I-Pigs: an Interactive Graphical Environment for Concurrent

Programming

M.-C. PONG*

Computing Laboratory, University of Kent at Canterbury, England CT2 7NF

This paper describes the programming environment I-PIGS which supports the graphical concurrent programming
language Pigsty. Pigsty uses graphical icons to represent processes, communication ports and links; and uses structured
charts to represent the constructs of control flow in a process. I-PIGS supports the editing of a Pigsty program
graphically, and executes the graphical program directly. I-PIGS guarantees that the graphical program is syntactically
and semantically correct. During the execution of a Pigsty program, I-PIGS animates data communication and shows
any deadlock situation on the screen. These capabilities help the user to understand the structure and the behaviour of

his program.

Received September 1987, revised August 1990

1. INTRODUCTION

This paper describes the interactive graphical environ-
ment I-PIGS* which supports concurrent programming
in a specially-designed graphical language Pigsty. (‘ Pig-
sty’ stands for the style of programming using PIGS.) I-
PIGS is an integrated environment in which a user (i.e. a
programmer) can edit and debug his graphical concurrent
Pigsty program directly. I-PIGS is different from other
earlier environments (e.g. Cornell Program Synthesizer?)
in supporting the execution of graphical programs. It
also distinguishes itself from other graphical environ-
ments (e.g. PIGS,® 2-PIGS,* Pict,> PECAN® and
GARDEN?") in supporting concurrent programming
(including distributed and parallel programming).

Debugging concurrent program (running in one or
more processors), or distributed or parallel program
(running in more than one processors) is difficult.® Using
sequential debugger to debug individual processes of a
distributed or parallel program is not satisfactory. Any
attempt to gather information about a process may affect
the timing and communications among the processes.
This makes it difficult to understand how the communic-
ations take place. I-PIGS is not only useful for developing
concurrent programs running in uniprocessor. By first
develop and debug a distributed or parallel program in a
concurrent programming environment such as I-PIGS,
program errors in inter-process communications can be
more readily located than debugging in a real parallel
execution environment.

The main advantage of using I-PIGS is that it helps the
user to visualise and understand his concurrent program
more clearly, especially with respect to the inter-
connection structure of a system of processes (the system
structure) and the data communication between
processes. Fig. 1 shows a Pigsty system structure. The
equivalent representation in some probable textual
language is also shown. It can be seen that the graphical
representation is clearer.

I-PIGS was implemented as a C program running in
the PERQ workstation under the operating system
PNX-2. The following is a summary of the features of
I-PIGS.

* Now at: Department of Computer Science, Hong Kong University
of Science and Technology, Clear Water Bay Road, Kowloon, Hong
Kong.

(a) Graphical representation.

Producer Buffer Consumer

D——D

(b) Textual representation.

Producer || Buffer | Consumer;

LINK Producer. outPort TO Buffer. inPort;
LINK Buffer. outPort TO Consumer. inPort;

Figure 1. Interconnection of processes.

Editing aspects:

e provides a graphical system editor to edit the system
structure and a chart editor to edit the ‘coding’ of a
process in structured chart form;

e checks that the graphical system structure and chart
program are syntactically and semantically correct;

execution and debugging aspects:

e cxecutes the system of processes by means of in-
terpretation and simulated concurrency;

e for the process being executed, displays its variables
and current values in separate windows;

e allows the user to set breakpoints;

e at a breakpoint, allows the user to examine or assign
the declared variables of any process of the Pigsty
program;

concurrent programming aspects:

e highlights the communication ports ready to send or
receive data, and animates data communication;

e gives a diagnostic message when the program is
deadlocked.

In the rest of this paper, the language Pigsty, and the

editing and execution support by I-PIGS will be

described.

2. THE GRAPHICAL LANGUAGE PIGSTY
2.1. Overview

Pigsty is not a language attempting to tackle all problems
in concurrent programming. Rather, it was designed to
test the idea that interactive graphics could be used
effectively to support concurrent programming. The
design of Pigsty is based on CSP? and Pascal.® The

320 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

I-PIGS: AN INTERACTIVE GRAPHICAL ENVIRONMENT FOR CONCURRENT PROGRAMMING

(a) PROCESS header block (e)

EXIT_LOOP construct

(h) ALT-/ALT construct

PROCESS title
[declarations]

EXIT_LOOP

MAIN BODY

Constructs

(f) WHILE construct

comment, ALT guard
if any
Constructs
/ALT guard

L. Constructs
WHILE condition
(b) PROCEDURE header block
Constructs
PROC heading
RETURN [type] /ALT guard
[declarations]
PROC BODY Constructs
Constructs (g) IF-/IF construct
7 * -/ %
F condition (1) ALT-/*ALT construct
Constructs *ALT guard
(c) SIMPLE construct
/IF condition Constructs
sequential
statements /*ALT guard
Constructs
Constructs
(d) RETURN construct
/IF condition
RETURN comment,
if any /*ALT guard
Constructs
Constructs

Figure 2. Pigsty structured charts.

primitive CSP synchronous communication mechanism
is used.

