Development Methods for Real-Time Systems

M. E.C. HULL* P. G. ODONOGHUE* anp B. J. HAGAN¢Y

* Department of Computing Science, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, U.K.
1 Software Ireland Ltd, Hydepark House, Mallusk Road, Newtownabbey, BT36 8WT, Northern Ireland, U.K.

This paper examines and compares four methods for real-time system development. The recently proposed MOON
method, HOOD and the established methods of JSD and MASCOT are compared using criteria important for real-
time system development and a simple real-time example application. The implications of using the methods for larger

scale projects are also considered.

Received December 1989, revised May 1990

1. INTRODUCTION

Jackson System Design (JSD)®® and MASCOT?32 have
been proposed as methods for the development of real-
time systems. While studying the effectiveness for system
development of these two methods, this paper also
considers a merged method combining both JSD and
MASCOT3 - MOON.? The latter is a new method for
the development of real-time systems. An alternative
approach is HOOD (Hierarchical Object Oriented
Design),® which combines two fairly complementary
methods: AM (Abstract Machines) and OOD (Object
Oriented Design).

An example of a simple real-time application is used to
compare the four methods and illustrate their relative
strengths and weaknesses. A set of criteria is also used to
evaluate the four methods. How well each method meets
each criteria is determined by the development of the
example application, which tests all of the desired criteria.
The structure of the paper is as follows:

1. Description of a simple real-time example ap-
plication.

2. Development of the example using

(a) JSD,
(b)) MASCOTS3,
(c) MOON,
(d) HOOD.
3. Evaluation of the methods against given criteria.

2. AN EXAMPLE APPLICATION: A
TRAFFIC-MONITORING/LIGHT-
CONTROLLING SYSTEM

Fig. 1 shows a road running from West to East which
has a section with one lane temporarily closed. The
traffic is allowed to flow from one direction at a time
controlled by a set of temporary traffic lights. The shaded
areas are approach zones to the traffic lights. The circles

aw 1w

©

e

East

aw = arrive West le ae
Iw = leave West

ae = arrive East

le = leave East

Fig. 1. The example system in its environment.

164 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

Fig. 2. The example system.

show the positions of the lights and the triangles represent g
sensors that monitor traffic arriving and passing through =
the approach zones to the traffic lights.

The lights alternate, allowing traffic to flow from the&
West and the East in turn. When traffic flows from onegd
direction, it does so until 45 seconds have elapsed and>.
there are cars waiting in the other approach zone.ﬁ
However, prior to 45 seconds elapsing, if the approach =
zone for the current direction empties and there are carsg
in the other approach zone, the lights will change. &

Fig. 2 shows that there are 4 inputs (from the sensors) %
to the software system and one output from it (to a single 2
device that changes all 4 lights). Figs 3 and 4 show the
structure of the software which consists of an hierarchy§
of processes which communicate by message passing. 9

Fig. 3 shows how Monitor traffic is decomposed into%
two monitoring processes, each of which monitors the &

wiol} papeojum

Traffic
monitoring/
Light

controlling
system

5

202 Iudy 60 uo 1senb Aq L9EEZS/PIL/Z/VE/RIM

aw Iw ae le
aw ae
Monitor

1w traffic le

Monitor

East

Traffic

Traffic sW se
monitoring/
light controlling
system

Fig. 3. The traffic monitoring subsystem.

DEVELOPMENT METHODS FOR REAL-TIME SYSTEMS

Control

Output

Fig. 4. The light-controlling subsystem.

number of cars in a particular approach zone. Fig. 4
shows that the Control lights process is decomposed into
three communicating processes.

The difference between the two monitoring processes
is that they monitor different actual approach zones to
the lights. The number of cars, in the approach zone
being monitored by the process, is initially set to zero.
Each time an arrive message is received, the number of
cars is incremented (to reflect the fact that a car has
entered the approach zone). Each time a leave message is
received, the number of cars is decremented (to reflect the
fact that a car has passed through the approach zone).
Every time there is a change in the overall state of the
approach zone (the overall state of the approach zone is
either that there are cars in the zone or that there are not)
the new state is output as a message. Therefore, every
time the number of cars changes from 0 to 1, a ‘cars’
message is sent, and every time the number of cars
changes from 1 to 0, the a ‘nocars’ message is sent.

