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Time and space trade-off studies by Rosenberg and Snyder (1981) have shown that the space-optimal B-trees are

wearly time-optimal. That means efforts to explore a B-tree variant that enhances the space-efficiency of the tree would
be worthwhile. Although the compact B-trees of Rosenberg and Snyder (1981) achieve high space utilisation, they
require very expensive reorganisations and hence they are impracticable even for relatively small and reasonably stable
databases. In addition the storage utilisation of compact B-trees may deteriorate quickly because of splitting of leaf
sodes resulting from insertions. The possibility of attaching overflow nodes to the leaf nodes of B-tree to defer the
splitting of modes was proposed in Ref. 7. This paper extends and formalises the new data structure and analyses its
performance both quantitatively and by simulation. The performance analysis shows that the additional cost associated
with overflow nodes is minimal and the storage utilisation and retrieval performance of the new data structure are

similar to that of the compact B-tree.
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1. INTRODUCTION

The B-tree structure of Bayer and McCreight is an
effective data structure for organising and maintaining
an index for a dynamically changing file on secondary
storage.® A good discussion of B-trees and some of their
variations is presented by Comer and Knuth.5-!°

We use the term ‘key’ to mean a record key value as
held in the B-tree index. The classical B-tree of order M
is characterised by each non-leaf node (or page) except
the root having at most M — 1 keys and M descendants
and having not less than |M/2]| descendants. We assume
the reader is familiar with conventional algorithms for
maintenance of B-trees. For details, refer to Comer and
Knuth 310

It is clear that a minimally filled B-tree guarantees
storage utilisation of at least 0.5 in all nodes except the
root. Such low storage utilisation has the following
implications.

(1) Itis expensive in terms of physical storage resources.

(2) When the B-tree nodes are traversed to yield a
sequential key ordering, the number of nodes which must
be read may be very large (compared to other possible
index ofganisations, e.g. indexed sequential, VSAM).

(3) Random operations (key insertion, deletion and
retrieval), on the B-tree are more expensive in some cases
because, for a given number of keys, the tree may be one
level higher than need be.

The average storage utilisation, however, tends to be
better than the 0.5 minimum. Yao has shown that the
leaf pages are expected to be 0.69 full on average if the
distribution of keys is uniform.'* However, according to
4 study by Quitzow and Klopprogge the 0.69 average
utilisation is obtained only if the file is expanding and no
deletions are being made.'® When deletions and insertions
take place with equal probability, the storage utilisation
18 expected to be close to 0.59.

Rosenberg and Snyder discuss time-optimality and
Space-optimality of B-trees.’* A B-tree is called space-
Optimal if it has a minimal number of nodes for a given
Number of keys, and time-optimal if the expected number
of nodes visited per key retrieval is minimal. Rosenberg
and Snyder show that time-optimal B-trees tend to have

nearly worst-case space utilisation, but the space-optimal
B-trees are nearly time-optimal.'® It is therefore desirable
to aim for space-optimality, not just to save on storage
but to be close to time-optimality.

Intuitively this result may be explained as follows.

(1) M is usually large (of the order 10-100) for
practical applications.

(2) Time-optimality requires minimal height, which in
turn requires high (near 1.0) space utilisation in the non-
leaf nodes of the B-tree, but this implies poor average
space utilisation in the leaf nodes. Since there are a very
large number of leaf nodes compared to non-leaf
nodes, the poorer utilisation dominates the total space
utilisation.

(3) Space-optimality throughout all levels of the B-tree
implies that the height will be close to minimal and hence
good time performance may be expected.

2. B*-TREES AND OTHER B-TREE
VARIATIONS

Several variations of B-tree have been suggested for
improving the storage utilisation. The most well-known
variant suggested by Knuth (Ref. 10, page 478) is known
as a B*-tree. On insertion to a full node, splitting is
delayed until one (or even both) of the adjacent sibling
nodes is also full. If the two sibling nodes are not full,
insertion to a full node results in a redistribution of keys
and pointers between the sibling nodes.