Pigsty uses a mixture of graphics and text to represent
a program. Pigsty only uses graphical representations for
those aspects which are better presented graphically, viz:
the system structure of processes and the constructs of
control flow in a process in the form of structured
charts >4 1!

The pure textual part of Pigsty includes Pascal
declarations, boolean conditions, sequential statements
(assignments and procedure calls), and CSP-like com-
munication commands. They are written inside the
structured charts.

The graphical features of Pigsty are described below.

2.2. Pigsty processes and chart program

A Pigsty program is a system of basic processes and/or
high-level processes. A high-level process is composed of
a system of basic and/or high-level processes. A basic
process is implemented in the form of a sequential chart
program. Note that a basic process can be a single

process or an element of an array of processes (called an
element process).

A chart program is composed of structured chart
constructs (Fig. 2). In Fig. 2, the positions marked with
the term ‘Constructs’ could be any other constructs as
long as they form a semantically correct program.
Dijkstra’s alternative IF-FI and repetitive DO-OD
guarded commands!? are included. They become the
ALT-/ALT and *ALT-/*ALT constructs respectively.
The use of the keywords ALT and *ALT is prompted by
CSP and occam.'® They appear to aid readability. The
uniform use of ‘/’ in the alternative choices of the
constructs suggests the common alternative nature.

The most attractive features of Pigsty are related to
concurrent programming. The following subsections will
concentrate on these aspects.

2.3. Communications ports and links

Pigsty uses the concept of ports for communication.’ A
process sends or receives data to or from its ports. Ports
are responsible for the actual communication. They are

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 321

21

CPJ 34

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.-C. PONG

differentiated into OutPorts and InPorts. An OutPort
can send data to an InPort only if they are ‘linked’ (i.e.
a link exists between them). Synchronous communication
takes place when the linked OutPort and InPort are both
ready to communicate ; otherwise, the ready port has to
wait for its partner to become ready.

Ports do not have associated data types. Data of
different Pascal pre-defined types can be transmitted
through the same port. This reduces the number of ports
required if data of different types are transmitted between
two processes. Run-time type checking is performed
when a sent value is assigned to a receiving variable.

Port names are used in the communication commands
of the process, in contrast to the use of process names in
the case of CSP. Thus, the syntax of the input command
is

InPort-name ? receiving-variable
and the syntax of the output command is
OutPort-name | expression

When an output command of a process is executed, the
value of the expression is sent to the OutPort, which
becomes ready to send. When an input command of a
communicating process is executed, the InPort becomes
ready to receive a value. Once a value is sent from the
OutPort to the InPort via synchronous communication,
it is immediately assigned to the receiving variable.
Note that port names are local to the process to which
the ports belong. Using port names in communication
commands offers potential to build more modular
programs. Suppose that in a concurrent program, process
P communicates with process Q originally. Now we want
process P to communicate with process R instead. In the
case of CSP, all the communication commands involving
Q in the coding of P must be changed to R. In Pigsty, the
communication links are hidden from the coding of the
processes. The links could be changed independently.
Thus, we need only delete the link between the ports of
P and Q, and insert a link between the ports of P and R
by using the editing commands of I-PIGS. The im-
plementation of communication between ports would
take care of the communication through the new link.

2.4. Icons

The icons representing the concurrent programming
features of Pigsty are as follows (their appearances are
shown in Fig. 3):

e A square box-like icon (‘box’ for short) enclosing a
process name represents a basic process. An element
process icon includes a horizontal line dividing a box
icon and the element index is shown in the lower
portion of the box.

e A double-lined boundary box icon enclosing a process
name represents a high-level process.

e A triangle with an edge on the boundary of a box
represents an OutPort of a process, and a triangle with
a vertex on the boundary of a box represents an InPort
of a process. Ports names are not shown by the side of
the icons to avoid cluttering the screen.

e A straight line connecting an InPort icon and an
OutPort icon represents a communication link between
the two ports.

In the following, the terms box and process might be used
interchangeably, without emphasising that a box is the
icon to represent the concept of a process. Also, the term
port might be used to represent the icon or the concept of
a port. It should be clear from the context that whether
the icon is being referred to.

Remarks. Theoretically speaking, the definition of a
language should be independent of any implementation,
and we may assume that a (graphical) language can
support programs consisting of arrays of processes of
any dimensions. However, due to implementation limits,
Pigsty programs are presently limited to consist of single
processes and one-dimensional arrays of processes only.

3. EDITING FACILITIES OF I-PIGS

I-PIGS provides a system editor for editing system
structure and a chart editor for editing chart program.
When a user runs I-PIGS in a window of the workstation
(called the main window), the system editor is activated;
under which, the user can issue a command to invoke the
chart editor. These editors are described below.

