Default Databases and Incomplete Information

P. KING anp C. SMALL*Y

Department of Computer Studies, Birkbeck College, University of London, Malet Street, London WCIE 7HX

We present the concept of a default database which comprises a set of facts, a set of deduction rules, and a set of
defaults. Defaults define assumptions to be made about information not derivable from the rules and facts. Defaults, by
augmenting the information which is a consequence solely of the rules and facts, enable definite responses to queries on
the basis of ‘common sense’ assumptions rather than responses of the form ‘unknown’. The augmented information is
termed an extension. Although such an extension is self-consistent, in general two or more mutually inconsistent
extensions can arise. We characterise the rules and defaults of a database as safe if only one extension can arise for
any given set of facts. We give conditions which are necessary and sufficient to ensure safety.

Received July 1989, revised November 1990

INTRODUCTION

We take the view that a database comprises information
about various entities, their attributes, relationships
among them, and constraints and rules reflecting the real
world situation of which the database is, in some sense,
a model. Such a database can be viewed or formulated in
the conventions and notations of logic where it is useful.
We adopt this approach in the present work, regarding a
database as comprising a collection of clausal form
formulae, and note that the conventional database
models can be so regarded.!?

With the relational model, for example, the intension
of each relation is seen as an n-ary predicate with the
extension being a set of n-tuples for each of which the
predicate is true. For each such relation either the Closed
World Assumption or the Open World Assumption can
be made.* The former assumes that all n-tuples for which
the predicate is true are present in the extension, and thus
for any other n-tuple the predicate is false. The Open
World Assumption allows there to be further n-tuples
not in the extension satisfying the predicate, and thus for
any other n-tuple the truth or falsity of the predicate is
unknown. These two assumptions are commonly made
in database practice, although often implicitly in terms of
the context and embedded in the functionality of the
application programs.

We can adapt the default reasoning discussed by
Reiter' to the database environment in order to provide
a mechanism for making assumptions about data which
is neither recorded nor inferable using the rules, based
upon what is usual, or on statistical considerations,
weighted according to the penalties incurred should the
assumptions be wrong. The defaults will be explicit and
specified at schema or subschema level and not embedded
in program code as hitherto. Adapting Reiter’s notation
we express an assumption as a default in the form:

AX)« P(X)& MC(X)

where A(X) is the assumption to be made about X,
P(X) is the prerequisite which must be true for the
assumption to be made, and MC(X) expresses the
consistency requirement. The notation may colloquially
beread: ‘if P(X)is true then in the absence of information

* Note that our use of these terms does not follow Reiter’s
definitions.®
T Author for correspondence.

to the contrary assume A(X)’, the information to the
contrary being that C(X) is false. For example, we can
express the assumptions that soldiers are normally male,
and persons aged over 65 are retired, with the defaults:

Male(X') « Soldier(X) & M Male(X)
Retired(X') «— AgeOver65(X) & M Retired(X)

The remainder of this paper is concerned only with cases
like these where A(X) and C(X) are identical, which is
thought to cover the majority of practical cases;
consequently we omit the consistency component when
writing defaults. Persuasive arguments that most defaults
are of this form are given by Reiter,!? although the need
for the more general form has been demonstrated by
several authors. 1114

It is possible to write defaults which, in some
circumstances, are mutually inconsistent. Thus, if we
allow more than one profession for an individual the two

Its:
defaults Male(X) « Soldier(X)

Female(X) « Nurse(X)

are clearly inconsistent for a person who is both a soldier
and a nurse (because Female(X) =-Male(X)). If the
defaults are activated sequentially rather than sim-
ultaneously then the activation of the first would cause
Male to be stored which would then prevent the activation
of the second; and vice versa.

This paper addresses the problem of such inconsis-
tencies and gives necessary and sufficient conditions
which the schema must satisfy to avoid such conflicts
whatever the set of stored facts. A schema satisfying
these conditions is termed safe. Safety in this sense is a
property of the schema alone, which is important since
the set of stored facts is normally much larger and more
volatile than the schema information. A detailed de-
scription of an earlier version of an implemented system
is given by Small,’® which included the detection of
conflicting defaults. The method used in discussed briefly
in Section 4 below, and is currently the subject of further
investigation.

