An Efficient Starvation-Free Semaphore Solution for the
Graphical Mutual Exclusion Problem

K. YUE'* anp R. T.JACOB?

! Department of Computer Science, University of Houston — Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058-1098, USA
% Department of Computer Science, University of North Texas, Denton, TX 762033886, USA

A fast method for constructing efficient solutions for graphical mutual exclusion problems based on semaphores
associated with processes is described. The number of semaphores used is equal to the number of processes in the
mutual exclusion problem. The solution is both deadlock-free and starvation-free, and allows a reasonable degree of
concurrency. This method can be generalised to deal with generalised semaphore systems such as the PV, .

Received April 1989, revised July 1989

1. INTRODUCTION

In a graphical mutual exclusion problem,® there are a
finite number of processes, all assumed, without loss of
generality, to have the following code:

loop forever
entry section
critical section
exit section
non-critical section
end loop

The critical section of a process is mutually exclusive
to the critical sections of one or more other processes,
but not necessarily all.** There are well-known solutions
to some special problems such as the Readers and
Writers Problem or the Dining Philosophers Prob-
lem."*3 However, with few exceptions, the semaphore
solutions of mutual exclusion problems with general
topology are not well studied.

In Ref. 7, a method for generating efficient deadlock-
free solutions for a wide class of problems, known as
edge-solvable problems, was presented. This method was
extended for the generation of starvation-free solutions
in Refs. 9, 12 and 13. However, it cannot be applied to
problems that are not edge-solvable, such as the Dining
Philosophers Problem.

For general problems, a straight-forward method is to
simulate the action of a FIFO Hoare monitor. %91
Since only one process can be inside the monitor at any
time, it is easy to construct starvation-free solutions.
However, these monitor-like solutions are inefficient :* !

(1) Either a large number of counting variables is used
(2N+1in Ref. 11, where N is the number of processes in
the problem), or a shared queue with complicated state
handling for each process is necessary.’

(2) The code for the entry and exit section is long.
Much time is spent on either updating the counting
variables or maintaining the queue and states.

(3) A gate semaphore must be used to guard the entry
to the monitor, so no two processes can progress in their
entry sections at the same time. This can easily be a
serious bottleneck limiting concurrency.

In Refs 12 and 13, another method was proposed
which associates every mutual exclusion constraint with

* To whom correspondence should be addressed.

a unique semaphore. This edge-associated solution is
good for any problem and does not have the drawback
of the monitor-like solutions. However, the number of
semaphores used is equal to N,, the number of mutual
exclusion constraints in the problem. This number is
O(N?), too large to be practical for complicated problems.
In this paper, we propose a node-associated solution
which has most of the advantages of the edge-associated
solution and uses only N semaphores.

2. NODE-ASSOCIATED SOLUTIONS

Following Refs 7 and 9, a graphical mutual exclusion
problem is represented by a graph G(V, E) where V and
E are the sets of nodes and edges respectively. A process
in the problem is represented by a node in V and a
mutual exclusion constraint between a pair of processes
is represented by an edge, joining the corresponding
nodes, in E. The terms ‘node’ and ‘process’ are used
interchangeably. So are the terms ‘graph’ and ‘problem’.

Throughout this paper, strong semaphores in Ref. 10
are used. Hence, it is not possible to have individual
competition starvation in which a process waiting for the
completion of a P operation can be overtaken by other
processes infinitely many times.!° It is only necessary to
consider no-food starvation**** where a process is starved
by waiting at a P operation with no corresponding V
operation being issued. As an example, Figure 1 shows a
well-known solution for the Readers and Writers
Problem where no-food starvation can occur to a Writer
when there is a continuous stream of Readers such that
N_Readers is never reset to 0.