The monitor time process inputs pulse messages on the
reset channel and outputs pulse messages on the timeup
channel. Every time a reset message is received (the lights
have changed), a count down of 45 seconds starts. If 45
seconds has elapsed since the last input signal, a timeup
message for the current direction is sent. If a reset
message is received prior to the countdown reaching
zero, the countdown starts again from 45.

The changer process merely replicates a message
indicating that the lights have to change, passing it on to
the timer process and the lights. Each time the change
message is received (the signal that a decision has been
made to change the lights) a reset message is sent as one
output (for the countdown) and a signal message is sent
as the other (to the lights).

The decision-making process changes the lights re-
peatedly basing the decision whether to do so on the state
of the traffic, which is communicated to this process from
‘cars’ and ‘nocars’ messages from both directions as well
as timeup messages from the monitor time process. It
starts allowing traffic to flow from the West. It allows
cars to flow from the current direction until 45 seconds
or more has elapsed and there are cars waiting in the
other approach zone or until there are no more cars in
the current approach zone but there are cars waiting in
the other one. When one of these conditions holds, a
change message is sent to allow traffic to flow from the
other direction.

3. DEVELOPMENT OF THE EXAMPLE
USING THE METHODS

3.1. The JSD version

JSD is a method that allows the results of the system
analysis and specification to be expressed. The required
behaviour of the example application is expressed in
terms of a sequence of externally observable events. The
JSP chart in Fig. 5 shows the required behaviour of the
traffic-monitoring and light-controlling system.

In JSD (Jackson System Development) a single
network of model processes, channels and state vector
inspections represents the structure of the overall system
as ‘'shown in Fig. 6. Further decomposition of the
sequential model processes is performed using a hi-
erarchical decomposition method called JSP (Jackson
Structured Programming). Each of the two monitor

‘processes maintain the number of cars in a particular

approach zone by incrementing it when a message is
received on the arrive channel and decrementing it when
a message is received on the leave channel. The
information that is provided to the decision-making
process by the monitor processes is the states of the
approach zones. The state of an approach zone indicates
whether or not there are any cars in it. The decision-
making process only needs to know whether or not there
are any cars in an approach zone and does not need to
know how many cars there are. The decision-making

process models the alternation of direction of traffic flow. .

It continually examines the states of the two approach
zones as well as the state of the countdown timer. If the
condition required to change the lights holds then it
sends a message on the change channel and notes the
change in direction.

The changer process merely outputs a message on the
signal channel and sends a message to the countdown
timer process on the reset channel each time it receives a
message on the change channel. The countdown timer
process provides the state of the time the traffic has been
flowing from the current direction, which is €ither up to
45 seconds (‘counting down’) or over 45 seconds (‘time
up’). Each time the direction of traffic flow changes, a
message is received on the reset channel and the count
down is reset to 45 seconds. If-the countdown reaches 0
before a reset message arrives, the state is changed to
‘time up east’ or ‘time up west’ reflect that over 45
seconds has elapsed since the traffic started flowing in the
current direction.

The action taken by the five model processes identified
in the JSD network are sequential actions designed using
JSP. The two monitor processes are the same (except for
the fact that the actual channels and state vector used are
different) and so a single JSP chart (Fig. 7) is used to
decompose the activity.

3.2. The MASCOT3 version

The MASCOTS3 notation is more rigorous than JSD and
implementation can be derived from the MASCOT3
design without difficulty. It also supports hierarchical
system decomposition. The overall system is” firstly
decomposed into a monitor and a control system as
shown in Fig. 8. These two subsystems communicate
with each other through a composite path which consists

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 165

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M. E.C. HULL, P. G. OODONOGHUE AND B.J. HAGAN