In Section 1 we give a definition of a default database
using function free clausal form formulae. In Section 2
we define the mechanism by which the defaults are used
to give less incomplete extensions, and in Section 3 we
formalise the concept of a safe default database. We
conclude by discussing some related work in Section 5.

THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991 239

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

P. KING AND C. SMALL

1. THE CLAUSAL FORM
REPRESENTATION OF A DEFAULT
DATABASE

In this representation a term is either a constant or a
variable. An atom consists of an n-ary predicate followed
by n terms. We use upper case letters for variables,
strings starting with lower case letters as constants, and
place the terms of an atom within round brackets. A
literal is either an atom or its negation. A clause is a
disjunction of literals; the variables of a clause are
implicitly universally quantified. A clause consisting of a
single literal is termed a unit clause.

A schema consists of a set of rules and a set of defaults.
A default database consists of a schema and a set of
facts. A fact is a ground unit clause. A rule is a non-
ground or non-unit clause. Until Section 4 we assume the
set of rules to be deductively closed. A default is a
formula of the form: A

« P

where A4 is a single literal and P is a conjunction of
literals. P are termed the prerequisite literals and A the
assumption literal. We read such a default as stating that
if, for some instantiation of the variables of the default,
Pis true and 4 is not inconsistent with the database then
assume A.

A set of substitutions is a set of ordered pairs:

/T V/T, ... V,/ T}

where the V are distinct variables and the 7; are terms.
The result of applying a set of substitutions to a clause or
default is a new clause (default) in which each V] is
replaced by the corresponding 7;. We denote the result of
the application of a set of substitutions, S, to a clause or
default C as C®. An expression (i.e. a term, atom, literal,
clause or default) is said to be ground if it contains no
variables. Under the assumption that there are only a
finite number of facts, rules and defaults, each of which
contains only finitely many constants, we observe that
only a finite number of ground expressions can be
formed.

Throughout the paper we assume that all variables
given in the rules and defaults are distinctly named; i.e.
‘standardised apart’ in the terminology of resolution
theorem proving.?

2. A COMPLETED EXTENSION OF A
DEFAULT DATABASE

Consider a default database with a consistent set of facts
and rules. Let: E,E, ..
be a series of sets of clauses such that:

1. E, consists of the facts and rules;

2. Foralli,i > 0, let D, be the set of candidate defaults
which are eligible to be ‘fired’ given E,_,. That is D,
consists of all ground defaults:

(4« P)®
such that:
e P¥ is implied by E,_,; and
e neither 4 nor -4* is implied by E,_;
If D, is empty then E; consists of E,_,, otherwise E,
consists of E, , together with a ground unit clause

comprising the assumption literal of a non-deter-
ministically selected default of D,;

E; is a completed extension of the default database if
D, is empty. Two completed extensions, E, and E;, are
said to be equivalent if they have the same deductive
closure, and are said to be distinct otherwise.

THEOREM 1. A completed extension, E,, of a default
database is consistent if and only if E,, i.e. the facts and
rules, is consistent.

Proof. The proof is in two parts.

Firstly, if E, is inconsistent then E, is inconsistent,
since by construction it contains E, as a subset.

Secondly we show that if E, is consistent then E, is
consistent. Proof is by induction. For the base case we
have that E is consistent. Assume that for all i, 0 < i <
k, E, is consistent. Let the unit clause added to E,_, to
form E, be A. E,_, U A is inconsistent if and only if -4
is implied by E,_,. However, by definition E,_, does not
imply -A4. Hence E,_, U 4, i.e. E,, is consistent. []

Example 1. Consider the following default database:

F1 Reads(mikhail pravda)

R1 -Capitalist(X') v-Socialist(X)

D1 Capitalist(X') «- Reads(X,wall_street_journal)
D2 Socialist(X') « Reads(X,pravda)

In this case there is only one completed extension
which contains the following two additional clauses:

Socialist(mikhail)
- Capitalist(mikhail)

3. SAFE DEFAULT DATABASES

A completed extension is a consistent set of clauses
derived from the facts, rules and defaults in the way
described above. Note that the definition allows a default
database to have more than one distinct completed
extension. For example, consider the addition of the
following fact to the default database of Example 1:

F2 Reads(mikhail,wall_street_journal)

It is now possible to generate a second completed
extension containing:

~Socialist(mikhail)
Capitalist(mikhail)

If there are two distinct completed extensions of a default
database then their union is inconsistent:

LEMMA 1. If the facts and rules of a default database are
inconsistent, then the database has only one completed
extension.