Writers
entry section: P(Mutex);
exit section: V(Mutex);
Readers
entry section: P(Gate);
N_Readers < N_Readers+1;
if N_Readers = 1 then P(Mutex);
V(Gate);
P(Gate);
N_Readers < N_Readers—1;
if N_Readers = 0 then V(Mutex);
V(Gate);
Figure 1. A starvation-possible
Readers and Writers Problem.

exit section:

solution for the

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 345

202 I4dy 60 U0 1senb Aq $9/89¢/SHE/v/vE 8101/ |ulwoo/woo dno-olwspeode//:sdiy wolj papeojumoq

K. YUE AND R.T.JACOB

Following and extending Ref. 7, the following mini-
mum requirements on the solutions are made.

(1) (Mutual Exclusion Constraint) Two neighbouring
nodes cannot be in their critical sections at the same time.

(2) (Absence of Deadlock Constraint) No deadlock is
allowed.

(3) (Absence of Starvation Constraint) No starvation
of any process is allowed.

(4) (Concurrency Constraint) It is possible for two
non-neighbouring nodes to be in their critical sections at
the same time.

The concurrency constraint ensures that the solution
should allow a reasonable degree of concurrency. This is
important since a scheme allowing at most one process in
its critical section can always satisfy the first three
constraints but is extremely inefficient.

The concept of node-associated solutions is developed
below. The set of neighbours for a node p is denoted by
N(p). A semaphore X in a solution is said to be a node-
associated semaphore of a node p (written as S,) if it is
used in the synchronisation sections of p and its
neighbour, but of no other node.

A solution of a problem G(V, E) is said to be a node-
associated solution if:

(1) there is a node-associated semaphore for every
node in V;

(2) the entry section of any node p consists solely of
(a) a sequence of P operations on the node-associated
semaphores of p and all nodes in N(p), followed by (b)
a sequence of V' operations on the node-associated
semaphores of all nodes in N(p), and;

(3) The exit section of any node p consists solely of the
operation V(S)).

As an example, consider the graph in Figure 2:

Figure 2. A mutual exclusion graph G.

G(a,b,c,d,e,f},
@, b), (a,¢), (b,d), (b,e), (c,d), (c.f), (e.))).

Figure 3 shows a node-associated solution for G. All
three conditions for a node-associated solution are
satisfied. In contrast, Figure 4 shows an edge-associated
solution for G as generated by Ref. 12.

The following lemmas summarise the property of a
node-associated solution.

Node a
entry section:

exit section:
Node b
entry section:

exit section:
Node ¢
entry section:

exit section:
Node d
entry section:

exit section:
Node e
entry section:

exit section:
Node f
entry section:

exit section:

Figure 3. A node-associated solution for the graph G.

Node a

entry section:

exit section:
Node b

entry section:

exit section:
Node ¢

entry section:

exit section:
Node d

entry section:

exit section:
Node e

entry section:

exit section:
Node f

entry section:

exit section:

P(S,); P(S,); P(S,);
(S); V(S,);
V(S.);

P(S,); P(S,); P(S,); P(S,);
V(S,); V(Sa); V(S,);
V(S,);

P(S,); P(S,); P(S,); P(S));
V(Sy); V(Sa); V(S.);
V(S);

P(S,); P(S,); P(S,);
V(S5 V(S,);
V(S,);

P(S,); P(S,); P(S));
V(S)); V(S,);
V(s,);

P(S,); P(S,); P(S));
V(S,): V(S));
V(S)):;

P(S.); P(S,0);
V(Sac) 5 V(Sab) 5

P(Sy,); P(Spa); P(Sy);
V(S0 V(Sha)s V(Sa);

P(Sac)s P(Scd)’ P(Scf),
V(Scf)a V(Scd), V(Sac)a

P(S,,); P(S..);
V(S.0); V(Spa);

P(S,.); P(Sef);
V(S5 V(She);

P(Scf)’ P(Sef);
V(S.p); V(Sep);

Figure 4. An edge-associated solution for the graph G.

