Concurrent Object-Oriented Programming in Lisp

J. PADGET, R. BRADFORD anp J. FITCH

School of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 74Y

We describe the approach to the concurrent execution of object-oriented programs that is being researched at the
University of Bath. The aim of this project is the concurrent execution of both new Lisp programs and existing Lisp
applications. We are pursuing this goal by addressing the problems of concurrent execution at several levels: static
analysis of Lisp programs as a basis for semi-automatic transformation, modification of medium-sized Lisp programs to
use concurrent primitives to gain experience in their use and behaviour and the implementation of various concurrency
primitives in a compiled distributed heterogeneous Lisp environment. Each of these topics is described in turn and its

relationship to the long term aim defined above is examined.

Received January 1991

1. INTRODUCTION

The aim of our project is to take new and existing Lisp
applications and execute them on closely coupled multi-
processors or distributed heterogeneous processors. This
paper describes our programme for achieving this and
reports on the progress we have made towards this goal.
Consequently, a proportion of this paper discusses what
we have built and the rest discusses what we intend to
build. Our plan is to use a semi-automatic compilation
system which will convert the sequential program into
one using the concurrency primitives we have defined.
Clearly, this is a difficult problem and one which we have
not yet solved. We believe we can arrive at a solution via
a constructive approach in three stages:

(1) Developing the concurrency primitives. These are
our foundation. The concurrency primitives currently
in use are futures,'® linda® and time-warps.*?* These
operations have all been implemented in a compiled Lisp
environment which executes on a heterogeneous network.
Modules implementing these operations have also been
written for EULIsP®* and executed on both tightly- and
loosely-coupled multi-processing environments.

(2) Writing or rewriting programs with explicit
concurrency constructs. This helps us to test the reliability
and generality of the mechanisms. At the moment we
have a version of OPS5'2 rewritten in an object-oriented
style, in which the RETE network is represented as a
collection of objects.? Another major Lisp program we
use is the Reduce algebra system.?* Some of the
algorithms in Reduce, in particular those for Grobner
bases and for Hensel lifting, are particularly suitable for
concurrent execution. We intend to rewrite these parts
using explicit concurrency constructs. The Grobner basis
code in Reduce has been modified for concurrent
execution using Linda and run successfully. The third
application area is discrete event simulation and we will
be adapting the ARSONIST simulation (a forest-fire
fighting simulation) for concurrent execution. Since
ARSONIST is already an object-oriented program, this
will give an opportunity for more abstract experimen-
tation since the parallelism can be written into the
metaclasses rather than appearing directly in the
program.

(3) Static analysis of programs to gather information
for the semi-automatic compilation from sequential to
parallel programs. A preliminary data-flow analyser has

been written and applied to the factoriser of the Reduce
system,® but the results of this analysis have yet to be put
to use. A second, more advanced static analyser is being
developed.*®

At the end of these stages we hope to have collected
sufficient knowledge about the behaviour of concurrent
programs to enable us to build a general-purpose
concurrent execution environment.

An orthogonal issue to concurrent execution is that of
object management, or, more bluntly, the size of the
object-oriented program. This is a particular problem for
both OOPSS5 (the object-oriented version of OPSS) and
for discrete event simulation. In the case of OOPSS, the
largest rule-set we have run generates a network
containing 5,500 objects. In the case of ARSONIST, we
do not have any such large figures, because, at present
the simulation is relatively simple. However even a
realistic modelling of the terrain would need at least 500
objects per square kilometre. The planning capabilities
of the fire-fighters can be improved to a certain extent by
algorithmic means, but in the longer term, we intend to
provide a separate expert system for each planning agent
in the domain. The problem is one of scale: quite small
simulations are certainly going to consume all available
physical memory, it is even conceivable that large
simulations could exhaust a 32-bit address space. Our
solution to this is persistence and object cacheing.

At present, we are working in two Lisp environments:
one based on Portable Standard Lisp (PSL),'® which
provides a compiled heterogenous distributed Lisp
environment supporting futures, linda and time-warp and
the other based on EULIsP, which provides an interpreted
(byte code and native code compilation are under
development) environment with the same facilities. OPS5
has been rewritten in an object-oriented style — as a first
step towards conversion for concurrent execution — and
behaves equivalent to the original program. Some parts
of Reduce have been analysed, the Grobner basis part
has been modified and a re-write of power-series has
been planned. There is a dataflow analyser which has
been applied to some non-trivial programs.

2. CONCURRENCY PRIMITIVES

Identifying concurrency in a program is one problem;
expressing that concurrency effectively is another. The

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 311

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



J.PADGET, R. BRADFORD AND J. FITCH

degree of abstraction provided by the concurrency
operations is important because that affects how readily
concurrency can be expressed. We believe semaphores,
critical regions and even occam style processes are too
low-level to be of use in the source language. Therefore
we seek something with more abstraction. At present we
have chosen to use three concurrency abstractions. Two
are quite similar: futures and linda. The third — time-warp
—is somewhat different and at a higher level.

Why have three ways of expressing concurrency ? Our
answer is that there are different granularities of
concurrency in a program and different abstractions
capture different granularities. Although, the system, of
necessity, has primitive concurrency operations, these
are there to construct concurrency abstractions. In their
turn, these abstractions incorporate declarative infor-
mation about the nature of the concurrent process. In
our opinion, based on empirical observations, time-warp
is suitable for very coarse-grain concurrency and futures
and linda are suitable for medium-grain concurrency.
The latter two have complementary features which
makes each attractive depending on the circumstances:
linda inherently offers a means of limiting parallelism,
whilst futures is simply eager evaluation with no self-
imposed limits. The attraction of time-warp lies in its
speculative evaluation tactic. However, its effectiveness is
yet to be fully proven.