Proof. Every clause is implied by an inconsistent set of
clauses.’ [

LEMMA 2. If a default database has two distinct
completed extensions, E and E’, then E ¢ E’ and E’ ¢ E.

Proof. Firstly we observe that if a default database has
two distinct completed extensions then the facts and
rules are consistent (by lemma 1), and hence both
extensions are consistent (by Theorem 1). Assume a
default database has two distinct completed extensions

E]. and E]-'Z E:E,U A, U ..U Ay
EjtE, U AU .. U 4],

240 THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

DEFAULT DATABASES AND INCOMPLETE INFORMATION

where A, (respectively, A;) is the assumption added at
step i in the construction of E; (respectively, Ej).
Suppose, without loss of generality, that E; = E}, and let
i be the least i such that A4; is not implied by E,. Then A4;
results from a default:
A; « P;

Since P; is implied by E, (by the minimality of i) it must
be the case that -4 is implied by E; (for otherwise E; is
not a completed extension). However, E} is consistent
and so does not imply —A4;, contradicting the assumption
that E;, c E,. [0

THEOREM 2. If a default database has two distinct
completed extensions, E and E’, then E U E’ is in-
consistent.

Proof. Assume a default database has two distinct
completed extensions, E; and E.:

E;:E U A U ... U4,
E,:E, U A, U ... U 4)_,

Let i, 0 <i <, be the least i such that E; does not imply
A; (the existence of such an A4; is guaranteed by Lemma
2). Then A; results from a default:

A;« P;

E; implies P; (by the minimality of i), and hence implies
-A; (for otherwise E, is not a completed extension). Thus
E, U E; implies both 4] and -4, and hence is in-
consistent. []

In many practical cases the user will require a default
database to give rise to only one completed extension,
and will believe the database to be in error if it supports
contradictory extensions. Consequently we characterise
a schema as safe if the rules and defaults give only one
completed extension for any given set of facts.

Our examination of the database proceeds in two
phases. In the first phase ‘connections’ are identified: a
connection may be thought of as a path through the rules
from the assumption literal of one default to the
assumption literal of another. Then, in the second phase,
the connections are tested against the rules to ascertain
whether the firing of one default may prevent the firing
of another.

Definition. A connection exists between the assumption
literals, 4 and A’, of two defaults if there exists a set of
substitutions, S, (called a connecting set of substitutions)
such that:

1. A® is =4’ (in this case 4 and A’ are said to be
directly connected); or

2. there is a rule (called a connecting rule) which, after
making the substitutions S, contains -4 and
—~A’®™ (in this case 4 and A’ are said to be indirectly
connected).

A pair of defaults is said to be connected if there is a
connection between their assumption literals. A default
is said to be self-connected if a copy can be made of that
rule (with the variables differently named), and the
default and the copy are indirectly connected as defined
above.

Example 2.1. An example of an indirectly connected
pair of defaults:

R1 -Reads(W,wall_st_journal) v — Reads(W pravda)
R2 =Socialist(X) v ~Capitalist(X)

D1 Capitalist(Y) « Reads(Y,wall_street_journal)
D2 Socialist(Z) « Reads(Z,pravda)

In this instance D1 and D2 are connected via R2 with the
connecting set of substitutions {Y/X, Z/X}. (The purpose
of R1 will become clear in the sequel.)

Example 2.2. An example of a self-connected default
(D1 is indirectly connected to a copy of itself, D1):

R1 -Citizen(P,C1) v = Citizen(P,C2) v =(C1,C2)
D1 Citizen(Q,usa) « Resident(Q,usa)
D1’ Citizen(R,usa) « Resident(R,usa)

In this instance the connecting set of substitutions is
{Q/P,R/P,Cl/usa, C2/usa}.