3.1. Editing of chart program

When the chart editor is invoked, the user can insert,
delete, move and copy structured chart constructs and
input text inside the constructs in a special chart-program
window. The chart editor is a structured editor in the
conventional sense. It guarantees that the constructs are
composed correctly. For example, I-PIGS only allows
the user to insert an EXIT_LOOP construct inside an
iterative construct.

Note that the chart program created and edited for
any element of an array of processes is regarded as
identical for all other elements. I-PIGS maintains such
consistency by actually keeping only one copy of the
chart program for all elements. During execution, this
copy serves as the ‘reentrant code’ for the element
processes.

The editing of concurrent Pigsty features is supported
by the system editor, which is described in the following
subsections.

3.2. Editing of basic process icons

I-PIGS provides two commands for creating basic

(a) single (b) element (c) high-level (d) ports and link
process process process
name name name OutPort
D>———— D
index InPort

Figure 3. Pigsty icons for concurrent programming.

322 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

I-PIGS: AN INTERACTIVE GRAPHICAL ENVIRONMENT FOR CONCURRENT PROGRAMMING

processes: ‘create a single process’ and ‘create an array
of processes’. Similarly, there are two corresponding
commands for deleting processes.

On accepting the ‘create a single process’ command, I-
PIGS prompts the user to fill in the name of the process
and use the mouse of the workstation to position a box
icon in the main window. On accepting the ‘create an
array of processes’ command, I-PIGS prompts for the
process name and the array bounds, and asks whether
the boxes should be drawn horizontally or vertically.
Then, after the user chooses the central position for the
boxes in the window, I-PIGS displays a row or a column
of boxes accordingly. I-PIGS checks that the new box(es)
would not overlap any existing boxes before accepting
the position indicated by the user. I-PIGS also checks
that the user-supplied name has not been used before;
i.e. checks against ‘duplicate declaration’. Fig. 4 shows a

PortX

Figure 4. A single process linked to an array of processes.

single process S and an array of processes X. (Note that
the port names in all Figures are shown for illustration
purposes; they actually do not appear in the window to
avoid cluttering.)

I-PIGS also provides editing commands for moving a
single process, an element process, or a whole array of
processes. (Any port icons on the box icons are moved
together.) The positions of boxes are immaterial to the
semantics of the program. The ‘move box’ commands
are provided for the user to lay out the system structure
nicely.

I-PIGS supports the scrolling of the whole system
structure leftward, rightward, upward and downward.
This scrolling capability allows the display of boxes to
extend over an area bigger than the current window size.

In addition, interactive graphics techniques'® could
profitably be used to scale or rotate part or all of the
display of boxes. A scaled down view of the whole system
structure and another blown up view of part of the
system could be displayed at the same time, possibly in
different windows; though, these capabilities are not
included in the current implementation of I-PIGS.

3.3. Editing of port icons

I-PIGS provides two editing commands for creating
ports: ‘create InPort’ and ‘create OutPort’; and a
command for deleting a port. On accepting either ‘create
port’ command, I-PIGS prompts the user to enter the
name of the port and to position the port icon anywhere
on the boundary of a box. I-PIGS checks that the user
can only place a port icon on the boundary of a box, not
elsewhere. The position of a port on a box is immaterial
to the semantics of the program.

I-PIGS checks against ‘duplicate declaration’ of port

names in a process on accepting a ‘create port’ command.
To avoid cluttering the window, the port names are not
shown. Editor commands are provided for examining
and changing port names and process names. I-PIGS
also checks against ‘duplicate declaration’ on accepting
a ‘change name’ command.

If the user places the port icon on an element process
icon, I-PIGS automatically displays port icons on all
brother element processes at the same relative position
on the boundaries of the boxes (e.g., the ports of process
array X in Fig. 4). To guarantee a nice layout, I-PIGS
checks that port icons do not overlap each other.

The user can also give an editing command to move a
port icon to another position on the boundary of the
same box. However, I-PIGS does not allow the user to
move the port to another box. If a port icon on an
element process icon is moved, its brother port icons on
all brother element process icons are automatically
moved accordingly. Moreover, any link on the port is
also moved. It can result in a nicer layout of the link
pattern (Fig. 5).

nice layout after
moving ports of B

(a) interconnection (b)
pattern not nice

B B

¢ B

\ 2 2

VAN
Figure 5. Moving ports to give a nice layout.

3.4. Editing of links

The user can issue an editing command to insert a link
between an InPort of a process and an OutPort of
another process. I-PIGS guards against the user’s
(mistaken) intent to insert a link between a pair of InPort
icons, or a pair of OutPort icons, or a pair of port icons
on the same box. This helps to simplify the syntax and
semantics analysis for execution of a Pigsty program.