Rather than pursue one method of expressing
concurrency, we decided that we wanted to get practical
experience of several. That is to say, we are quite
prepared to add other concurrency models to our system
in order to learn more (for example, a CSP model).
Consequently, we have developed an implementation of
Lisp which runs on different kinds of processors on a
local area network to provide us with a cheap distributed
processing environment, work which was carried out
partially in cooperation with the RAND Corporation.
Within this Lisp we have implemented multiple control
threads and used that to implement futures, linda and
time-warp. This allows programs to be written that use
any combination of these concurrency primitives. More
recently, we have developed a new implementation of
Lisp following the EuLisp definition. This is a more
attractive long-term development vehicle because support
for parallelism has been built into the design of EULIsP
and the abstraction facilities provided by its module
mechanism and fully integrated object system (TEAOZX)
are what we need for both robust programming and fast

prototyping.

2.1 Light-weight processes

The PSL system was developed without the benefit of a
multi-processor, so the multiple-thread facility is some-
what limited. Since then, the arrival of EULIsP and of two
Stardent Titan-3 (each with three processors) have led
to the development of true parallel executing threads in
our implementation of EULIsP.

The EuLisp thread model provides some primitive
operations for the creation and manipulation of threads,
but intentionally avoids attempting to be high-level.
Thus the basic operations are: make-thread to create
a thread, proceed to indicate that a thread can continue
executing and suspend for a thread to give up executing
voluntarily. The goal for the EuLIsP thread primitives is

to provide sufficient power to implement more abstract
and more usable concurrent processing models without
being biased towards any particular one and without
being biased to a particular architecture. Current
evidence, based on our implementations of futures, linda
and time-warp on top of these primitives, leads us to
believe that they are satisfactory. Clearly, some new
abstract parallelism model may yet modify this situation.

Process abstraction is another area in which objects
play a key role in this project. Although a number of the
applications we are using are object oriented already,
that does not necessarily make them executable
concurrently. To make the transition from serial OOP to
concurrent OOP, we will use TEAOZ™ to define new
metaclasses which incorporate concurrent execution, so
that applications written in terms of those metaclasses
can execute concurrently without major changes to the
source code of the application. EULIsP is different from
most other Lisps in that the object system is tightly
integrated with the Lisp — indeed the basic Lisp types are
classes — and so threads are already part of the class
hierarchy. Indeed the implementations of futures and
linda in EuLisp are simply classes built on top of the
thread class. In order to simplify the scheduling of these
different types of processes which can exist simultaneously,
the notion of the scheduler as a generic function — which
dispatches on the class of the process it is being asked to
schedule — is being developed.

2.2 Distributed execution

The concurrency primitives are independent of any
particular machine architecture or topology. At present
we are using them in a distributed environment built
from different Unix workstations linked by ethernet.
This provides us with a cheap, loosely-coupled, private-
memory multi-processor. Clearly, such an environment
is not satisfactory in the long term, but it has worked well
as a test-bed on which to develop the primitive operations.

The distributed execution environment has been built
by adding network operations to the Lisp system and a
means to start Lisp images on several machines. All the
Lisp processes then try to establish network connections
with all of the other Lisp processes. The result is a fully
connected virtual network of Lisp processes which read
and write over sockets.

This environment has forced us to face issues peculiar
to private memory systems. In particular, a great deal of
effort has been devoted to the network transmission
model* and into process migration techniques. Recent
work at RAND on the latter has been very effective,
allowing time-warp processes to migrate during the
execution of the program, resulting in better processor
utilisation and much faster run-times.

2.3 Futures

The future concept is well-documented.!? ?*-2* The idea
can be summarised briefly by considering the evaluation
of (future expression). Unlike an ordinary function
call, expression is not evaluated and then passed to
future, instead a new process is created to manage its
evaluation. The call to future does not wait for the
process evaluating expression to be completed, instead it
returns a future object, which is a handle on the expression

312 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



CONCURRENT OBJECT-ORIENTED PROGRAMMING IN LISP

process. The process which called future now proceeds
concurrently with the evaluation of expression. The
future object will contain the result of expression when
that process terminates, but if any process tries to access
the value of the future before the expression process is
completed, it is blocked.

A disadvantage of future at the implementation level is
that the application of certain operators must check for
futures and treat them specially. The consequence is a
processing overhead to check whether such an operator
has been given a future or not. In brief, anywhere there
is a strict function or a function that is strict in some
particular argument, it must be checked for a future. In
ref. 25 it is reported that this overhead slows the system
down by a factor of two. An alternative tactic to handle
futures is to make every function that might dereference
a future into a generic function and then write cor-
responding methods. This would have the effect of
moving the testing cost into the generic function dispatch
mechanism. Clearly, it would not reduce the cost in any
way, just move it elsewhere. A recently developed
technique® suggests a lower overhead implementation is
possible.

The future is a very simple and attractive concurrency
abstraction. It is also simple to use: the program is
examined to decide where a significant amount of work
could be done in parallel and then that function call is
wrapped with future. This is the positive side.

As with any powerful operation, it is quite easy also to
make mistakes. Mistakes in this context are: too many
futures and wasted futures. The first clogs the system and
makes it thrash. The second slows down a concurrent
program by making tasks insufficiently complex, so that
the cost of process management becomes more significant
than the time saved by executing concurrently. This is
why deciding where to place futures in a program is a
subtle task. Qlisp!® puts dynamic control over the
creation of futures in the hands of the programmer — the
drawback is that such control is local, whilst the problem
is of a global nature. Recent work on conditional task
creation®®®® recognises this fact. Implementations of
futures have been done for PSL (uniprocessor) and for
EuLisP (uni + multiprocessor).

2.4 Linda

The linda process model” is not so different from the
Sfuture. Whilst a future is created for each expression that
is the argument of future, the linda user creates a pre-
determined number of process for each kind of expression
in advance. In effect, linda is a software form of dataflow.