Example 2.3. An example of a self-connected default
(D1 is indirectly connected to a copy of itself, D17):

R1 -Citizen(P,C1) v =Citizen(P,C2) v =(C1,C2)
D1 Citizen(Q,C1) « Resident(Q,C1)
D1’ Citizen(R,C2) « Resident(R,C2)

In this instance the connecting set of substitutions is
{Q/P,R/P}.
Definition. A directly connected pair of defaults:
A« P
“A« P

is said to be safe if for all connecting sets of substitutions,
S, one of the following formulae (in which X denote the
free variables of the defaults after applying S):

Vi-(4& P& P')
Vi-(~A&P&P)

is implied by the set of rules. In other words, the defaults
are safe if the rules prevent both from being considered
simultaneously for firing.

Definition. An indirectly connected pair of defaults:
A« P
A « P
is said to be safe if for every connecting rule:
—“Av-A'vLyv...vL,

and connecting set of substitutions, S, one of the
following formulae (in which X are the free variables of
the defaults and the connecting rule, after applying S):

VX-(A& P& P)VL,v...VL,
VX-~(A"&P&P)vL,v...vL,

is implied by the set of rules. In other words, the defaults
are safe if one of the following conditions is satisfied:

(i) both defaults cannot be considered simultaneously
for firing; or

(ii) the connecting rule does not enable the inference
of A’ from A, or does not enable the inference of
- A from A’

Example 3.1. Consider again the schema of Example
2.1. Defaults D1 and D2 are indirectly connected via R2.
However, they are safe because R1 implies:

VW =(Capitalist(W) & Reads(W,wall_street_journal)
& Reads(W pravda))

THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991 241

CPJ 34

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

P. KING AND C. SMALL

Example 3.2. Consider again the scheme of Example
2.2, in which D1 is indirectly connected to a copy of D1.
Given that the rules also include, implicitly, the usual
definitions for the equality predicate, the formula:

VP ~(Citizen(P,usa) & Resident(P,usa)
& Resident(P,usa)) v = (usa,usa)

is implied by the rules, and hence the database is safe.

Example 3.3. Consider again the schema of Example
2.3, in which D1 is indirectly connected to a copy of D1.
Since neither of the following formulae are implied by
the rules the schema is unsafe:

VPVYC1VYC2 ~(Citizen(P,C1) & Resident(P,C1)
& Resident(P,C2))v =(C1,C2)

VPYC1VC2 ~(Citizen(P,C2) & Resident(P,C1)
& Resident(P,C2))v =(C1,C2)

Definition. A schema is safe if all connected pairs of
defaults are safe.

We are now in a position to state that our criteria are
both sufficient and necessary to guarantee that a safe
schema supports only one completed extension regardless
of the set of facts:

LEMMA 3. A4 default database has two or more distinct
extensions if and only if at some step, i, in the construction
of each extension E; there is a default in the set of
candidate defaults, D,: AwP

such that E, implies - A.

Proof. Let A be a default database, and let E, be the
facts and rules of A. If E is inconsistent then any clause
is provable from E,,* therefore D, contains no defaults,
and hence A has only one extension. Thus our lemma is
true for the case in which E, is inconsistent. We may
therefore assume that E, is consistent, and by Theorem
1 that any extension of A is consistent.

The proof of our lemma for the case in which E, is
consistent is in two parts.

Part 1: If. Let E; be a completed extension of a default
database A constructed in terms of the series:

EwE,...,E_,E,...,E,

Let A, be the unit clause added to E,_, to give E, and let
D, contain a default: , y
‘ A« P,

such that E; implies ~A4;. Then an extension E; can be
constructed in terms of the series:

EwEy,...,E_,E,...,E,

i-1°
such that E; and E; differ only with respect to 4, and
A;. E; does not imply A, (for otherwise it is inconsistent),
and hence E; and E; are distinct.

Part 2: Only if. Let E; be an extension of a default
database A. At each step, i, in the construction of E,, if
there is a default: (1) A« P

in D, and E, does not imply —4, then either E, implies 4
or (1) is also in D,,,. Thus if there is no step i such that
D, contains:

A«P

and E; implies ~4, then E; implies the assumption literal
of every default considered for firing at each stage in its
construction. Consequently A does not have a second

extension, E, for otherwise E} is properly contained in
E;, contradicting Lemma 2. [J

THEOREM 3. A default database with a safe schema has
only one distinct completed extension.

