics Hardware, Modelling, Im-
age Processing,” Human—Computer Interac-
tion and Graphics Standards and their
applications.

Tutorials, 2-3 September 1991

The first two days of the event will be devoted
to the tutorial programme. Tutorials will be
given by leading international experts and will
cover a wide range of topics offering an
excellent opportunity for professional devel-
opment in computer graphics and related
areas.

Technical programme, 4-6 September 1991

Papers have been invited in computer graphics,
which are either research contributions (orig-
inal and recent developments) or practice and
experience papers (case studies in system
development, or applications).

Conference proceedings will be published
by North-Holland, and will be available at the
conference. From the papers selected for
presentation, an international jury will select
the best paper and the author will receive the’
Giinther Enderle Award.

State-of-the-art reports

State-of-the-art reports will be selected by the
International Programme Committee and
published.

Poster presentation

In addition to the lectures, Eurographics ’91
will organise a poster presentation. This offers
the opportunity to display material on boards
in a special area. The poster presentation aims
at publicising work in progress, results
achieved after the deadline for submission of
papers, results which are less appropriate for
oral presentation to a larger audience, etc.

Exhibition, 46 September 1991

A major industrial exhibition on computer
graphics and applications will be held in
conjunction with the conference. This event
will be the largest event of this kind in the field
in Vienna. Although it is fully integrated with
the conference, it will be open to the public.
The latest achievements in computer graphics
hardware, software and applications will be
presented by a wide variety of international
and local companies. Guidelines for exhib-
itors can be ordered from the Conference
Secretariat.

142 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

Slide, video and film competitions

There will be a competition of computer-
generated videos, films and 35 mm slides, with
prizes awarded for the best entries based on
creativity and technical excellence. A broad
selection of all material entered will be shown
during the conference in a video show also
open to the public.

Graphics R&D in European Community
programmes

Eurographics 91 wants to serve as a forum for
the presentation and discussion of computer
graphics-related results of R&D programmes
financed by the EC. In three sessions R&D
project work within EC programmes will be
presented.

Vienna

Visit Vienna, the European capital of music,
in 1991, the year of the 200th anniversary of
Mozart’s death! You will be fascinated by the
conference centre, the former palace of the
Austro-Hungarian emperor. You will love the
city with its beautiful buildings and the
wonderful surroundings.

There are substantial discounts on the con-
ference fees for Eurographics members. For
details of EG membership, please contact
Eurographics Association (CGW), P.O. Box
16, CH-1288 Aire-la-Ville, Switzerland.

For further information please contact :

Eurographics *91 Conference Secretariat, c/o
Interconvention, Austria Centre Vienna, A-
1450 Vienna, Austria. Tel: +43 (1) 2369 2640.
Fax: +43 (1) 2369 648.

¥20z Iudy 01 uo 1senb Aq G82£ZG/Z€ L/Z/vE/eIPme/|ufwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