The linda model capitalizes on the probability that the
majority of operations that could be done concurrently
are of the same class, but with different parameters. If we
consider quicksort, one might insert parallelism by
processing each of the partitions in parallel. Using
futures, this would suggest wrapping each recursive call,
but the future operation would always be the same: the
quicksort function. The difference is the parameter,
which is a partition of the input list. Of course, this is a
very particular example and quicksort is not a very
representative program. However, we have observed that
often the operation to be performed by many of the
future processes is the same ; only the arguments differ. In
Linda, we can create as many servers for a particular

operation as appropriate (a decision to be based on
resources and the relative importance of this component
of the parallel computation in question) rather than an
arbitrary number directly proportional to the magnitude
of the input.

In brief, the linda model consists of a collection of
processes. In that collection there can be many sets of
identical processes. The number of identical processes of
a given type offers a means of controlling the amount of
concurrency of a particular kind of operation. We will
return to this property of linda later. Processes in the
linda model communicate through special operations on
a pool of data. The originators of /inda call this pool the
tuple-space — more recent developments include the use
of multiple pools organised in hierarchies. The tuple-
space contains data being communicated from one
process to another. However, to make sure that the right
kind of process picks up the right kind of expression, the
expressions are tagged. A process takes an expression
from the pool using the operation in and puts an
expression into the pool using the operation out. A
process takes a copy of an expression from the pool with
read. The eval operation puts an unevaluated ex-
pression into the pool and creates a process to evaluate
it — this is called an active tuple. When the evaluation is
complete, the tuple becomes passive and can be taken
from the pool using either in or read. Clearly, eval is
very similar to a future operation and, indeed, could be
implemented as such. Thus, we start to see the benefits of
having several concurrent paradigms in the same
environment.

The operation of taking an expression from the pool
can be quite complex and in the full /inda model involves
pattern matching. Patterns can be seen as a logical
extension of the use of tags to identify for which process
a tuple is destined.

Although linda is, like futures, an abstract model,
independent of architecture, the tuple-space communi-
cation model is inherently well suited to a shared-
memory multi-processor. If they had not existed, all the
networking operations would have had to be
implemented to support linda in a distributed environ-
ment. In practice, we have found managing the tuple-
space in a distributed environment to be fairly straight-
forward since we were able to build on the communi-
cations code already installed—and well-debugged.
Implementations of linda have been done in PSL
(uniprocessor and distributed multiprocessor) and in
EuLisp (uni + multiprocessor, a distributed version is in
progress).

2.5 Time-warps

The time-warp process model is somewhat different from
futures and linda. We call the time-warp model a
speculative evaluation model. The reason is that, under
time-warp, computation is often done before it is required
to be done. Indeed, it is often not known whether the
result of a computation is even necessary. The time-warp
model gambles on what computations will be needed in
the future. So far, time-warp sounds interesting, if
somewhat wasteful. The negative side of time-warp
shows up when it is discovered that the results of a
computation undertaken speculatively are not needed. In
a purely functional world this would not be a problem.

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 313

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



J. PADGET, R. BRADFORD AND J. FITCH

In a side-effect world, the side-effects have to be undone.
In time-warp terminology, this operation is called
rollback. Tt is the rollback issue that determines most
peoples’ attitude to time-warp; some consider it com-
pletely unreasonable and reject the whole time-warp
approach, others consider it as a serious, but not
insurmountable, problem. The dilemma is captured in
the time-warp thesis,?® which is:

e that rollback occurs only infrequently (temporal
locality);

e that the cost of rollback is no more than
what would have been wasted by not doing any
speculative computation;

e that there is a simple implementation of rollback.

The issue is whether this thesis is credible or not. We
have decided to test it in an implementation. We have no
definitive answer yet, but we still feel positive about the
time-warp approach. We have been involved with an
initial implementation of time-warp at the RAND
Corporation, and two separate implementations at Bath,
and so can say that in practice, the time-warp model fits
in very well with object-oriented evaluation and, indeed,
with concurrent evaluation.

In brief, the time-warp model is of a collection of
processes where process interaction is carried out by
asynchronous message passing. The core of the technique
lies in how the messages are handled, but in order to
describe how time-warp operates, first the concept of
virtual time needs to be explained.

Virtual time in a time-warp program starts at zero and
progresses to infinity. Each time-warp process has a local
virtual clock which records the local virtual time (LVT).
Virtual time is propagated through the network of
processes by the operation of message passing. When the
LVT of each process in a program reaches infinity, this
indicates the termination of the whole time-warp
program. Thus, virtual time measures the progress made
by a time-warp program towards the end of its
computation.

Each message sent is stamped with the LVT of the
sending process and an estimated receive time which is
strictly greater then the LVT of the sending process.
Each incoming message is queued until the time-warp
process is ready to evaluate it. The messages are stored in
receive time order and the LVT of the receiving process
is advanced to the receive time stored in the message
immediately before evaluating the message. Thus, virtual
time is propagated through the collection of processes.

Rollback occurs when a message arrives late. That is
to say, the receive time on the message is less than the
LVT of the receiving process. The receiving process must
now restore the state that existed at the receive time of
the message and start computing again from that time.
The restoration of the state of an object can be done by
taking snapshots of the slot values of the object between
processing each message, say. Unfortunately, restoring
the object’s internal state is only part of the picture.
Between the virtual time at which the message should
have been processed and the current LVT of the object,
messages might have been sent to other time-warp
processes. Hence, those messages must be recalled and,
perhaps, those processes rolled back too.

Undoing the effects of messages is achieved by using

the so-called anti-messages. For each message that must
be recalled, a corresponding anti-message is sent. If the
message and the anti-message meet in the time-warp
object input queue, they cancel each other out. If the
message is not in the input queue, then it might not yet
have arrived, or it might have been processed already. In
the former case, the anti-message is inserted to await the
arrival of the message, and they will then annihilate. In
the latter case the process accepts the anti-message
immediately and starts to roll back to the time of the
anti-message. This might well cascade to many more
objects. However, since the algebraic sum of messages in
the system — that is messages and (real or potential) anti-
messages — is zero and because of the requirement that
the receive time of a message be strictly greater than the
send time, the rollback operation is guaranteed to
terminate.