System
operation

*
Traffic flows from
each direction in
turn

Traffic flows Lights
from West change
*
West flow
event

Traffic flows Lights
from East change
*
East flow
event

Car arrives in O

®

Car arrives in O

D D
Car leaves (/ Car arrives in (/

Car arrives in O

Car leaves
West approach West approach East approach East approach East approach West approach
zone zone zone zone zone zone
Fig. 5. Observable behaviour of intended system.
AW @ Monitor
State = NoCars Model
N=0 approach
Monitor Monitor zone
*
Service
event
tatus Status
es! East
Wait for Check
event event
Decision @ Event = Arrive Event = Leave
Model O Model O
arrival departure
effect effect
Change Countdown
g timer Change state Change state
N=N+1 to Cars if N=N-1 to NoCars if
necessary necessary
Reset N=1 N<>1 N=0 N<>0
Changer > Sae= O Null Sae= O Null
Cars NoCars

Fig. 6. The JSD design of the example system.

of all lower level communications that we do not wish to

outline at this level of abstraction.

The monitor subsystem template consists of a moni-
toring subsystem for each direction as shown in Fig. 9.
These are both derived from the same template as both

Fig. 7. JSP decomposition of the monitor subsystem.

do the same task except on different devices and paths.
The common template for monitoring an approach zone
is shown in Fig. 10, illustrating how MASCOTS3 helps
overcome duplication of design work.

The Control subsystem template consists of a decision
activity, a changer subsystem and a timer subsystem, as
shown in Fig. 11. The changer and timer subsystems are
broken down in Figs 12 and 13 respectively. This
completes the hierarchical decomposition of the system.

166 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

DEVELOPMENT METHODS FOR REAL-TIME SYSTEMS

TMLC system
AW sensor Monitor \ AE Sensor
%] Monitor Temp —%
i " | -7
LW sensor LE sensor

Control ISZ
Eontrol Temp S2p]

% Signal device
Fig. 8. MASCOTS3 system diagram.

MonitorTemp

AW sensor| Mw ME AE Sensor
% MonApproachZone MonApproachZone|
A .
LW sensor ceSDir S LE sensor
AccSDir
WW- EW S2W
Fig. 9. Monitor traffic subsystem in MASCOT3.
Mon Approach Zone
Arrive “ArriveServ StatusDir
sensor atusDirTem,
%_ GetPulse SutwsDirfemp
s
Leave | LeaveServ @ AccSDir
sensor CarCounter AccSDir
@_ GetPulse °

Fig. 10. Monitor approach zone subsystem in MASCOTS3.

ControlTemp

TimeTemp

B

ChangerTemp

PutPulse

N—

Signal Device

Fig. 11. Control lights in MASCOT3.

Ultimately, at the bottom of this hierarchy is a
network of activities that are decoupled by inter-
communication data areas (IDAs). In the same way as
JSD forced the description of the system in terms of
channels and state vectors, MASCOT3 forces the
description of system in terms of IDAs. Direct com-
munication (such as message passing) is not allowed.

ChangerTemp

C™} PutPulse

1
PulseChan
0,

GetPulse
Replicate

C
R
RepTemp
=]

PutPulse SignalServ

N
Sig ServTemp

@ Signal Device

Fig. 12. Changer subsystem in MASCOT3.

TimeTemp

PutPulse

ResetChan COTemPN AccSTime
GetPulse \R T =
Count Down
Status Time Temp

StatusTime

Fig. 13. Timer subsystem in MASCOT3.

Figs 8-13 also show that there are many items that
must be named in MASCOT3. Though this may be
inconvenient, the naming of components, ports, windows
and access paths is necessary for a complete and
unambiguous breakdown which avoids duplication. The
next stage of the MASCOT3 method involves coding
(using a PASCAL-like notation) of the access interface
specifications. Once this has been completed the activities
which require them and the IDAs which provide them
can be coded. As the access interfaces, activities and
IDAs are related within the hierarchy of systems and
subsystems, MASCOT3 provides a textual view of a
subsystem which can be used as a basis for developing
the components within it. The textual view of the Mon
subsystem template (its graphical view is shown in Fig. 9)
is as follows.