When both left and right siblings are checked and
involved in the redistribution, the worst case space
utilisation is 0.75, and the average space utilisation has
been empirically determined to be 0.87 (Ref. 10, page
479). Quitzow and Klopprogge also calculate storage
utilisation when both sibling nodes are checked before
splitting and obtain a figure of 0.826 utilisation if
deletions and insertions are taking place with equal
probability.!® Checking both siblings is obviously some-
what more expensive than checking only one sibling. It is
of course possible to extend the scheme so that more
than two sibling nodes are checked before a split is made.
Such schemes result in higher storage utilisation at the
cost of increased checking of the sibling nodes and an
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increasing expense when the keys are redistributed across
a larger number of sibling nodes.

Culik, Ottmann and Wood have introduced m-ary
dense B-trees in which all the sibling nodes may need to
be looked at before an insertion is made.® The scheme is
obviously very expensive in terms of number of nodes
accessed and number of keys shifted, but it leads to
almost 100% storage utilisation.

When the leaf nodes are becoming full in growing
index, the B*-tree organisation would require frequent
redistributions. Also when the index has achieved very

3.1 The method

" We illustrate the basic idea behind the scheme with ap

example. We will use the classical B-tree structure,
although B-tree variations requiring all keys to be
resident in the leaves are more commonly used.

Initially consider a conventional B-tree of order 5 ang
build the tree by inserting keys 1, 2, 3,...,20 in that
order. It is known that building a B-tree by such ordereq
insertions results in a worst-case B-tree. The final B-tree
with the 20 keys is

12115118

10 11

13 ] 14 16 | 17 19 | 20

high space utilisation, a small number of subsequent
insertions will result in space utilisation going down
substantially. This is because space optimality tends to
be very unstable and, as shown by Klonk (1983), may be
lost with index growth of less than 1 % if the order of the
B-tree is large (> 50). For example, Klonk (1983) shows
that 1% growth in the number of keys in the index may
reduce storage utilisation from 1.0 to 0.57 if the order of
the B-tree is 150, and to 0.66 if the order is 75.
Rosenberg and Snyder suggest a compacting algorithm
which could be used for achieving space-optimality at the
end of (say) each day.'® One of the disadvantages of this
scheme is that if the index is growing the space utilisation
may go down substantially soon after compacting due to
the instability of space-optimality. Also in some applica-
tions it may not be feasible to accept the disruption
caused by major index reorganisation. Henceforth we
shall only consider schemes which support dynamic

index updates without periodic restructuring of the-

whole index.

3. B-TREE WITH DEFERRED SPLITTING

Culik et al.® observe that the simple B-tree scheme and
m-ary dense B-trees lie at the extreme of a spectrum o1 B-
tree structures characterised by (a) the extent to which
node splitting is deferred and the cost of this deferment,
and (b) expected space utilisation.

A technique to improve space utilisation over the
simple B-tree, without incurring the deferment costs of
m-ary dense B-trees is proposed in Ref. 7. This method
has some similarity to the overflow strategy employed in
linear hashing to avoid major reorganisation as the
allocated pages of a file become full.* In the remainder
of this section we formalise their data structure.

uoofdnopiwspeoe//:sdiy woly papeojumoq

We have 10 nodes and 40 key positions, but onlyz20
key values, and therefore the storage utilisation is 03,

Now con51der the proposed techmquc which emplé’ys
deferred splitting. Once a leaf node is full, rather tl&n
splitting it unmedlately, an overflow node is added th
and the splitting is deferred. The sequence of keystis
strictly ascending in each leaf node and its associatéd
overflow node. For simplicity we shall consider all nodes
(internal, leaf and overflow) to have a homogcneéﬂls
structure. This may represent suboptimal space q@l
isation in the leaf and overflow nodes, however, n
improvement in storage utilisation can be obtainedby
allocating an overflow node to a group of leaf nodes
below). Using this technique we have the followghg
configuration after inserting key 5.

112]3]4
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5 Overflow node

Once the overflow node is full, and an attempt is made to
insert a new key, we split (or reorganise) the leaf node
and the overflow node into two leaf nodes of the B-tree.
Therefore after the insertion of key 9 we have two leaf
nodes and no overflow nodes.