What has been described here is the principles involved
in time-warp operation. The overheads make it seem
impossibly expensive. However, like many algorithms,
the simple explanation and the naive implementation are
good for understanding how it works, but unreasonable
in practice. There are many differences between the
description here and an efficient implementation.'
Implementations of time-warp have been done for PSL
(constructed on top of linda on a uniprocessor) and for
EuLisp (distributed multiprocessor).

2.6 Process migration

The use of a distributed system has encouraged us to
investigate the question of process migration. Clearly, it
is much harder to change the processor running a process
if the system is distributed than if it has shared memory.
In fact, a shared memory processor makes is possible to
ignore process placement and process migration issues
for much longer than with a distributed system. It
became apparent to us early in our research that although
initial process placement was not unhelpful, some
dynamic technique was needed.

Migration of time-warp processes has been imple-
mented on the RAND system and has proven very
successful in the sense that the time-warp test programs
ran about an order of magnitude faster with process
migration than they did without. The details of the
migration policies and their relative effectiveness are to
be found in ref. 6. More recently, we have developed an
idea, which is currently being implemented at Bath, that
uses futures as a means of controlling migration
(described below).

2.7 Migrating time-warp processes

A time-warp process is represented as an object. The
object comprises some slot values, the state queue (used
in rollback), the input message queue and the output
message queue. We impose the restriction that a time-
warp process may only migrate in between message
processing cycles. In this way we are assured that the
state of the time-warp process is consistent when it is
migrated. Consequently, the time-warp object is simply a
data-structure to be transferred from one memory to
another. This can be accomplished using the network
primitives mentioned earlier.

314 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



CONCURRENT OBJECT-ORIENTED PROGRAMMING IN LISP

2.8 Futures as a migration medium

The migration of time-warp processes described above
could be called stop-and-copy because the process is
halted, copied and restarted. This is probably an
appropriate strategy for a data structure such as a
process, which is likely to need to make frequent reference
to most of its state. In the general case of migration of
structure between processors, this might not be true. This
concern has led researchers to talk of copy-on-reference
and lazy-copying as means of avoiding copying large
data structures of which only small parts might be
referenced.

Using futures as a control abstraction, an elegant
model for data structure migration has been developed.
This model can support copy-on-reference, lazy-copying
and even move-on-reference and lazy-moving. The
technique is currently being implemented at Bath® and a
similar approach®® is being used in the ICS-LA (Im-
plementation Compilation et Sémantique des Langages
Applicative) project at INRIA. In brief, the method
works by creating a future for each remote reference.
Then, the process related to the future can either copy the
data-structure when a process blocks on access to the
future or copy it as a background process interleaved
with other computations. There are two interesting
related issues:

1. limiting the amount that is copied;

2. maintaining the integrity of the value to which there
is a remote reference.

Limiting the amount of structure copied is an issue for
copy-on-reference. Two options immediately apparent
are depth-first and breadth-first copies — which is pref-
erable will, in all likelihood, depend on the application.
In the breadth-first case, for instance, copy-on-reference
would traverse the structure making a new future object
for each place where the structure might be descended
further. Further accesses to the structure might encounter
other futures and thus cause more copying. Hence the
actual amount of structure moved can be limited to what
is accessed, but at the price of waiting for those parts on
almost every access.

The second issue is maintaining integrity of a value
after a reference to it has been exported. The remote
process must be able to refer to the value at the time of
exporting the reference. Therefore, it must be protected
against any changes to the value made by the process in
whose address space it resides. In fact, rather than being
protected against changes, it is necessary to record the
changes so that previous values can be recovered. Such
behaviour is very similar to that provided by a time-warp
process. The significant difference between the needs of
this object and a true time-warp object is that there is
no need to support rollback since old values can be
determined simply from examining the saved states of
the object. Thus, we again see an advantage from having
several concurrent paradigms in the same environment.

An extension of this idea using futures to copy data
structures can also be used to distribute a data structure
across processors. In this way the issue of maintaining
integrity can be avoided, because the uniqueness of the
structure is preserved. The operation of handling a
request for a remote reference is much as described

previously. The difference is that instead of making an
object to handle the updates to the value, a remote
reference is installed in its place and the processor
making the remote reference now becomes the owner of
the value. Thus, a data structure can be moved rather
than copied between processors and hence a data
structure may be distributed across several processors.
Such a technique might be attractive for divide-and-
conquer style algorithms in which different processes
worked on different parts of a common data structure.

2.9 Persistent objects

The final part of our infrastructure for supporting large
scale concurrent applications is a mechanism for per-
sistent objects. In the introduction, we outlined our need
for persistence: the problems we want to execute are very
large. Persistence will have two benefits: first is that we
can run very large problems, even to the extent of
problems that could not fit in a 32-bit address space,
second is that it will also aid efficiency in a manner
analogous to generational and ephemeral garbage col-
lection by keeping the working set size down.

The persistent object system in EULISP is a result of
porting the Persistent Simulation Environment® from
Common Lisp, which in turn is an adaptation of the
Picasso system®® developed at Berkeley. However, PSE is
a simplification of Picasso, in that it uses flat files instead
of Postgres (the successor to Ingres.) Because the
persistent system is built on top of TEAOZ it has the twin
advantages of integrating the resulting system with the
rest of our development environment and making
development of the persistent facilities simpler since it is
only an extension of the existing architecture. In brief,
the approach has been to define a new slot description
class for persistent slots (in objects) which implements
the object cache and pre-fetch policies. The accessing of
a slot in an object is mediated by the slot-reader, which
is a generic function on the slot description class, hence,
the slot access can load the object, if necessary, and
return the contents of the slot. In effect, this looks
much like virtual memory management. As with virtual
memory, where it is desirable to try and ensure that the
page is loaded before each reference, we would like to
ensure that each object is loaded before the message is
sent. For this, we need pre-fetch policies and, indeed,
replacement policies. In the case of the discrete event
simulations, where a vast number of the objects are map
and feature data —which rarely change —a pre-fetch
policy is quite straightforward since there is a strong
likelihood that adjacent map segments and related feature
data will be needed. In the production rule system too,
there is locality in terms of the nodes in the RETE
network and therein the basis for different pre-fetch
policy which will suit this problem.