Proof. Let A be a default database with a safe schema
and with completed extension E;. By Lemma 3 we need
only show that at each step i, 0 < i<, there is no
default:

Dl A"« P’
in D, such that -4’ is implied by E, Proof is by
contradiction. Let i be the least i such that for some such

default -4’ is implied by E,, and let the default fired at
step i be:

D2 A« P

Note that E,_, must imply (P& P’). We consider two
cases:

_ Case 1. D1 is directly connected to D2. In this case D1
is: A P
As the schema of A is safe the rules imply one of:
(A& P& P)
2(~A& P& P)

Thus, E, , must imply either 4 or -4, contradicting
the assumption that both D1 and D2 are in D,.
Case 2. D1 is indirectly connected to D2. In this case
there is a rule:
(1) ~Av-A'vL,v...vL,

such that (-Ly&...&-L,) is implied by E,. Since the
scheme of A is safe the rules imply one of:

(A& P& P)vVLyv...vL,
(A" &P&P)VL,v...vL,

and hence E, ; cannot imply (-L,&...&-L)) for
otherwise it implies either =4 or —~A4’, contradicting the
assumption that both D1 and D2 are in D,. Hence, let
E, ,imply (-L,& ... & -L,),k < n, but neither -L,,, nor
...nor-L,. Since E,_; and E, differ only with respect to
A, there must be a rule:

() -~Av(-L,, &...&-L)

and since the set of rules is deductively closed it contains
(from (1) and (2)):

—“Av-A'vLyv...vL,

indirectly connecting D1 and D2. Furthermore, since the
schema of A is safe the rules must also imply one of:

(A&P&P)VL,v...VL,
(A &P&P)VL,v...vL,

But E, , implies (P& P'&-Ly&...&-L,) and hence
either -4 or = A4’, contradicting the assumption that both
D1 and D2 are in D,. [J

THEOREM 4. For every unsafe schema there is a default
database with that schema having two or more distinct
completed extensions.

Proof. Let S be an unsafe schema. We prove, by
construction of a set of facts, F, that the database with

242 THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

DEFAULT DATABASES AND INCOMPLETE INFORMATION

schema S and facts F has two extensions. Let D1 and D2
be a pair of unsafe defaults of S. We must consider two
cases:

Case 1. D1 and D2 are directly connected. In this case
the defaults are of the form:

Dl A« P
D2 -4« P
Since the defaults are unsafe the rules of S imply neither
of: (1) ~(A& P& P’)
Q) (~A&P&P)

Consider now the database comprising schema, S, and
facts:

F:{P, P}

Then the facts and rules (i.e. E,) imply neither 4 nor ~4.
Moreover, since E, implies P and does not imply -4, D1
enters A into some extension, say E. For similar reasons
there is also an extension, say E’, containing -4. Hence
the database with schema S and facts F has two distinct
extensions, F and E’.

Case 2. D1 and D2 are indirectly connected. In this
case the defaults are of the form:

Dl A« P

D2 4"« P’

and there is a connecting rule of the form:
—“Av-A'vVLyv...vL,

such that the rules imply neither of the following
formulae:

()~(A&P&P & ~L,& ... & ~L,)*
Q) ~(4'&P&P & -L,&...& -L,)

Consider now the database comprising schema S and
facts:

F:{P,P',-L,,...,~L,}

Then the facts and rules (i.e. E,) imply neither =4 nor
-~A’. Moreover, since E, implies P and does not imply
-A, some extension, say E, contains A and (as a
consequence of the connecting rule) also —A4’. For similar
reasons there is also an extension, say E’, containing A’
and —~A4. Hence the database with schema S and facts F
has two distinct extensions, E and E’. [

Example 3.4. We saw, in Example 3.3, that the schema
of Example 2.3 is unsafe. Consider the facts:

Resident(a,usa)
Resident(cc,ussr)

A database with the schema of Example 2.3 and the
above facts gives rise to two distinct completed
extensions, one of which contains Citizen(a,usa) and the
other -~ Citizen(a,ussr).