5
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Further insertions directed to a full node result in an
overflow node being attached to that node. Again, when
ihe overflow node is full, it and the leaf node to which it is
attached are reorganised into two leaf nodes. This
results in the following final B-tree.

the leaf nodes in the file will always be full and the only
unused space will be in the overflow nodes!

Therefore, in the simple case, the storage utilisation
will be very high and has a guaranteed worst case of
g/(g+1). Unfortunately the real-life situation is some-

51101 15
1 213 4 6|7 8|9 11127113 }14 16117118119
—
///
-—
o
20 | Overflow node

There are 6 nodes (1 internal node, 4 leaf nodes
and an overflow node) and a storage utilisation of
20/24 = 0.83.

Table 1 illustrates that over a range of insertion
sequences (with key values being 1 to 20), the overflow
technique with deferred splitting method provides space
utilisation which is never worse but often better than the
conventional method for this simple example.

The idea of attaching one overflow node to each full
leaf node may be generalised. If an insertion is made to
a full leaf node, rather than allowing a separate overflow
node to each leaf node, we may allow one overflow node
to be shared by g (g = 1) leaf nodes. Such sharing of
overflow nodes is often used in hashing schemes to
minimize the space overhead involved in using overflow
nodes.

Consider the case where insertions are made to an
empty B-tree. Splitting will not occur until the root node
and its associated overflow node are full. After the split
there will be two full leaf nodes. The next split occurs
when both leaf nodes and their shared overflow node
(assuming g > 1) are completely full; after the split there
will be three full leaf nodes and two keys in the root
node. This process may be repeated until all the g leaf
nodes sharing an overflow node are full and that the
overflow 'node itself is full, and another insertion is
made; at which time the g leaf nodes, the overflow node
and the new key are reorganised into g+ 1 leaf nodes,
with one key migrating to a parent (non-leaf) node.
Assuming that no deletions are taking place, repeated
application of this insertion procedure guarantees that

Table 1. Comparative space utilisation for a small index

what more complex. A file undergoes deletions as well as
insertions and therefore the leaf nodes cannot be expected
to be full without incurring substantial reorganisation
costs at each deletion. In the following sequel we show
that it is possible to design algorithms which will ensure
high storage utilisation of the leaf nodes without
substantial reorganisation cost.

In order for the B-tree with overflow nodes for
deferred splitting to be useful as a secondary index
structure we need to answer the following questions.

(a) How do we always find exactly g nodes to share an
overflow node?

(b) How do we deal with deletions in the B-tree index?

We will concern ourselves only with the leaf nodes in
the B-tree, since a very large majority of the keys reside
there for B-trees with typical orders and numbers of
keys. Further, all insertions are directed to leaf or
overflow nodes and any subsequent changes to internal
nodes (as a consequence of splitting) are identical to the
simple B-tree case. For the method to work, it is not
essential to have a fixed value of g. Also during
reorganisation we deal with a group of nodes together,
and the group includes g leaf nodes and possibly a single
shared overflow node. In order for the reorganisation to
be local to the tree, we ensure that these g leaf nodes
have the same parent, hence the propagation of the
reorganisation is localised to a subtree. Further, g is
constrained by the order of the B-tree and we have

where G is a design parameter.

Space utilisation

Conventional Deferred

Key sequence method splitting
1256734101112891516171314181920 0.833 0.833
(‘best case’ for the conventional method)
1234567891011121314151617181920 0.5 0.833
(‘worst case’ for the conventional method)
1234678910121314151617181920115 0.556 0.714

(‘worst case’ for deferred splitting)
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We shall define n to be the number of keys in the nodes
of a particular group. In the classical B-tree organisation
sibling nodes may be merged during deletion to guarantee
minimum space utilisation of 0.5. In the proposed
method an analogous scheme is required whereby a
reorganisation procedure in the group is invoked
whenever the number of keys in a leaf node falls below
the threshold value M —1—s, where s is also a design
parameter such that

O<s

<IM-1)/2].

Suitable values of G and s may be computed once the
value of M and minimum storage utilisation have been
decided.