I-PIGS provides three different ‘insert link” commands
for three different situations:

one-to-one link

one-to-many links

many-to-many links
Correspondingly, there are three ‘delete link’ commands
for the three situations. The following discussion is about
‘insert link’. The corresponding ‘delete link’ commands
are similar.

One-to-one links can be inserted between single and
single processes, element and element processes, or single
and element processes. They are the simplest and need no
further explanation.

One-to-many links are used to interconnect a single
process and an array of processes. Fig. 4 is an example of
a process S linked with a process array X. Only one single
InPort, PortS, is placed on the boundary of box S. When
the user links this port to the OutPort of any element
process X, I-PIGS understands that PortS should be an

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 323

21-2

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.-C. PONG

array of ports, each element of which is linked to the
OutPort of an element process X. PortS is not redrawn
as five instances of InPorts on the screen, since this would
make the screen become too cluttered. Multiple incid-
ences of the links to/from a port already indicate that it
is an array of ports, where each element port is connected
to another port.

Many-to-many links are inserted to connect two arrays
of processes, which can be the same array. Only one
corresponding pair of InPort and OutPort needs to be
chosen. I-PIGS will insert links throughout the ranges of
elements as far as possible. Fig. 6 shows a simple case of

(a) port of X[2] and (b) all links inserted
port of Y[2] chosen

X Y X Y
1 1 1 1

X Y ‘ X Y

< <—<

2 2 2 2

X Y X Y

4 |

3 3 3 3

Figure 6. To insert many-to-many links between process arrays.

identical number of elements in the two process arrays.
Same number of links as the number of element pairs are
inserted. Fig. 7 is a case of unequal number of elements
in the two arrays. I-PIGS first inserts a link between the
chosen pairs of ports on processes 4/2] and B/3]. Then
it scans the process arrays backward and puts in links for
elements of decreasing indices. There is only one more
link that can be inserted in the backward scan, i.e.
between A/I1] and B[2]. Afterwards, I-PIGS scans

(a) port of A[2] and
port of B[3] chosen

forward to insert links between elements of increasing
indices, i.e. between A[/3] and B[4]. During the
backward or forward scans of elements, if I-PIGS
encounters a port with a link already or comes to an
extreme element, I-PIGS will stop inserting any more
link.

Note that only backward and forward scans for link
insertion are performed, and links are not inserted
automatically in a wrap-around manner. This is because
the user may not want wrap-around connection. Rather,
I-PIGS lets the user connect the extreme elements of a
process array at his discretion. For example, in Fig. 8(a),
the user issues the ‘insert many-to-many links’ command
to insert links between element processes MULTI to
form a pipeline. MULTI{1] has no input link and
MULTI[4] has no output link. The user can give the
‘insert one-to-one link’ commands twice to insert these
two links, say, to single processes SOURCE and SINK as
shown in fig. 8(b).

3.5. Editing of high-level processes

Pigsty has the feature high-level process. I-PIGS repre-
sents a high-level process as a high-level box, which is a
box icon with double-lined boundary. Such icon gives a
clear indication to the user that it is composed of other
processes, and is not implemented as a chart program.

I-PIGS supports both the top-down and bottom-up
approaches to the development of a system of processes.
This is achieved by providing the ‘refine box’ and the
‘group boxes’ editing commands.

Fig. 9 is an example of refining process 4. On
accepting a ‘refine box’ command on a chosen box,
I-PIGS creates a new refine-box window. The user can
create a new subsystem of processes with internal links in
the new window using the editing commands of I-PIGS.
(The user may even create a subsystem of processes
beforehand, save it in a file, and read it in at this time.)

A B (b) insert link
> > toward lower bounds
1 2 2 B
D
A B 1 2
(c) insert link
2 3 A B toward upper bounds
—
P 3 A B
A B —D
> 1 2
3 4 I B
D
3 4 A B
B D
> 2 3
5 B
[> ° A B
—D
3 4
B
>
5

Figure 7. Insert links between unequal number of element processes.

324 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

I-PIGS: AN INTERACTIVE GRAPHICAL ENVIRONMENT FOR CONCURRENT PROGRAMMING

(a) Links between process array itself.

MULTI

b —

MULTI

MULTI MULTI

1 2

3 4

(b) Extreme element processes linked to single processes.

SOURCE MULTI MULTI

—> >

-

MULTI MULTI SINK

—> —

1 2

3 4

Figure 8. Link to form a pipeline of processes.

The subsystem will become the refinement of the chosen
box, which becomes a high-level box.

A high-level process is linked to the outside world via
its ports and the subsystem must be linked to the outside
world via the same ports. Thus, when the user indicates
the end of building the subsystem, I-PIGS scans through
the list of ports of the high-level box and prompts the
user to put the corresponding ports, one by one, on any
box of the subsystem. These ports become the interface
of the subsystem to the outside world (see Fig. 9(a)).
There is no need to name these ports as they have names
already.