Lemma 1. If a node-associated solution is deadlock-
free, then it is also starvation-free.

Proof. It is only necessary to consider no-food
starvation. We will prove that if starvation exists, then
deadlock always exist.

Suppose a node is starved at P(S,). Note that in a
node-associated solution, if a node ¢ proceeds after
having completed a P(S,), it will eventually issue a V(S,)
either in its entry section or in its exit section. The only
ways that g could not eventually issue a ¥(S,) are: (1) g
is involved in a deadlock, or (2) g is itself starved. In (1),
we have a deadlock and the lemma is proved. In (2), ¢
must be starved at some P(S,), completed earlier by
some node r. Similarly, r can either be involved in a
deadlock or be starved at some P(S,), completed earlier
by some node s. Continuing in this manner, since the

346 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

202 I4dy 60 U0 1senb Aq $9/89¢/SHE/v/vE 8101/ |ulwoo/woo dno-olwspeode//:sdiy wolj papeojumoq

AN EFFICIENT STARVATION-FREE SEMAPHORE SOLUTION

number of nodes is finite, either (1) all nodes in a proper
subset of V are involved in a deadlock or (2) all nodes in
V are starved and waiting at P operations. However, case
(2) is equivalent to a deadlock involving all nodes. []

Lemma 2. A node-associated solution satisfies the
mutual exclusion constraint and the concurrency con-
straint.

Proof. The entry sections of two neighbouring nodes p
and ¢ both contain P(S,) and P(S,). Consider a time ¢
when p has completed all its P operations but has not
started signalling the V operations in its entry section. At
this time, node g cannot be in its critical section, since,
otherwise, p would not have been able to complete P(S,).
Furthermore, if ¢ is in its entry section, then g must not
have completed P(S,) since p has already completed it.
Therefore, if ¢ wants to enter its critical section at time
greater than ¢, it must complete P(S,) in its entry section.
Since p signals V(S,) only in its exit section, ¢ cannot
complete P(S,) so long as p is in its critical section.
Hence, two neighbouring nodes p and ¢ cannot be at
their critical sections at the same time.

For the concurrency constraint, consider the situation
where only node p is in its critical section and all other
nodes are in their non-critical sections. In this case, only
the semaphore S, is set to 0. Hence, if a non-neighbouring
node r wants to enter its critical section while all other
process remains in their same section, r is allowed to do
so since P(S,) does not appear in the entry section of r.
Therefore, it is possible for two non-neighbouring nodes
to be in their critical sections at the same time. []

Although it may appear natural to put all ¥ operations
in the exit sections, it is important to put all ¥ operations
on the semaphores associated with the neighbours of a
node p in the entry section of p. Otherwise, the
concurrency constraint may not be satisfied. As an
example, Figure 5 shows a solution obtained from Figure

Node a
entry section: P(S,); P(S,); P(S,);
exit section: V(S,); V(S,); V(S,);
Node b
entry section: P(S,); P(S,); P(S,); P(S,);
exit section: V(S,); V(S,); V(S,); V(S.);
Node ¢
entry section: P(S,); P(S,); P(S,); P(S));
exit section: V(S,); V(S,); V(S.); V(S,);
Node d
entry section: P(S,); P(S,); P(S,);
exit section: V(S,); V(S.); V(S,);
Node e
entry section: P(S,); P(S,); P(S));
exit section: V(S,); V(S,); V(S,);
Node f
entry section: P(S,); P(S,); P(S,);
exit section: V(S)); V(S,); V(S.);
Figure 5. A solution for the graph G that does not satisfy the
Concurrency Constraint.

3 by moving all V' operations to the exit sections. In this
case, if node a is in its critical section, S, must be
decremented to 0. Therefore, although d is not a
neighbour of node a, it is not possible for d to enter its
critical section since P(S,) is included in the entry section
of d.