The maximum and minimum number of keys (n,,,
and n_,,) in a group therefore are given by

Moo =@+ (M-1)
and Ry, =g8(M—1-—235).

Formally a B-tree with overflow nodes for deferred
splitting can be defined as follows.

(1) The structure of the tree from the root of the tree
to the parents of the leaf nodes is the same as for a
classical B-tree.

(2) A leaf node contains k keys such that

M>k>2M-—1-s,

where s is a positive integer design parameter, and that
determines the storage utilisation. M — 1 —s is called the
‘threshold value’ of the leaf node.

(3) Each group of g leaf nodes share an overflow node.
The g leaf nodes and the associated overflow node is
called a ‘group’. The value of g is such that

G>g>G/2

G is called the order of the group. All leaf nodes in a
group have the same parent.

(4) G, s, M and minimum storage utilisation in the leaf
nodes (17,,,,) are related as follows:

$=(1=7gp) (M—1).

During reorganisation (see below), we allow almost s/2
keys from a leaf node to reside in the corresponding
overflow node. Hence an overflow node can at most be
shared by G leaf nodes, where G is given by

2M-1)
—

G =

(5) If an attempt is made to insert a key into a node
that has M —1 keys, we say that node overflows. If an
attempt is made to delete a key from a node with
M —1—5 keys, we say that the node underflows. When a
node overflows and the group overflow node is full, we
say that a group overflow has taken place. Similarly when
a node underflows and the group overflow node has no
key belonging to the node, we say that a group underflow
has taken place.

The retrieval, insertion and deletion algorithms are
quite similar to that of B-tree except that we have to take
into account the keys in the overflow node of the group.
The retrieval operation proceeds in the normal way as in
the B-tree, and if the key is not found in the corresponding
leaf node, the corresponding overflow node is searched
for the key before reporting a failure. The difference

between B-tree and B-tree with overflow nodes for
deferred splitting is in the insertion and deletiop
operations and the manner of handling overflow angd
underflow conditions. In the following section we
describe the group reorganisation when the group nodeg
overflow during insertion operation. A similar reor-
ganisation procedure can be devised for dealing with
group underflow condition.

3.2 Group reorganisation

Group reorganisation is required when a group overflow
or group underflow takes place. There are several issues
that must be considered when a group is reorganised.
These include the following.

(a) Should the number of nodes after reorganlsatlon
be the same as before?

(b) How many keys should be placed in the overﬂéw
node as a result of reorgamsatlon?

Let the number of keys in the group when it is beg_lg
reorganised be n, which will be approxunatcd to be the
average of the minimum and maximum number Zof
possible keys in a group. Let g be the number of lcaf
nodes in the reorganised group. It is clear that if n is clégse
to n.,. or n_,., another reorganisation could follow Ele
current one. Since a group reorganisation is cxpensxgc,
we should attempt to choose a value of g such that ris
not close to the values n,, and n_,. o

Also when the n keys are bemg dlstnbuted amo t
the leaf nodes and the overflow node, it is desirable t
the number of keys in each leaf node is not close to M nl
or M —1—s since a subsequent overflow or an underﬂ_w
of a leaf node would lead to a node reorganisation whg;h
incurs additional cost of reading and writing of the
overflow node.

A simple scheme for computing the value of g d

reorganisation is as follows. We have %
9

_ (Mg +110) s\,M-1) &

Nove = 2 =g M-—1 '—5 + 2 ’ %’

o

and therefore we could choose g to be g
n_ (M-l n 3
M—1-5/2) 2M—1-5/2) " [(M—1-5/2)] S

We could then put (M — 1 —s/2) keys in each of theg
leaf nodes and put the remaining keys in the overfléw
node. The keys in the overflow node will be a unifotin
mix of keys from all g leaf nodes. If ¢ is the number’df
keys that exist in the overflow node from a leaf node its
value is such that

0<c<

[(M -1 —s/Z)]
g
or, substituting M —1 from the definition of s,

s(G—1)
O\C\[ 2% ]

A group reorganisation would require reading of all
the nodes in the group and writing of all the new nodes
after redistribution of keys. This is likely to lead to
changes in the parent node as well.