The persistent object system has been used to run some
small simulations based on US Army map data to find
shortest paths between locations and to simulate an
activity network. Under development at the moment is
a Petri net simulation language using persistence. Com-
plementary to this work, an interface has also been
developed to the Unix database manager, dbm (in fact, to
the GNU version, called gdbm, which supports access to
multiple databases). Again, some small experiments have

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 315

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



J. PADGET, R. BRADFORD AND J. FITCH

been run on sample map data, this time supplied by
Bartholomews, covering a 100 km? region centred on
Bristol.

3. MANUAL PARALLELISATION

Implementing a concurrent operation such as future,
linda or time-warp is only the first step towards concurrent
processing. What is needed more than anything else is
experience in the use and effectiveness of these concurrent
operations. Initially, one needs to know whether the
implementation is correct —as far as can be told from
empirical observation — and then one wants to find out
how easy it is to use the concurrent operation in practice.
In the long term we expect the concurrent operations
to be inserted semi-automatically into the application
program. In the short term it is part of our programme
to modify existing Lisp applications in order to gain
practical experience. Not least, this experience will be
useful in developing the semi-automatic paralleliser.

We have taken two quite well-known small- and
medium-sized Lisp programs as the basis of our
experiments in manual parallelisation: the OPSS5 pro-
duction rule interpreter and the Reduce algebra system.
We are working on each of these in quite different
ways. OPS5 has been rewritten as OOPSS5. Reduce is
being analysed — as a prelude to rewriting and to test
the analyser —and one part of it has been rewritten
(many other parts remain). The third program, called
ARSONIST, was developed at RAND for forest fire
simulation.

3.1 OPSS

The OPSS production rule interpreter is, in its original
form, a small program written in Franz Lisp. It has been
ported to many different Lisps including Common Lisp,
Cambridge Lisp, PSL and Le-Lisp. The interpreter
comes in two parts: one builds the so-called RETE
network from the left hand sides of the productions, the
other drives the recognise-act cycle of the interpreter.
Briefly, a production rule intzrpreter works by matching
the current state of the working memory against the left
hand sides of the production rules to generate the conflict
set. This is the recognise phase. The conflict set is the set
of productions which match the current state of working
memory. The act phase selects one production from the
conflict set and takes the actions specified on the right
hand side of that rule. Then, a new recognise phase
starts. As with most other work on parallelising
production system!”''®, we are concentrating on the
recognise phase of the recognise-act cycle.

The interpreter has been rewritten to use six different
classes. For brevity here, we assume familiarity with
OPS5 terminology, but for details see ref. 12. The six
classes are:

production rule;

working memory distributor;
condition element;

conflict resolution manager;
working memory element;
working memory clock.

N W~

The first part of the interpreter has been rewritten to

use objects so that the RETE network is represented by
a collection of instances of condition elements and
working memory elements. Testing on several widely
used rule-sets has shown the rewritten OPSS5 to behave in
an equivalent manner to the original OPS5 program.
This is the current state of the project. Having objectified
the network we can now consider executing it con-
currently on a distributed network. Each of the condition
elements and working memory elements can now be
treated as a separate process and distributed across the
multi-processing system. Consequently, searches through
the network can be executed concurrently. However,
although it is widely recognised that production systems
spend the majority of execution time in the recognise
phase, there is still a bottleneck on parallelism in the act
phase. The act phase can be likened to the commit
operation in a database — having selected the rule to fire,
we must await the completion of the execution of the
right hand side before starting the next recognise
iteration.

The use of time-warp style execution offers an
interesting way of avoiding the synchronisation at act
time. Because a time-warp object is able to rollback to
previous states — it could be likened to backtracking —if
the working memory elements could record different
values corresponding to different virtual times, a similar
effect could be achieved. Thus, the recognise-act cycles
can be overlapped and the act phase does not require a
synchronisation once for every loop of the interpreter.
The support for this has been implemented but it has not
been tested seriously yet. This work has been carried out
in PSL using a uniprocessor.

3.2 Reduce

We are using Reduce in two ways. As a source of large
amounts of Lisp to feed to the dataflow analyser (see
section on Semi-Automatic Parallelisation) and as a test-
bed for manual insertion of concurrent constructs into
programs. These two uses provide mutual feedback,
since the dataflow analysis suggests where there is
parallelism to be released and the manual insertion
(and inspection) suggests where the analyser has
not discovered enough information. However, there is
another reason for the interest in computer algebra. The
reason is that computer algebra problems consume large
amounts of time (and space) and a number of the
common algebraic algorithms offer a lot of potential for
parallelism.

The two algorithms of primary interest are the Hensel
lifting stage of polynomial factorisation and Groébner
basis computations.?® Grobner bases are becoming
the lynch-pin of many new algorithms proposed in
the computer algebra community as well as being
fundamental in solving algebraic problems in robotics
related to the movement of objects in confined spaces.
Hence, computing Grébner bases quickly is becoming
increasingly important —and increasingly difficult for a
uni-processor as the polynomials get larger and more
numerous. A third area is power series evaluation — since
the Reduce implementation of power series®' is modelled
as a network of streams, this could easily be transformed
into a network of communicating processes.

316 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



CONCURRENT OBJECT-ORIENTED PROGRAMMING IN LISP

3.3 Discrete event simulation

At present we only have one discrete event simulation
program ; the ARSONIST forest fire fighting simulation.
In the case of simulation, it does not matter so much
whether the program is widely known or used —as
distinct from our other choices — because it is the
mechanisms of discrete event simulation that are im-
portant and much less so the scenario being simulated.
However, the size and sophistication of the simulation
do affect the generality of the results.