SUBSYSTEM MonAproachZone;

PROVIDES S GetSDir;
USES PulseServ, CCTemp, StatusDirTemp;,
SERVER ArriveServ PulseServ;
SERVER LeaveServ PulseServ;
POOL StatuDir StatusDirTemp;
ACTIVITY CarCounter CCTemp
(A = ArriveServ.DP,
L = LeaveServ.P,

S = StatusDir.S);
S = StatusDir.S
END.

The access interfaces of the internal paths, specified by
the port-window connections above, are named in the
component templates.

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 167

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M. E. C. HULL, P. G. O'DONOGHUE AND B.J. HAGAN

SERVER PulseServ;

PROVIDES P : GetPulse;
END.

POOL StatusDirTemp;
PROVIDES S AccSDir;
END.

ACTIVITY CCTemp;

REQUIRES A, L : GetPulse;

S ¢ AccSDir;

END.
The two types of access interface are specified so as the
CCTemp activity, the StatusDirTemp pool and the
PulseServ server can be implemented in terms of the
access facilities provided.

ACCESS INTERFACE GetPulse;
FUNCTION Pulse Boolean;
END.

ACCESS INTERFACE AccSDir;
PROCEDURE PutStatus(Status
CarsState);
FUNCTION Status CarsState;

END.

3.3. The MOON version

The MOON version is decomposed using an extension of
the MASCOTS3 notation as shown in Figs 14-19. The
extended notation abstracts the traffic-monitoring and
light-controlling system to a subsystem of an overall
system which uses it. Therefore there are no servers;
instead IDAs provide net system input/output to external
systems which contain or interact with the traffic-
monitoring and light-controlling system. The MOON
method is as rigorous as MASCOT3, but is different not
only because there are no servers, but also because arrays
of components have been introduced and composite
activities are not used in the extended version of
MASCOT3.

MOON, like MASCOTS3, provides a textual view of its
graphical notation. In MASCOTS3, the access interfaces
of internal paths are not named in the appropriate
system/subsystem text. Instead, the internal component’s
templates must be examined to determine the access
interface types. Therefore, a MASCOT3 text is not
exactly equivalent to a diagram, though the complete set
of texts is equivalent to the complete set of diagrams in
a system decomposition. So as the software engineer can
decompose a system in a top-down manner, using either
the graphical or textual version of MOON, the textual
representation of MOON has been amended to allow
inclusion of internal path’s access interfaces as shown in
the text equivalent to the top level system.

SYSTEM TMLCSystem;
PROVIDES A[West..East],
IPPulse;
PROVIDES Out LPulse;
USES MonitorTemp, ControlTemp;
SUBSYSTEM Monitor : MonitorTemp;
SUBSYSTEM Control ControlTemp;
(82P: 82 = Monitor.S2W);
Ali:West..East] = Monitor.A[i];
L[i:West..East] = Monitor.L[i];
Out = Control.Out
END.

L[West..East]

TMLC system

Monitor

A [West . . East] i MonitorTemp L [West .. East] L [West . . East]
sw |
A [West . . East] IPPulse

S2

Control

ControlTemp S2p
Out

Fig. 14. The example system in MOON.

The monitor subsystem template consists of a moni-
toring subsystem for each direction as shown in Fig. 15.
Instead of deriving the two components from the same
template separately, MOON allows an array of two
components to be instantiated from that template.
Though the advantage over MASCOT3 is not that
significant in this example, where a greater number of
components are derived from the same template, the
array facility of MOON is beneficial.

MonitorTemp

ﬁA [West . . East]

IPPulse
L [West . . East] s

[PPulse

M [West . . East]

MonApproachZone
A

AccSDir

S2w

i S [West . . East]

Fig. 15. Monitor traffic subsystem in MOON.

MonApproachZone

StatusDir

StatusDirTemp
S

AccSDir

ArriveServ
GetPulse

AccSDir

CarCounter

Fig. 16. Monitor approach zone subsystem in MOON.

Fig. 16 shows that the control subsystem template is
decomposed as it was in MASCOT3. The connection of
the LPulse path to external systems propagates down to
the lowest level from the top instead of being localised at
the bottom level by a server. The MASCOT3 approach
would, therefore, save specifying external connections at
all levels. The MOON decomposition is completed in
Figs 17-19.