After the refinement has been done, the refine-box
window is destroyed and the refinement is shown instead
of the original box in the main window. Fig. 9(b) is the

main window refine-box window

A Portl |p Asubl{Portl
v
Port2 J
v
Asub?2
Port2

(a) Refine box A4 to a subsystem.

In the refine-box window, box A has been refined to a
subsystem of boxes Asubl and Asub2. The interface port
Portl has been placed on Asubl. Another interface port
Port2 (highlighted in the main window) is just placed on
Asub?.

main window

Asubll B

\/7
IAsub?)

(b) End of refining box A.
The subsystem of boxes Asubl and Asub2 are shown in the
main window instead of box A.

Figure 9. Refine a box.

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

final display. Any links of the interface ports on the high-
level box will be identified by I-PIGS and the information
will be recorded into the sub-level ports.

Since a hybrid of top-down and bottom-up devel-
opment always occurs in practice, I-PIGS also supports
the bottom-up grouping of one or more boxes. When the
user issues the ‘group boxes’ command, I-PIGS will
prompt for the top left corner and the bottom right
corner of a rectangular region. Any boxes falling within
this region will be grouped. However, if a single box or
an array of boxes is partially inside the region, I-PIGS
will give a warning message and abort the command.

If the region is acceptable, I-PIGS creates a new group-
boxes window and displays a new high-level box in it. The
user is prompted to name the high-level box, and then
select port icons on the group of boxes to serve as
interface ports to the outside world. On selecting an
interface port, I-PIGS asks the user to place the
corresponding port icon on the high-level box. I-PIGS
will not prompt for new names for these ports because
they must have the same names as in the subsystem.
Links are allowed between the interface ports and the
outside world while only internal links are allowed
among the other ports of the processes in the subsystem.
Fig. 10 is an example of grouping boxes 4/ and A2 to
form the high-level box A4, with Portl as the only
interface port.

Notes. In order to enforce a consistent and disciplined
editing habit, I-PIGS only allows the insertion and
deletion of ports and links in the bottom-most level of a
tree of box refinements. I-PIGS will update the cor-
responding port and link information in the high-level
boxes automatically.

Insertion and deletion of boxes can be done at any
level, but the deletion of a high-level box (requires
confirmation by the user) will also remove all its sub-level
boxes.

4. EXECUTION OF PIGSTY PROGRAM

I-PIGS makes heavy use of the multiple windows of the
modern graphics workstation. During execution of a
Pigsty program, tables of variables and a record of the
execution history are displayed in different windows.

Before actual execution of a Pigsty program, the text
in the chart program of each basic process is parsed first
and virtual machine instructions are generated. If the
user chooses to see the chart program of any process, it
will be shown in the chart-program window. The text
which has been scanned is converted to reverse video.
Thus if a syntax error occurs, the user would know that
it occurs at the last lexical token in reverse video.

325

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.-C. PONG

main window group-boxes window

=

Portl

Portl A
>

]

(a) Group boxes A/ and A2 to become high-level box A.
In the main window, the corners of the marked region
enclosing boxes A/ and A2 are shown; and the chosen
interface port Portl is highlighted.

In the group-boxes window, interface port Portl is just
placed on the new high-level box A.

main window

(b) End of grouping boxes A and A2.
The high-level box A is shown in the main window in place
of the grouped boxes.

Figure 10. Group boxes.

I-PIGS checks that the port name used in a com-
munication command of a process is that of a port icon
on the boundary of the corresponding box. It also checks
that the port has a link to a communication partner. The
graphical system editor of I-PIGS has guaranteed that if
a link exists, it must be between a pair of InPort and
OutPort.

After all the processes have been parsed successfully, I-
PIGS will execute the Pigsty program by interpreting the

(a) process Q waits to send data
(as indicated by PortQ shown
in reverse video)

main window

execute.. (to interrupt,
press GREEN button until
at breaking point)

|

generated virtual machine instructions. Since I-PIGS
runs in a uniprocessor workstation, it executes the
concurrent Pigsty processes via a time-slicing mech-
anism to achieve simulated concurrency.

The icon of a process being executed is shown in
reverse video. If the user chooses to see the chart
program, I-PIGS will highlight the constructs being
executed in reverse video in the chart-program window.
This highlighting shows the control flow of the chart
program.?

I-PIGS highlights ready-to-communicate port icons in
reverse video and animates data communication between
processes in the main window. For example, Fig. 11(a)
shows the appearance of the main window when the
output command ‘PortQ! data’ of process Q is being
executed, where data has the value 1. The value to be sent
is displayed in box Q and its OutPort icon PortQ is
highlighted to indicate ready to communicate. If the
communicating process P is already waiting for input
data, the value 1 is sent immediately to P and displayed
in box P (Fig. 11(b)). If Pis not yet ready to communicate,
0 has to wait until I-PIGS executes the corresponding
input command of P. At then, the value 1 is sent to P and
displayed in box P (Fig. 11(b)). After data communi-
cation, the displayed data values in the boxes are cleared.
Thus, data communication is animated on the screen as
the showing of the data value in the output box and then
in the input box.