The programming language for the simulation is a
development of the RLISP language in which Reduce is
written, called RLISP88. RLISP88 is an object-oriented
language designed to support the writing of discrete
event simulations and is implemented as a parser from
RLISP88 to Lisp running on top of Lisp.

The ARSONIST simulation comprises a hypothetical
map, the grid positions of which are either trees, grass,
dirt, houses, water, ash, fire-break or fire. The fire-
fighters are bulldozers which roam across this terrain
building fire-breaks to contain the fire with the primary
goal of saving houses and the secondary one of saving
trees. There is a single control centre which has aerial
reconnaissance to track the spread of fires and radio
contact with each of the bulldozers. Scenarios are created
by starting fires in various places and specifying factors
such as wind speed and bearing and the ease with which
materials will catch fire. By changing the root class of the
objects in this system and changing how messages are
passed, we will be able to experiment with concurrent
execution.

4. SEMI-AUTOMATIC
PARALLELISATION

To develop our intuitions and then our knowledge of the
behaviour of concurrent programs, we believe we have to
start by (re)writing programs with explicit concurrent
operations. However, as stated at the beginning, our long
term goal is an environment for the development of
concurrent programs where the concurrent operations
are inserted automatically or semi-automatically. To
address this problem one dataflow analyser has been
developed and another, more advanced, is under de-
velopment. The purpose of these programs is to make a
static analysis of a program written without concurrent
constructs and use the information to insert or to suggest
where to insert concurrent operations. This is one part of
semi-automatic parallelisation. This is a means to identify
what can be done concurrently. The second part of semi-
automatic parallelisation is to decide whether it is worth
executing something concurrently — static estimation of
run-time, The third part is to modify what is done
concurrently based on observed behaviour — dynamic
analysis.

We are working with two dataflow analysers: one is
based on the ideas in ref. 27 developed in ref. 10 and
taken further in ref. 9. This only produces a record of the
analysis. As yet, here is no integration with any compiler.
The other analyser is being developed® and has produced
analyses and rewrites of some quite complex test
cases.

4.1 Static analysis

The current dataflow analyser takes functions, or other
fragments of code, and constructs a flow graph from it.
The analyser contains tables of semantic information
about the basic Lisp functions and rules about composing
this semantic information depending on the form of the
program being analysed. This flow graph is processed
using this semantic information to yield a semantic
description of the side effects of each function of code
fragment. In effect this description is an annotated
closure of the function identifying the non-local effects of
the function.
The description is a 4-tuple:

1. read only non-local references;

2. read/write non-local references and modifications,
of which the latter implies a need for exclusive
access;

3. write only non-locals modified (before reference, or
not referenced at all);

4. hard a boolean which is true if nothing could be
determined about the side-effects of the function
(expressions involving set or nconc might cause
this).

The resulting descriptions may be saved in a file and
input to the analyser to provide a means of adding to the
analyser’s knowledge of the program on which it is
working. Hence one can analyse a module at a time but
provide the semantic information about each module as
needed when working on a large program. An issue that
is often overlooked in parallelism is whether code that
can be executed in parallel is worth executing in parallel
— that is, the grain size is too small for the overheads of
a given architecture. We measure the complexity of a
piece of code using a technique called the static estimation
of run-time, which is explained in the next section.

The new static analyser?! uses new techniques for
representing and analysing the program based on the
ideas in single static assignment (SSA)® and the PTRAN
analyser.! The new analyser also builds on ideas from the
current analyser, in particular with respect to the cost of
executing a block concurrently. The task is seen as one of
partitioning the program for concurrent execution.
Although this problem is NP-complete, a heuristic
approximation algorithm has been developed with near
optimal behaviour. The algorithm works by taking the
units of finest grain parallelism in the program and
composing them to build successively coarser grains of
parallelism until the units are sufficiently large to cross
the cost function (communications and scheduling
overhead) of the architecture for which the program is
being prepared. Effectively, the partioning algorithm
tries to minimise the cost function for a given architecture.
Some preliminary results of this algorithm are in
preparation.

4.2 Static estimation of run-time

Discovering what can be executed concurrently is a hard
problem. Deciding whether it is worth executing con-
currently is insoluble. However, one can make a good
guess.!' We call it a good guess because we have been
surprised at the accuracy of the guesses made by the run-

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 317

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



J.PADGET, R. BRADFORD AND J. FITCH

time estimator. The static estimation of run-time concerns
trying to guess how complex is a given piece of program
and therefore whether the overheads of managing its
concurrent execution are greater than the benefits of its
concurrent execution.

Determining the complexity of a program by static
analysis is equivalent to determining whether a program
terminates. Hence, it is insoluble. But to avoid creating
tasks with too fine a grain of parallelism some estimate
of what is and is not worth executing concurrently can be
very useful. The practical results of estimating the
run-time of a program have been surprisingly, even
frighteningly, accurate. The approach is constructive, as
might be expected, in that each of the primitive operations
is assigned a cost relative to the cost of a particular
primitive. In this case, the base primitive chosen is
car. Each basic operation is timed on a given processor
to obtain the spectral analysis of the Lisp operations on
that processor. These data are then used in the last stage
of the dataflow analysis to estimate the cost of each
identified concurrent unit and, hence, provide a basis
for a decision about whether to execute that unit
concurrently.

4.3 Dynamic analysis

In the first instance a static analysis can determine the
major independent regions of the code and a static
estimation of run-time can help make decisions about
whether it is worth separating off a task. However, the
dynamic behaviour of a concurrent program is difficult
to predict and almost as hard to observe. A multi-
processor profiling tool has been developed at RAND as
a first step in this direction® and we hope to be able to use
the trace information it collects from executing con-
current programs te improve their performance in
subsequent executions.