At the bottom of the MOON hierarchy is a network of
activities that are decoupled by inter-communication
data areas (IDAs). Rather than decomposing these
activities as composite activities in terms of dataflow,
MOON provides a mechanism for further decomposition
using an extension of JSP. Consistency between the two

168 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

DEVELOPMENT METHODS FOR REAL-TIME SYSTEMS

ControlTemp

TimerTemp

AccSTime

Decision Changer

ChangerTemp

Out
LPulse
N___smta Out _//

Fig. 17. Control lights subsystem in MOON.

ChangerTemp

PutPulse
SignalServ

S
SigServTemp
0
LPulse
N___ Out

Fig. 18. Changer subsystem in MOON.

TimerTemp
R —T
PutPulse
1 AccSTime
PulseChan
0
ResetChan
AccSTime
GetPulse
T
CountDown StatusTimeTemp

StatusTime /

Fig. 19. The timer subsystem in MOON.

levels of abstraction is preserved by representing port
facility access as primitive actions to the JSP decompo-
sition. MOON uses an extension of MASCOT3 instead
of JSD as it allows hierarchical decompositions of large
systems. However, once basic networks have been
identified, a method such as JSD could be used by other
merged methods, prior to the use of JSP. This difference
in the hierarchical decomposition is shown by comparing
Fig. 20 (the MOON decomposition of the approach zone
monitoring process) with Fig. 7 (the JSD equivalent).

l CCTemp |

Model
approach
zone

l State = NoCars

. *
Service

event

Leave =
L.Pulse

IF Leave THEN
Model leave
t

Arrive =
A.Pulse

Event

" GetPulse GetPulse

IF Arrive THEN
Model arrive
Event
Leave ~ Leave Arrive
Model NULL Model NULL
leave o o arrive o O
event event
N=N-1 Change state
to NoCars if
necessary

N=0 N <> 0 N=1 N<>1

S. Writ NULL
hm"a;) O L O|

s.wie O NULL O
(Cars)
PutSDir

PutSDir

Fig. 20. MOON decomposition of the monitor approach zone
activity.

N=N+1

Change state
to Cars if
necessary

MOON provides other extensions to MASCOT3 and
JSP not illustrated by the example. The extensions to
MASCOT3 include further primitive IDAs for man-
machine-interface, file and database organisations and
manual access. Because MOON is used for systems to be
executed by a variety of processor types, the physical
environment of processors and storage units is described
using the physical version of the extension to MASCOT?3
instead of the logical version. Dataflow between logical
elements can also be shown in MOON using a Yourdon-
style notation.®

The extensions to JSP provided by MOON allow
rigorous control of iteration and selection, and
instantiation of actions (and data) from action (and
data) templates. There is also a textual version of the
extension to JSP, just as there is one to the extension of
MASCOT3.

3.4. The HOOD version

HOOD uses a different notation and approach to
concurrent system design than MASCOT3. The system is
described as a hierarchy of objects each of which could
be active or passive. The higher level objects include
lower level ones of which they are composed. An object
can access the visible facilities of another with the use
relationship, which is represented as an arrow between

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 169

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.E.C. HULL, P. G. ODONOGHUE AND B. J. HAGAN

the using object and the one it uses. A passive object is
one which provides facilities through its Operation
Control Structure (OPCS), whereas an active object also
has control flow interactions with other objects. Objects
have a visible interface as well as hidden information.