3. CODE GENERATION

The following algorithm generates a node-associated
solution, in Pascal-like syntax, for any general mutual
exclusion problem. The string concatenation operator
and the set union operator are denoted by & and U
respectively.

Algorithm 1. Generation of starvation-free node-
associated semaphore solutions for mutual exclusion
problems.

Input. A graph G(V, E) with N nodes.

Output. The entry and exit sections, stored in entry(p)
and exit(p) respectively, of all nodes p in V.

Semaphores used. Every node p has a semaphore Sy
initially 1, associated with it.

1) Arbitrarily label each node in ¥ with an unique
integer value from 1 to M.

(2) For every node p in V do

work_list < N(p) U {p};

V_codes<";

entry(p)<“";

exit(p) < V(S,,);”;

while work_list is not empty do.
Let x be the node in work_list labelled with the
smallest value;
entry(p) < entry(p) & P(S,);”;
if x < > pthen V_code<V_code & “ V(S,);”:
Remove x from work_list;

end while;

entry(p) < entry(p) & V_code(p);

end for.

(3) Stop.

As an example of Algorithm 1, the solution of Figure
3 is generated for the graph G of Figure 2 if the values of
1,2,3,4,5 and 6 are labelled to nodes a, b, ¢, d, e and f
respectively.

Lemma 3. The solution generated by Algorithm 1 is
deadlock-free.

Proof. Suppose it is possible to construct a deadlock
situation involving all nodes in some D, a non-empty
subset of V. Let X be the semaphore with the highest
value, labelled by Algorithm 1, among all semaphores
blocking the nodes in D. There must be some node in D,
say ¢, that has completed P(X). Suppose ¢ is itself
blocked at P(Y). In that case, P(Y) must appear later
than P(X) in the entry section of g. Because of the way
of code being generated for the entry section of g, Y must
be labelled with a value greater than X, contradicting to
the assumption that X has the highest labelled value
among all blocking semaphores in D. [J

Theorem 1. Algorithm 1 generates starvation-free
solutions satisfying all constraints 1 to 4.

Proof. By combining Lemmas 1 to 3. [J

Compared with monitor-like solutions, the node-
associated solutions have several major advantages.

(1) There are no counting variables or shared queue
and no related update overhead.

(2) Entry and exit sections are short.

(3) Several processes can progress in their entry
sections.

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 347

202 I4dy 60 U0 1senb Aq $9/89¢/SHE/v/vE 8101/ |ulwoo/woo dno-olwspeode//:sdiy wolj papeojumoq

K.YUE AND R.T.JACOB

There is no universal gate semaphore and hence no
corresponding bottleneck.

Furthermore, the node-associated solution uses only
N semaphores, as opposed to N, semaphores in the edge-
associated solution. Since the value of N, may range
from N—1 to N*(N—1)/2 in a connected graph, the
difference in the number of semaphores can be quite
significant, especially important when the semaphores
are implemented in scarce shared memory.

However, it should be noted that the edge-associated
solutions allow more concurrency than the node-
associated solutions. This is because a semaphore is
always used by only two processes in edge-associated
solutions but can be used by more than two processes in
the node-associated solutions.

As an example, consider the graph G of Figure 2 and
its two solutions in Figures 3 and 4. Suppose node fis in
its critical section and all other nodes are in non-critical
sections. If node e wants to enter its critical section, it will
be blocked either at P(S,,) in the edge-associated solution
of Figure 4 or at P(S,) in the node-associated solution of
Figure 3. If node @ now wants to enter its critical section,
it will be allowed to do so in the edge-associated solution
but will be blocked at P(S,) in the node-associated
solution since node e had already completed P(S,). This
example shows that, in a node-associated solution, if a
neighbour of a neighbour of a node p is already blocked,
then p may also be blocked if it tries to execute its entry
section.