To help debugging, the user can require a breakpoint
to occur before a chosen structured chart of a process is
executed, or after a process becomes ready to com-
municate. At a breakpoint, I-PIGS allows the user to
examine or change the variables of any process, to step-
execute the stopped process, or to continue the execution.

5. AN EXAMPLE

Since I-PIGS highlights port icons waiting to com-
municate, whenever I-PIGS detects a deadlock, the
situation is shown clearly. This is illustrated with an
example — the Dining Philosophers Problem.

The problem is to simulate the behaviour of five
philosophers who spend their lives thinking and eating
spaghetti. They eat at a circular table in a dining room.

(b) PortP is waiting for data
and thus it is shown in
reverse video;
and data has just been sent
from PortQ to PortP

main window

Q

Figure 11. Animation of data communication.

326 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

I-PIGS: AN INTERACTIVE GRAPHICAL ENVIRONMENT FOR CONCURRENT PROGRAMMING

(a) system structure of processes

FromEnter |[ROOM | FromLeave
ToEnterRoom ToLeaveRoom
PHIL PHIL PHIL PHIL PHIL
1 2 3 4 5
ToLeftFork ToRightFork
FromLeftPhil FromRightPhil
FORK FORK FORK FORK FORK
1 2 3 4 5

(b) chart program for process PHIL

PROCESS PHIL
COMMENT following
constants
are used as
signals
CONST Enter =1
CONST Leave = 1
CONST PickUp = 1
CONST PutDown = 1
MAIN BODY
WHILE (* ALIVE *)
(* THINK *)
ToEnterRoom ! Enter
ToLeftFork ! PickUp
ToRightFork ! PickUp
(* EAT *)
ToLeftFork ! PutDown
ToRightFork ! PutDown
ToLeaveRoom ! Leave

(c) chart program for process ROOM

PROCESS ROOM
COMMENT ‘Enter’ & ‘Leave’
are used as signals
VAR Enter, Leave integer
VAR occupancy, i integer
MAIN BODY
occupancy := 0
*ALT
FromEnter (i) ? Enter
|occupancy := occupancy +1
/*ALT FromLeave (i) ? Leave
[gbcupancy := occupancy -1

(d) chart program for process FORK

PROCESS FORK

COMMENT ‘PickUp’ & ‘PutDown’
are used as signals

VAR PickUp, PutDown integer

MAIN BODY
*ALT

FromLeftPhil ? PickUp

FromLeftPhil ? PutDown

/*ALT FromRightPhil ? PickUp

|FromRightPhil ? PutDown

Figure 12. A Pigsty solution to the dining philosopher problem.

The table is surrounded by five chairs, each belonging to
one philosopher, and five forks are laid circularly on the
table in between the chair positions. When a philosopher
feels hungry, he enters the dining room, sits in his own
chair, picks up the fork on the left and then the fork on
the right before he can eat. After eating, he puts down
both forks and leaves the room.

Fig. 12 is a Pigsty program which implements a
solution to the problem. Each PHIL process simulates a
philosopher. Each FORK process simulates a fork. The
ROOM process simulates the status of the dining room.
This Pigsty solution is nearly identical to the CSP

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

version.® The major difference is that port names instead
of process names are used in the communication
commands. (Note that the fork process icons, FORK,
and the philosopher process icons, PHIL, were not laid
out in a circle to avoid the mess up of the communication
links over the box icons.)

The dining philosopher problem illustrates many of
the problems encountered in concurrent programming,
particularly resource sharing and deadlock. The forks
are the shared resources. Controlled access to each fork
is necessary. Each fork is simulated by a FORK process
which ensures that the fork is picked up and then put

327

20z Idy 60 U0 1senb Aq $0/89€/02€/P/¥E/I0IME/|UlWOD/WO0S" dNO"DIWaPEDE//:SA]Y WO, POPEOjUMOQ

M.-C. PONG

main window

FINISH DEAD LOCK!

READ file

SAVE file

EDIT
process

EDIT

CONSTRUCT

EXECUTE

CHANGE
file name

ROOM

EXAMINE
file name
menu 1

FORK

FORK

FORK FORK

1

2

3 4

o

In the main window, the left hand side is the menu area;
the top is the message area; and the system structure is shown.

Figure 13. ITllustration of deadlock of the dining philosopher problem.

down by the same philosopher. Deadlock occurs if all
five philosophers enter the room, each picks up his left
fork and wishes to pick up the right fork, but cannot do
so because it is in another philosopher’s hand. The result
is that all philosophers will be starved to death. Fig. 13
illustrates this deadlock situation: all ports ToRightFork
are shown in reverse video indicating that all the
philosophers wish to pick up the right forks, and all ports
FromRight Phil are shown in reverse video indicating that
each fork must first be put down by the philosopher to its
right. Thus, through I-PIGS, the user can see what has
happened and infer why it has happened.