In MASCOT3, MOON and JSD, the system is
decomposed into a network of active and passive elements
which execute or exist in parallel. The system/subsystem
hierarchical decomposition provided by MASCOT3 and
MOON, merely groups separate elements into a
subsystem. In HOOD, when an active object is
decomposed, it not only has a hierarchical relationship
with its sub-objects, but also controls the order of their
execution. The basic MASCOTS3 activities, IDAs and
access paths, at the bottom of the MASCOT3 de-
composition, can execute as a ‘flat’ JSD-like network
without the hierarchy of subsystems that structure them
together. In HOOD, on the other hand, the upper level
objects are necessary as they contain control information
vital to system execution. This control flow information
is not shown in HOOD’s graphical notation, but is
described textually in the active object’s Object Control
Structure (OBCS). Fig. 21 shows the top level system as
one which interacts with another system (its environ-
ment). Though this aspect of systems is not addressed by
MASCOT3 in this way, MOON does recognise that a
system is part of or used by external systems.

| Traffic monitoring and light control N
Control O> Signal
SW SE
Monitorin F:Iéé
AW<O
LW<O
LE <O
AE<O
|__[Environment]

Fig. 21. The HOOD version of the example system.

HOOD employs a Yourdon-like approach® in showing
the data that flows between objects. There is also a
notation in HOOD used for exception flows, which is
against the normal flow of control. It is represented by a
line crossing the use relationship. Fig. 22 shows the
HOOD decomposition of the Monitor object. Though
this object has been decomposed into two similar sub-
objects, an array of two objects could have been specified
using HOOD’s class instances. This structuring facility
has the same advantages as MOON’s equivalent over the
MASCOT3 method. Each HOOD object provides its
visible facilities through a single interface. Therefore,
different views of an object cannot be expressed in
HOOD. MASCOTS3 provides a window for each separate
view.

Fig. 23 shows the decomposition of the control object
into a decision, a timing and a light-changing object.
Now that all of the terminal objects have been identified,
they can be implemented. The guidelines for implementin g
a HOOD object in the ADA language, have been
outlined in the HOOD reference manual.5

Monitor
ME : MON
SE <OLE
SE1<O Nsr <OAE
W_: MON
i\g (1M Q <OLW
SW- st <O AW

[TEnvironment]

Fig. 22. The monitor traffic subsystem in HOOD.

| Control
Decision :8 gl‘iv ,{Ml
ﬁ: TimeupWest €O
9 Change y Timt:r-o
hanger 3 é FF
>[Environment]

O> Signal

Fig. 23. The control lights subsystem in MOON.

4. EVALUATION OF THE METHODS

The four methods for real-time system design that have
been examined, using the traffic monitoring and light
controlling example, can be evaluated using a set of
suitable criteria and considering their performance in the
development of the example. The criteria are listed
below.
(a)
(b)
(c)
(d)
(e)
N

Ease of use and understanding;;

Unambiguous;

Concise;

Concurrency/real-time Support;

Ability to derive implementation from design;
Support for top-down development;

(g) Ability to express requirements and constraints;
(h) Ability to express different views of the system;
(/) Consistency;

(/) Graphical/diagrammatic;

(k) Addressing different phases of software life-cycle;
(/) Modularity.

(a) Ease of use and understanding

Ease of use is important to allow the software engineer to
communicate the development of the system without
unnecessary effort spent on syntactic details of the
method. Ease of understanding allows modification of
systems developed using the given techniques, by staff
other than the original software engineer. JSD was the
easiest notation used to develop the example application
and is also the easiest to understand, as the whole system
structure can be expressed and viewed on a single
diagram. The JSP charts are, however, cumbersome for
the simple actions of the system and a textual version
would have been easier to produce. The largé number of
components, templates, ports, windows and paths that
have to be named in MASCOT3 and MOON gives rise
to difficulty. Though it is hard to establish so many
unique and meaningful names, all of the names are

170 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwsepeoe//:sdpy wolj papeojumoq

DEVELOPMENT METHODS FOR REAL-TIME SYSTEMS

necessary to allow consistency and completeness while
avoiding duplication. Another factor which effects
comprehension of the MASCOT3 design of the example
is the use of a separate diagram for each subsystem in the
hierarchy. For this example JSD is preferable but for a
larger project, system decomposition aids understanding
and system clarity. Thus MOON and MASCOT3 are
easer to understand than JSD when used for large
projects. The example application was easier to develop
in HOOD than in MASCOT3 or MOON. This is due to
not having to generate names for so many items. Because
it supports hierarchical decomposition, it is easier to use
and understand than JSD for large software projects.
Though the HOOD version for this simple example used
hierarchical decomposition, it could have been abstracted
to a ‘flat’ network of objects that would not have been
significantly harder to create or understand than the JSD
version.