4. DERIVATION OF CONNECTIONS

So far we have assumed, for the purpose of finding
connections between pairs of defaults, that the set of

* Note that this is logically equivalent to ~(4& P& P)VLyv...v

n

L

rules is deductively closed. Clearly, however, this is
impractical since the deductive closure will in general be
infinite. We now relax this assumption and use linear
resolution® to determine the connections between
defaults. We henceforward regard a set of literals as
synonymous with a clause. For example:

{=Socialist(john), ~Capitalist(john)} =
=Socialist(john) v ~Capitalist(john)

If C; and C, are two clauses, L,eC,,L,eC, and L, =
- L, then the clause:

(Ci={L,) U (C,—{L,})

is a resolvent of C, and C,. Given a set R of clauses and
a clause CyeR, a series of clauses:

C,.Cy....C,

is a linear deduction of C, from R with top clause C, if
for all i, 0 < i< n,C,is a resolvent of C,_, and either a
clause from R or a clause C,,0 < < i. A refutation of a
set of clauses R is a deduction of the empty clause, { },
from R. We can now reformulate our definition of a
connection to obviate our requirement that the set of
rules be deductively closed. Given a default database
with rules R, two defaults:

A« P
A « P
are connected if there is a deduction of {~4',L,,...,L,}
from R U {4}, in which case the connecting rule is -4 v
—A’vL,v...vL,. Finally, to test the connection for
safety we must show that one of the following formulae
is implied by R:
“(A&P&P)vL,v...vL,
~(A'&P&P)VL,v...vL,

This may be undertaken simply by taking each formula
in turn, converting the negation of the formula into a set
of clauses, say C, and showing that there is a refutation
of R U C. If there is such a refutation, the original
formula is implied by R; otherwise the defaults are
unsafe. A more efficient connection-finding procedure
will be the subject of a forthcoming paper.

5. RELATED WORK

Research into the interaction of defaults has also been
undertaken by Reiter and Criscuolo,’ who consider
several cases in which defaults give rise to different
extensions, whereas intuitively one would expect one
default to override the others. The authors show how this
objective can be achieved, either by introducing ad-
ditional defaults, or by re-expressing the assumptions
with ‘semi-normal’ defaults, and present a classification
of such interacting defaults. However, the classification
is incomplete, in the sense that the interaction of some
defaults may not be detected, and some defaults may be
classified as interacting when this is not the case.
Throughout the paper we have assumed that unsafe
defaults are to be rejected, since we believe that for many
large practical database systems the user will consider the
database to be in error if more than one extension arises.
There are, however, two alternative approaches. The
first, proposed by Reiter,’® allows the more than one
extension to arise and treats a query as a request to

THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991 243

16-2

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

P. KING AND C. SMALL

ascertain whether there exists an extension implies that
query. The second approach is to ‘ prioritise’ the defaults;

for example, Touretzky, within the framework of
inheritance networks, uses a topological relation called
‘inferential distance’ to prefer defaults associated with
sub-classes to those associated with super-classes, and
Etherington' shows how semi-normal defaults may be
used to give some defaults priority over others. There
would appear to be no reason why one or other of these
approaches could not be adopted within the framework
outlined above; nevertheless, we would argue that even
should such an approach be adopted it is still desirable
that potential conflicts be drawn to the users attention,
since an unsafe pair of defaults would tend to suggest
that conclusions may be drawn too hastily.
Minker,®andmorerecently Gelfondand Pryzmusinska,?
have developed work on the Generalised Closed World
Assumption. There are two major differences between
our work and the GCWA. Firstly, the GCWA affects
closure by reference to the predicate symbols only, whilst
our work allows the DBA to select subsets of the ground
atoms with a particular predicate to be closed by
attaching conditions to the relevant defaults. Secondly,

REFERENCES

1. D. W. Etherington, Formalizing non-monotonic reasoning
systems. Artificial Intelligence 31, 1 (1987).

2. M. Gelfond and H. Przymusinska, Negation as failure:
careful closure procedure. Artificial Intelligence 30, 273-287
(1986).

3. P.M.D. Gray and R.J. Lucas, Prolog and Databases:
Implementations and New Directions. Ellis Horwood (1988).

4. D. W. Loveland, A linear format for resolution. Sym-
posium on Automatic Demonstration, Springer Lecture
Notes on Mathematics, no. 125, pp. 147-162.