6. CONCLUDING REMARKS

I-PIGS serves to support the idea that interactive
graphical support for concurrent programming is feasible
and effective. The graphical representation of a system of
communicating processes and animation of data com-
munication enables the user to understand the structure
and the behaviour of a concurrent program more easily
and more clearly.

Though Pigsty uses primitive message passing com-
mands for interprocess communication, the idea of
interactive graphical support for concurrent program-
ming can also be used to support languages with other
communication mechanism. For example, on a remote
procedure call, the calling process can be highlighted to
indicate waiting for results, and the sending of the

invocation message and the reply of the results can be
animated on the screen. To support languages which
allow dynamic creation and deletion of processes, and
which allow dynamic change of the links between
processes, the display of the box icons and links can be
changed accordingly during execution.

I-PIGS is just a small step towards employing
interactive graphics to support concurrent programming.
I-PIGS has not yet fully exploited the use of icons and
animation. Since using appropriate (dynamic) graphics
increases the communication bandwidth between human
and human/computer, with the growing popularity of
workstations, we expect that interactive graphical sup-
port for programming would become more effective and
more widely acceptable.

Acknowledgement

I would like to thank Professor P.J. Brown of the
University of Kent at Canterbury for his guidance and
reading earlier versions of the paper, and Dr N. Ng of
the University of Hong Kong who introduced to me the
idea of interactive graphical support for programming.
The comments by the referee helped much to improve the
presentation of the paper. My research study was
supported in part by a Hong Kong Li Po Chun Charitable
Fund Postgraduate Scholarship in 1983-85 and in part
by a U.K. Overseas Research Students Award in 1984-85.

328 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

I-PIGS: AN INTERACTIVE GRAPHICAL ENVIRONMENT FOR CONCURRENT PROGRAMMING

REFERENCES

1. M. Pong, Interactive Graphical Support for Sequential
and Concurrent Programming. Ph.D. thesis, University of
Kent at Canterbury, U.K. (1985).

2. T. Teitelbaum and T. Reps, CPS — the Cornell Program
Synthesizer. Communications of ACM 24 (9), 563-573
(1981).

3. M. Pong and N. Ng, PIGS - a system for programming
with interactive graphical support. Software — Practice and
Experience 13 (9), 847-856 (1983).

4. M. Pong, 2-PIGS: an interactive graphical programming
environment with mixed interpretation and compilation.
Proc. Int. Computing Symposium 1985, Florence, Italy,
March 1985. North-Holland, Netherlands (1985).

5. E. P. Glinert and S. L. Tanimoto, Pict: an interactive
graphical programming environment. /[EEE Computer 17
(11), 7-25 (1984).

6. S. P. Reiss, Graphical program development with PECAN
program development systems. Proc. ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, U.S.A.,
April 1984, as ACM SIGPLAN NOTICES 19 (5), 3041
(1984).

7. S. P. Reiss, GARDEN tools: support for graphical pro-
gramming. Proc. Int. Workshop on Advanced Programming
Environments, Trondheim, Norway, June 1986, 63-80
(1986).

8. C. E. McDowell and D. P. Helmbold, Debugging concur-
rent programs. ACM Computing Surveys 21 (4), 593-622
(1990).

9. C. A.R. Hoare, Communicating sequential processes.
Communications of ACM 21 (8), 666-677 (1978).

10. K. Jensen and N. Wirth, Pascal — user manual and report.
Springer-Verlag, Berlin (1974).

11. I. Nassi and B. Shneiderman, Flowchart techniques for
structured programming. ACM SIGPLAN NOTICES 8
(8), 12-26 (1973).

12. E. W. Dijkstra, Guarded commands, nondeterminancy,
and formal derivation of programs. Communications of
ACM 18 (8), 453-457 (1975).

13. Inmos Limited, Occam Programming Manual. Prentice
Hall International, London (1984).

14. T.W.Mao and R.T.Yeh, Communication port: a
language concept for concurrent programming. IEEE Tran.
Software Engineering SE-6 (2), 194-204 (1980).

15. J. Foley and A.van Dam, Fundamentals of Interactive
Computer Graphics. Addison-Wesley, Reading, MA, U.S.A
(1982).

16. N. Wirth, What can we do about the unnecessary diversity
of notation for syntactic definitions? Communications of
ACM 20 (11), 822-823 (1977).

APPENDIX: SYNTAX OF GRAPHICAL PART OF PIGSTY

Note:

(1) The syntax is based on Extended Backus-Normal
Form!® where
(symbols) means grouping of symbols;
[symbol] means symbol is optional;
{symbol} means symbol is repeated for 0 or more
times;
‘literal’ means the string literal is a terminal
symbol; and a grammar rule is terminated by a
period (.).
Extra meta-symbols are used to represent graphical
relationships.