REFERENCES

1. F. A. Allen, M. Burke, P.Charles, R.Cytron, and J.
Ferrante, An overview of the PTRAN analysis system for
multiprocessing. Journal of Parallel and Distributed Com-
puting 5, 617-640 (1988).

2. M. F. Awdeh, OOPS5 — an object oriented production rule
system. Technical report, University of Bath, Concurrent
Processing Research Group (1989).

3. C. Burdorf and S. Cammarata, PSE: a CLOS-based per-
sistent simulation environment with prefetching capa-
bilities. In Proceedings of the CLOS Workshop (1989).

4. C.Burdorf, J.P.Fitch and J.B.Marti, Minimising
interprocessor computation overhead. Accepted for pub-
lication.

5. C. Burdorf, J. P. Fitch, J. B. Marti and J. A. Padget, A
multiprocessor execution profiler. In Proceedings of 22"
Annual Hawaii International Conference on System
Sciences, pp. 524-531. IEE (1989).

6. C. Burdorf and J. B. Marti, Load balancing strategies for
time warp on multi-user workstations. In preparation
(1989).

7. N. Carriero and D. Gelernter. Linda in context. Comm.
ACM 32 (4); 444459 (1989).

8. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and
F. K. Zadeck. An efficient method of computing single
static assignment form. In Proceedings of Sixteenth Annual
ACM Symposium on Principles of Programming Languages,
pp. 25-35. ACM (1989).

5. CONCLUSION

This paper cannot really have a conclusion, since it only
describes some steps along the way to a distant goal.
What we believe we have established so far is that
different concurrent processing primitives can co-exist
and can be implemented fairly efficiently even on ordinary
workstations connected on a local area network. We are
now in the process of transferring this to a loosely-
coupled system of tightly-coupled vector processors (that
is, two multi-processor Stardent systems connected by
ethernet). Our work on analysing Lisp programs has
produced meaningful and usable results.

We conjecture that no single concurrent operator is
ideal for all granularities of parallelism and that the
mixture we have captures a useful selection of granu-
larities. We also conjecture that extracting concurrency
from existing and new applications, written without any
particular regard for concurrency is tractable and that, in
a few years, semi-automatic translators from sequential
to concurrent programs are feasible.

Acknowledgements

As must be obvious from the breadth of the topics
covered in this paper, this is the work of a large number
of people. Acknowledgements are due to the other
members of the Concurrent Processing Research Group
(CPRG) at Bath: Mohammed Awdeh, James Davenport,
Dave De’Roure, Nuong Quang Dinh, David Hutchinson,
Spiridon Kalogeropolous, Keith Playford and Icarus
Sparry and to the Concurrent Processing for Advanced
Simulation group (CPAS) at the RAND Corporation,
Santa Monica: Christopher Burdorf, Barbara Gates,
Tony Hearn and Jed Marti.

9. J. P. Fitch, How can REDUCE be run in parallel? In
Proceedings of ISSAC’89, pp. 155-162. ACM (1989).

10. J. P. Fitch and J. B. Marti, The Bath concurrent Lisp
machine. In Proceedings of EUROCAL 83, vol. 162 of
LNCS, pp. 78-90. Springer-Verlag (1984).

11. J P. Fitch and J. B. Marti, The static estimation of run
time. Technical report, University of Bath Computing
Group (1987).

12. L. Forgy, OPS5 user’s manual. Technical Report CMU-
CS-80-13, Department of Computer Science, Carnegie-
Mellon University (1981).

13. R. P. Gabriel and J. M. McCarthy, Queue-based multi-
processing lisp. In Proceedings of 1984 ACM Conference
on Lisp and Functional Programming. ACM (1984).

14. B. L. Gates and J. B. Marti, An empirical study of time-
warp systems. In Proceedings of the Winter Simulation
Conference (1988).

15. N. Graube. Architectures réflexives et implémentations des
langages a taxonomie de classes en Lisp: Applications a
ObjVliisp, Common Lisp Object System et TEA0z. PhD
thesis, I'Université Paris 6 (1989).

16. M. L. Griss, E. Benson and G. Q. Maguire, PSL: a port-
able LISP system. In Proceedings of 1982 ACM Symposium
on LISP and Functional Programming. ACM (1982).

17. A. Gupta, Parallelism in Production Systems. PhD thesis,
Carnegie-Mellon University (1987).

18. A. Gupta and H.G. Okuno, Parallelising production

318 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



20.

21.

22.

23.

24.

CONCURRENT OBJECT-ORIENTED PROGRAMMING IN LISP

systems. Technical report, Stanford University Computer
Science Department, (1988).

. R. H. Halstead, Multilisp: a language for concurrent

symbolic computation. ACM TOPLAS 7, 501-538, (1985).
A. C.Hearn. The Reduce Mannual. The RAND Cor-
poration (1988).

D. J. C. Hutchinson, Implementing futures and linda.
Technical report, University of Bath, Concurrent
Processing Research Group (1989).

D. Jefferson. Virtual time. ACM TOPLAS 7, 404425
(1985).

S. Kalogeropolous, Partitioning Lisp programs for parallel
execution. Technical Report TR-89-28, University of Bath
Computing Group (1989).

S. Kalogeropolous, The Static Analysis of Lisp Programs
for Parallel Execution. PhD thesis, University of Bath
(1990).

25. D. A. Kranz, R. H. Halstead and E. Mohr, Mul-T: A
high-performance parallel Lisp. In Proceedings of
SIGPLAN 89 Conference on Programming Language
Design and Implementation, pp. 81-90. ACM (1989).

26. J-1. Levy, private communication (1990)

27. J. B. Marti. The Hasty Evaluator. PhD thesis, University of

28

29

30.

31.

32.

33.

34.

3s.

H. Melenk and W. Neun, Parallel polynominal operations
in the Burchberger algorithm. In Computer Algebra and
Parallelism. Academic Press (1989).