5. E. Mendelsson, Introduction to Mathematical Logic, 3rd
edition. Wadsworth Inc. (1987).

6. J. Minker, On indefinite databases and the closed world
assumption. In Proceedings of the 6th Conference on
Automated Deduction. Springer Lecture Notes in Computer
Science no. 138, pp. 292-308 (1982).

7. A. Motro, Completeness information and its application

since the rules of a default database can be used to derive
negative information (such as the citizenship of a person
in rule 1, Example 2.2), our method allows defaults to
derive positive information as well as negative infor-
mation (see again Example 2.2).

Finally, in a recent paper Motro” uses ‘completeness
assertions’ to define subsets of the database to which the
Closed World Assumption is to be applied. It is of
particular interest to note that Motro’s work is subsumed
by our approach, since each completeness assertion can
be expressed as a default with positive prerequisite
literals and a negative assumption literal.

Acknowledgements

This work was carried out with the support of IBM (UK)
Research Laboratories Ltd, the second author being in
receipt of an SERC(CASE) award. The final stages of the
work were financed under SERC (ALVEY) project
number GR/0/7306.5-IKBS/140. The authors gratefully
acknowledge the help and advice of Mir Derakhshan,
Alexandra Poulovassilis, Geoff Sharman and Norman
Winterbottom.

to query processing. Proceedings of the 12th International
Conference On Very Large Databases (1986).

8. N. J. Nilsson, Principles Of Artificial Intelligence. Springer-
Verlag (1980).

9. R. Reiter. On Closed World Databases, in Logic and
Databases. Plenum Press (1978).

10. R. Reiter, A logic for default reasoning. Artificial In-
telligence 13, 1, 2 (1980).

11. R. Reiter and G. Criscuolo, On interacting defaults. In-
ternational Joint Conference On Artificial Intelligence
(1981).

12. H. Rybinski, On first-order-logic databases.
Transactions On Database Systems 12, 3 (1987).

13. C. Small, Guarded default databases: a prototype im-
plementation, in ref. 3.

14. D. S. Touretzky, The Mathematics Of Inheritance Systems.
Morgan Kaufmann (1986).

ACM

Announcements

28-31 OCTOBER 1991

Eurographics Workshop on Computer Graphics
and Mathematics, Genova, Italy

Aims and scope

The aims of the workshop are (1) to provide a
forum for the exchange of research results in
the application of mathematics to computer
graphics, i.e. a technology transfer; (2) to
encourage mathematicians to attack computer
graphics problems; and (3) to promote the use
of all relevant mathematical techniques and
methods in computer graphics. A secondary
aim is to discover the basic mathematical tools
every computer graphics expert should have.

Topics include

® Techniques from geometry
Projective geometry
Computational geometry

Differential geometry
Fractal geometry

® Probability
Stochastic functions
Monte Carlo methods
Chaos theory

@ Techniques from topology
Topological modelling
Non-manifold modelling

® Logic and reasoning
Theorem proving
Symbolic reasoning

® Analytical and algebraic tools
Algebraic geometry
Complex analytical tools
Quaternions

Venue and fee

The workshop will be held in S. Margherita
(Genova), Italy. The fee will be about 630,000
Liras, including accommodation and meals.

244 THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

Organisation

The workshop is organised by the IL.M.A.
(Institute for Applied Mathematics) of the
C.N.R. for Eurographics.

Workshop format

The workshop is limited to about 50 partici-
pants. Papers will be presented to the plenum
while specialised groups will be formed for
discussion sessions.

Information

Please write for further details to: Bianca
Falcidieno or Caterina Pienovi, Istituto per la
Matematica Applicata, Via L. B. Alberti 4,
16132 Genova, Italy. Email:
FALCIDIENO@IMAGE.GE.CRN.IT or
PIENOVI@IMAGE.GE.CNR.IT. Tel.:
+39 10-517639. Fax: +39 10-517801.

¥20Z Iudy 01 uo 1senb Aq 625211/6£2/S/vE 8101/ |UulWwoo/woo dnorolwspeoe//:sdiy wolj papeojumoq