(b) Unambiguous

The MASCOT3 and MOON versions, due to their
rigorous development, are totally unambiguous. The
JSD version lacks the rigor of MASCOTS3, but a unique
interpretation of the structure of the system is made by
the observer. The JSP notation does not force exact
specification of the conditions of selection of iteration
and selection which leads to ambiguity. The HOOD
structure of the system requires examination of the
OBCS of each active object to determine the exact order
of sub-object execution.

(¢) Concise

The hierarchical decomposition provided by all methods
except JSD allows separation of a large system
specification into a number of more concise and less
cumbersome specifications. In MOON the instantiation
of action and data from templates also allows separation
of complex structures using a number of more concise
designs. The array facilities provided by both HOOD
and MOON also aid conciseness. JSD is concise for
small systems such as the traffic-monitoring and light-
controlling example.

(d) Concurrency/real-time support

All of the methods reviewed support concurrency.
However, only HOOD addresses other real-time facilities
such as exception handling and time outs.

(e) Ability to derive implementation from design

Because MASCOTS3 is very rigorous with a PASCAL-
like notation for activity, IDA and access interface
specification, implementing the designed system is
straightforward. It is the intention that MOON
specifications can be compiled into executable subsystems
by a set of tools called an automated system development
generator.> Thus implementation is automatic.
Guidelines have been provided to help the software
engineer implement HOOD designs in Ada. JSD lacks
the rigor of the other methods and therefore it requires
much greater effort to derive an implementation from a
JSD specification than from any of the other methods.

(f) Support for top-down development

All of the methods support top-down development with
the exception of JSD. MASCOTS3 supports top-down
design using its graphical notation but the textual form
for implementation appears to be oriented to a bottom
up implementation. MOON has amended the textual
notation used in MASCOTS3 in a way which allows both
top-down design and implementation as each system’s
diagrammatic form is equivalent to the text version,
which includes detail of internal connections. Because an
object’s OBCS can be developed along with its graphical
representation, HOOD also supports top-down design
and development.

(g) Ability to express requirements and constraints

JSD starts much earlier in the software life-cycle than the
other methods and can be used to model the required
behaviour of the system being developed. Though
MASCOT3 does not address requirements analysis, the
CORE method’ has been proposed as a front end to the
MASCOT3 method. The only constraints that can be
provided in MOON are hardware to software mapping
constraints. If we consider the example cited in this
paper, a constraint is that a car cannot leave the eastern
approach zone until the lights allow traffic to flow from
east to west. Though the methods can be used to design
a system to meet this constraint, none of the methods
have formally specified it.

(h) Ability to express different views of the system

The use of windows in IDAs and subsystems in
MASCOT3 and MOON allow different views of the
facilities provided by a given template to be provided by
different access interfaces. A HOOD object provides all
of its visible facilities through a single interface made
available to all using objects. This does not support
separate views of the system as with MASCOT3 and
MOON. A JSD process could provide several state
vectors to inspecting processes. Each state vector would
provide a different view of the model process.

(i) Consistency

The consistency between a MASCOT3 system and its
subsystems is preserved by ensuring the ports, windows
and their access interfaces are exactly the same as the nett
ports, windows and access interfaces of its components.
The activities at the bottom of the hierarchy require
ports which are consistent with those specified in the
PASCAL-like development of the activity’s template.
Similarly the IDAs at the bottom of the hierarchy
provide windows which are consistent with those specified
in the PASCAL-like development of the IDA’s template.
In MOON, instead of using a PASCAL-like notation, an
extension of JSP is used which has port facility access as
a primitive action. This helps preserve consistency
between the MASCOT and JSP levels of MOON. JSD
has a process chart for each process identified in the
network. However, consistency between the network and
process levels is not enforced with the same rigor as in the
other methods. Consistency between a HOOD object
and its sub-objects is preserved by mapping the parent’s
operations to its children’s operations.

THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991 171

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.E.C. HULL, P. G. ODONOGHUE AND B. J. HAGAN

(j) Graphical/diagrammatic

All of the methods provide graphical views of system
development which are beneficial for system decompo-
sition to process level. However, the example shows that
at the lower levels, where sequential actions are being
decomposed, diagrams can become cumbersome and
text should be used to express the action.

(k) Addressing different phases of software life-cycle

JSD addresses the specification and design phases of the
software life-cycle, but lacks the rigor to be used for
implementation. MASCOTS3 starts at the design phase
and allows development to a level where implementation
is straightforward. For the earlier stage of requirements
analysis, CORE® has been recommended. MOON
addresses as much of the system development process as
MASCOTS3. Both of these methods are also used for the
development of test harnesses and test plans. HOOD is a
design method that allows development to a stage where
implementation can be continued in Ada.

(1) Modularity

MOON and MASCOT3 are modular methods, allowing
IDAs and related activities to be encapsulated within
subsystems. Furthermore, IDAs are expressed in the two
methods as collections of hidden data and visible access
facilities. The only claim JSD could make to being at all
modular is that it allows model processes to hide data
(e.g. the number of cars in an approach zone) and
provide state inspection vectors to external processes.
HOOD objects can be composed of both active and
passive sub-objects within constraints, and is therefore a
modular approach.

5. CONCLUSION

The design methods that have been reviewed all support
diagrammatic notations for expressing the system being

REFERENCES

1. M. A. Jackson, Principles of Program Design. Academic
Press (1975).

2. Joint IECCA and MUF Committee on MASCOT
(JIMCOM), The Official Handbook of MASCOT. Her
Majesty’s Stationery Office (June 1987).

3. M.E.C.Hull, P.G.O’Donoghue and B.J. Hagan,
MOON - modular object oriented notation. Accepted for
publication in Software Engineering Journal.

4. L. Ingervaldsson, JSP: A Practical Method of Program
Design. Chartwell Bratt Ltd (1979).

developed. JSD and MASCOT3 are two widely used
methods that have adopted the shared variable approach
to process synchronisation. The MOON method, which
is a combination of these two complementary methods,
has overcome some of the disadvantages of each. JSD
does not provide expression of the decomposition of the
system until process level and MASCOT3’s graphical
notation for process decomposition does not show
control flow.

MOON provides the hierarchical network decompo-
sition of MASCOT3 and the process decomposition of
JSP. The rigor of MOON and MASCOT3 allows
implementation to follow design with less effort than
from a JSD design. However, the informal nature of JSD
makes it more useful for the early stages of analysis and
modelling than the other methods.

Though MOON has taken advantage of the best
features of MASCOTS3 and JSD, it does not provide a
server symbol as MOON regards all systems as
subsystems of larger systems. This is clearly not as good
as MASCOT3, where external access to the system is
localised at a single level. However, it does allow re-
usable components to be integrated into larger systems
without conversion.

The example application is conceptually a dataflow
example and is expressed well in HOOD, a method
promoting the alternative message passing approach.
However, for applications that do not naturally abstract
to a message passing model, the other methods allow
expression of the design without compromising the
conceptual nature of the application.

Acknowledgement

MOON was developed as part of a SERC-funded
research project under the ALVEY programme. The
participating bodies are University of Ulster and
Software Ireland Ltd; ALVEY project SE/080; ‘An
Automated System Development Generator’.

5. HOOD Working Group, HOOD Reference Manual, draft
B issue 3.0 (June 1989).

6. J. R. Cameron, An overview of JSD. IEEE Transactions on
Software Engineering, 12 (2) (February 1986).

7. G. Mullery, CORE-A method for controlled
requirements specification. Proceedings of the 4th Inter-
national Conference on Software Engineering (Sept. 1979).

8. M. A. Jackson, System Development. Prentice Hall In-
ternational (1983).

9. E. Yourdon and L. L. Constantine, Structured Design.
Yourdon Press (1978).

172 THE COMPUTER JOURNAL, VOL. 34, NO. 2, 1991

202 I4dy 60 U0 1senb Aq L9EEZG/¥9L/Z/vE eI/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