J. S. Miller, MultiScheme : A Parallel Processing System.
PhD thesis, Massachussetts Institute of Technology (1987).
E. Mohr, D. A. Kranz and R. H. Halstead, Lazy task
creation: a technique for increasing the granularity of
parallel programs. In Proceedings of 1990 ACM Conference
on Lisp and Functional Programming. ACM (1990).

J. A. Padget and A. Barnes, Univariate power series
expansions in Reduce. In Proceedings of ISSAC’90.
Addison-Wesley (1990).

J. A. Padget and G. Nuyens (eds), The EuLisp definition
(version 0.69). Technical report, University of Bath
Computing Group (1990).

J. Piquer, Multi-processus en Le-Lisp: Pive II. Rapport de
Stage, Université de Paris XI, Orsay (1988).

M. Radlhammer, The future of futures, or, how futures
can be implemented on stock hardware. In BCS High
Performance and Parallel Lisp Workshop. EUROPAL
(1990).

L. A. Rowe, A shared object hierarchy. In International
Workshop on Object-Oriented Database Systems. 1IEEE

Utah (1978).

(1986).

Book Review

RANALD ROBERTSON

Legal Protection of Computer Software.
London: Longman Law Tax and Finance,
1990. ISBN 085121 6846. Price £35.00.

This is a well-researched and well-presented
book covering all aspects of the subject from
contractual protection, through copyright,
trade secrets and trade marks to patent
protection. There is a very useful table of
cases, and the book ends with a section on the
remedies available should any of the rights
being protected be infringed.

Primarily it is a book for lawyers and expert
witnesses, but it is readable enough that a
computer professional would find little dif-
ficulty in following it, and would find much of
it instructive. Two important matters are dealt
with in appendices, namely a form of contract
guidelines for program licensing prepared
by the CSA, and a guide to the position
relating to protection of software in Europe.
Both of these are too short to contain the
quality of information provided in the main
text. One might hope that later editions will
include more detailed coverage of the Euro-
pean situation, since EEC directives are having
an increasing influence in UK courts. Con-
tractual matters are, I understand, more fully
dealt with in other Longman publications.

I do not recommend all computer profes-
sionals to go out and purchase a copy
immediately. However, if they become in-
volved in matters of legal protection of their
software, and particularly if they are freelances
who wish to retain their rights, it is very
valuable reading and explains clearly how the
law affects them. For those with a greater
interest in the law in this area, whether
computer professionals or lawyers, it is un-
doubtedly strongly recommended reading.

A. S. DouGLAs
London

GORDON HUGHES (editor)

Essays on Computer Law. London: Longman
Group UK Ltd, 1990. ISBN 0 582 93991 7.
Price £39.00.

In the Foreword, the Governor-General of
Australia, Sir Ninian Stephen, says ‘A re-
markable feature of this collection of essays is
the great diversity of its themes’ and goes on
to remark ‘Through the pages of this volume
computers can be seen both as useful tools of
legal education and practice of the law and, as
themselves, formidably at work in changing
the whole legal environment; creating new
and important relationships and subject mat-
ters, with which the law must come to terms’.

As will be seen from the foregoing, this is an
ambitious work, whilst the background of the
contributors links it to the Common Law as
practised ‘down under . This, of course, means
that it is largely relevant to English law,
although not directly aimed at it, but only
confronts the situation in the EEC occa-
sionally, as in the contribution of Michael
Kirby on Trans Border Data Flows, where he
has had an important influence on our thinking
through his involvement with the OECD.

It is inevitable that on a canvas so large as
this, the coverage of detail is often variable.
Certainly the treatment will be criticised by
readers depending on their background know-
ledge. If Colin Tapper wrote less interestingly,
lawyers could probably skip his introduction.
Computer people probably don’t need to read
Mr Burnside’s introduction to computers. UK
practitioners, legal or technical, will have little
interest in Section F on Taxation, which
relates wholly to Australian peculiarities.
Similarities with, and differences from, the
UK position are well brought out in the
sections on Intellectual Property, Data Pro-
tection, Crime and the Supply of Computer
Products. Some parts of these have general
application — I have already mentioned Trans
Border Data Flows, which come under Data
Protection, and should draw attention also to
another essay in that section on Computer
Security, which appears better balanced than

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

many offerings from ‘security consultants’
intent on selling their latest gimmick for
making management feel happy, whilst not
significantly decreasing their risk.

Section G on Evidence and Court Pro-
ceedings is of general interest. The article on
Admissibility of Computer Output reviews the
problems without getting entangled in the
matters which have incited Colin Tapper
elsewhere to remark that the legal position in
the UK is of * Byzantine complexity’ — perhaps
Australia has escaped this fate! The following
article on Alternative Dispute Resolution
indicates that matters have advanced further
in some Australian states than they have in
this country. The lawyers there appear to be
more friendly to attempts to simplify the
settlement of disputes other than by litigation
than is the case in the UK, and to be already
following the US lead in this matter, whereas
only tentative moves are being made here.

Section H on Practical Uses of Computers
has a strong Australian flavour, and is mainly
of interest in comparing what is going on there
with what is on the agenda here and elsewhere.
It is followed by a series of essays on progress
(or lack of it) in other countries, including
New Zealand, Malaysia, Singapore, the USA,
Canada and South Africa, and a summary of
how the Europeans and Japanese have ap-
proached similar problems. It is interesting to
find an article in this section by Philippa Perry
reviewing developments in the UK, a good
deal of which has been overtaken by the
rapidly moving events in the last year or so.

Overall there is much to commend these
essays to someone wishing to get an overview
of the legal situation in Australia and to
compare this with the situation in the UK. As
I have indicated, some of the essays are
deserving of a wider audience, being of greater
generality. I believe this book should be in any
library relating to computers and the law, but
I could not wholeheartedly recommend it for
purchase by students in the UK.

A. S. DOUGLAS
London

319

¥20Z I4dy €0 uo 1senb Aq 89989¢/1 L E/P/vE/e1ome/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