4. GENERALISED PV SYSTEMS

Algorithm 1 can easily be extended for many generalised
PV systems.*>®In a PV,, .. (or simply PV,) system, the
value of a semaphore can be incremented or decremented
by any positive integer, not necessarily 1. The operations
P, and V, are defined as:
P(S:a):if S>=athen S« S—a
else wait.

V(S:b):S< S+b.

Using the PV, system, it is possible to modify
Algorithm 1 so that all V operations appear in the exit
sections.

Algorithm 2. Generation of starvation-free node-
associated PV, semaphore solutions for mutual exclusion
problems.

Input. A graph G(V, E) with N nodes.

Output. The entry and exit sections, stored in entry(p)
and exit(p) respectively, of all nodes p in V.

Semaphores used. Every node p in V has a semaphore
S, associated with it. S, is initialised to N, the number
of neighbours of p.

(1) Arbitrarily label each node in ¥ with an unique
integer value from 1 to M.

(2) For every node p in V do
work_list < N(p) U {p}
entry(p)< ‘",

exit(p) <"
while work_list is not empty do
Let x be the node in work_list labelled with the
smallest value;
if x = p then
entry(p) < entry(p) & “P(S,:N,); ”;
exit(p)<“V(S,:N,);” & exit(p);

else
entry(p) < entry(p) & “P(S,:1); ”;
exit(p)<“(S,:1);” & exit(p);
end if;
Remove x from work_list;
end while;
end for.

(3) Stop.
Using Algorithm 2, the solution in Figure 6 is generated
for the graph G of Figure 2.

Node a
entry section: P(S,:2); P(S,:1); P(S,:1);
exit section: V(S,:1); V(S,:1); ¥(S,:2);
Node b
entry section:
exit section:
Node ¢
entry section:
exit section:
Node d
entry section:
exit section:
Node e
entry section:
exit section:
Node f
entry section: P(S,:1); P(S,:1); P(S,:2);
exit section: V{(S,:2); V(S,:1); V(S,:1);
Figure 6. A PV, node-associated solution for the graph G.

P(S,:1); P(S,:3); P(S,;:1); P(S,:1);
V(S,:1) V(S,:1); V(S,:3); V(S,:1);

P(S,:1); P(S,:3); P(S,:1); P(S,:1);
V(S,:1); V(Sy:1); V(S,:3); V(S,:1);

P(S,:1); P(S.:1); P(S;:2);
V(S,:2); V(S.:1); V(S,:1);
P(S,:1); P(S,:2); P(S;:1);
V(S;:1); V(S,:2); V(S,:1);

The correctness of the solutions generated by Algo-
rithm 2 can be proved in a manner similar to that of
Algorithm 1 and is omitted here. These solutions allow
more concurrency than that of Algorithm 1. For example,
a node may still enter its critical section even if a
neighbour of one of its neighbour is blocked earlier. The
degree of concurrency allowed is similar to that of the
edge-associated solutions.

In a similar fashion, Algorithm 1 can also be extended
to deal with PV, system or the PV, .., system.® The

multiple

details are not pursued here.

5. CONCLUSION

In this paper, an algorithm is presented that generates
starvation-free semaphore solutions for graphical mutual
exclusion problems. These solutions are much more
efficient than the straightforward monitor-like solutions.
Although they are slightly more restrictive than the edge-
associated solutions, they usually use a significantly
smaller number of semaphores, making them especially
suitable for complicated problems.

However, while the edge-associated solutions are also
applicable for weak semaphores,’*'* where individual
competition starvation is possible, the node-associated
solutions are not. It would be interesting to obtain an
extension of Algorithm 1 that accommodates weak
semaphores.

Acknowledgement

The authors would like to express their thanks to the
Faculty Research and Support Funds of the University
of Houston — Clear Lake and to the referee for his
various valuable suggestions for improvement.

348 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991

202 I4dy 60 U0 1senb Aq $9/89¢/SHE/v/vE 8101/ |ulwoo/woo dno-olwspeode//:sdiy wolj papeojumoq