(2) A comment is preceded by ! and runs until the end of
the line.

(3) The meta-symbol + means the placement of a port
icon on the boundary of a process icon.

(4) The meta-symbol & in a rule ‘Symboll & Symbol2’
means that Symbol2 is associated with Symboll. The
association is not textual juxtaposition, but is
supported by the programming environment.

The grammar rules for system structure:

PigstyProgram=System.
System=CommunicatingProcess {{Link}
CommunicatingProcess}.

CommunicatingProcess=

(HighLevelProcess {+Port}) & System

| (BasicProcess {+Port}) & ChartProgram.

! ‘& System’ stands for the refinement

! subsystem of the HighLevelProcess.

! ‘& ChartProgram’ stands for the

! coding of the BasicProcess in the

! form of a ChartProgram.

HighLevelProcess =

name

BasicProcess=SingleProcess
| OneDimensionalArrayOfProcesses.

SingleProcess=

name

OneDimensionalArrayOfProcesses=

name name

index index

! A row or a column of element-process
! icons with index ranging from the lower
! bound to the upper bound of the array.
Port=0utPort & portName
| InPort & portName.
! ¢& portName’ stands for portName is
! the name of the port icon.

OutPort=SingleOutPort
| OutPortOnElementOfProcessArray
| ArrayOfOutPorts.

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 329

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

M.-C. PONG

! The icon of all kinds of Outports is

! represented as a triangle with one

!' of its sides on the side of a box.
InPort=SingleInPort

| InPortOnElementOfProcessArray
| ArrayOfInPorts.

! The icons of all kinds of InPorts is

! represented as a triangle with one

! of its vertex on the side of a box.
Link=0OneToOneLink | OneToManyLinks |

ManyToManyLinks.

OneToOneLink= (SingleOutPort|
OutPortOnElementOfProcessArray)
>——>(SingleInPort |
InPortOnElementOfProcessArray).

! ¢>——>’stands for a straight line
! between an OutPort icon and
! an InPort icon.

OneToManyLinks= (ArrayOfOutPorts >—=)
InPortOnElementOfProcessArray)

| (OutPortOnElementOfProcessArray Y= —)
ArrayOfInPorts).

! ¢©>—=)’ stands for fan-out straight

! lines from an ArrayOfOutPorts icon to

! InPortOnElementOfProcessArray icons.

! ¢>=—>* stands for fan-in straight lines

! from OutPortOnElementOfProcessArray

! icons to an ArrayOfInPorts icon.

ManyToManyLinks =
OutPortOnElementOfProcessArray)==)
InPortOnElementOfProcessArray.

! ¢>==)> stands for straight lines between
! individual pairs of OutPort and InPort
! icons of two arrays of processes.

The grammar rules for chart program:

! The meta-symbol // in a rule ‘Symboll /] Symbol2’
! stands for the vertical concatenation of Symbol2
! below Symboll.

ChartProgram=ProcessBlock
[//Procedures].

Procedures=ProcedureBlock
{//ProcedureBlock}.
ProcessBlock=

‘PROCESS’
‘COMMENT’

processIdentifier
comment

{Declarations}

‘MAIN BODY’

Constructs

ProcedureBlock=

‘PROC’ ProcedureHeading
‘RETURN’
‘COMMENT’

ReturnType
comment

{Declarations}

‘PROC BODY’

Constructs

Constructs=ControlConstruct

{//ControlConstruct}.
ControlConstruct=DoNothing

| SimpleBlock

| CompoundBlock.
DoNothing= ¢(* DO NOTHING *)’.

SimpleBlock=

SimpleAttribute

SimpleAttribute=TextualStatementList
| ‘EXIT_LOOP’ comment
| ‘RETURN’ comment.

In the following context-sensitive grammar rules,
the meta-symbol @ is used as position indicator
in the structured chart; and

the meta-symbol ~ is used to force two rules to
hold simultaneously.

! The part of the rule ‘Chart@ Attribute’

! means Attribute is placed inside Chart

! at the position indicated by @.

! The rule ‘X~“Y=(x)"(y).” means the two rules
! ‘X=x."and ‘Y=y.” hold simultaneously.

CompoundBlock =
NestedBlock@Single Attribute
| NestedBlock@HeadAttribute
{// NestedBlock@NextAttribute}.

NestedBlock@ =

Constructs

SingleAttribute= ‘WHILE’
TextualCondition.
HeadAttribute NextAttribute=

(“IF’ TextualCondition)™(¢/IF’
TextualCondition)

| (‘ALT’ TextualGuard)~(‘/ALT’
TextualGuard)

| (“*ALT’> TextualGuard)~(¢/*ALT’
TextualGuard).

330 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

¥20Z I4dy 60 U0 1senb Aq $0/89¢/0Z€/v/vE 8101/ |ulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