A group reorganisation may lead to a group split if the
new g > G, or group merging if the computed value of
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g < G/2. During group merging a brother group with the
same parent is selected. Normally the right-hand group is
chosen if it exists, otherwise the left brother group is
selected and one of the following actions is taken.

(i) If number of leaf nodes in the brother group is more
than G/2, the nodes in the two groups are equally
divided into two groups.

(i) If the number of leaf nodes in the brother group is
G/2, the two groups are merged together to form a single

roup.
%‘hat completes the reorganisation algorithm.

4. PERFORMANCE ANALYSIS

This section evaluates the performance of the new data
structure quantitatively. In particular, the expression for
average storage utilisation and the cost of insertion and
deletion will be derived. A random walk model will be
used to analyse the behaviour of the proposed structure.

4.1 Storage utilisation

The average number of keys in a group is given by
Nove = (M_ l)g

The storage utilisation of the new data structure therefore
on the average would be

g
”BVG g+ l ?
where G/2 < g < G is the average number of leaf nodes
in a group. The number of leaf nodes in a group varies
in the same way as the number of keys in a leaf node of
a B-tree of order G. Therefore the average value of g is
the same as the average number of keys in a leaf node of
a B-tree of order G. That is,

26
Bave ¥ 3

Substituting g, .. in 7,,., we obtain the average storage
utilisation of B-trees with overflow nodes for deferred
splitting as

_2G
”lve - ZG+3 .

4.2 Cost of retrieval

The number of keys, on an average, in the overflow
nodes of the new tree structure is equal to the number of
vacancies in the leaf nodes. Therefore the overflow keys
could be accommodated in the leaf nodes and a compact
B-tree would be obtained. The depth of the leaf nodes of
the tree would therefore be

h=log, (N+1)
where N is the total number of keys in the tree.

The average cost in number of reads for a random
retrieval is
¢
o=log,, (N+1)+——,

where c is the average number of keys in the overflow
Node from a leaf node.

The height of a B-tree with overflow nodes for deferred
splitting varies in the following range

log,, (N+1) < h < 1+108M12NT+1'

4.3 Cost of insertion

An approximate mathematical analysis of the additional
cost of maintaining the new data structure can be made
by means of a random walk model. The random walk
model to be used is described in Refs 1 and 2. Under the
conditions of uniform distribution of key values in the
tree and random insertions and deletions, all the groups
and their leaf nodes are expected to behave in a similar
fashion. A leaf node initially contains M —1—c¢ keys,

" where ¢ is a positive integer such that 0 < ¢ <s. Let p, g

and r be the probabilities of insertion, deletion and
retrieval respectively.

We first consider the case when the tree is undergoing
only insertions and no deletions. We are interested in
finding out the number of insertions made before a leaf
node, starting with M —c keys in it, overflows. Let
T(M —1—c, M) be the number of insertions needed for
the random walk, starting at height M —c, to reach
height M. The mean value of (M —1—¢, M) may be
derived using the techniques presented in Ref. 2, and we
obtain the following

ET(M—1—¢, M)] = "’#

where E[T(M —1—c, M)] is the expected value of the
number of insertions made before the random walk
reaches the height M.

For the insertions directed to a group under con-
sideration we can say that p=1/g and ¢ = 0.

After a certain number of insertions (say I) the group
will need group reorganisation. After this reorganisation
the group comes back to the same configuration as it
started before I insertions. However, the value of g
would have gone up by one. We like to compute the
average cost per insertion as

o= [Additional cost incurred in 7 insertions]
= 7 )

The additional cost we define as the i/o cost incurred
during insertion, in addition to the usual cost of reading
all nodes on the path from the root to the leaf node and
writing of the leaf node that was updated. The additional
cost in any of the I insertions can be incurred due to one
of the following three factors.

(1) Additional cost incurred when an insertion is
directed to the overflow node. This extra cost involves
reading the overflow node.

(2) Additional cost incurred when an insertion is
directed to an already full leaf node. This extra cost,
because of this node reorganisation, involves reading and
writing of the overflow node.

(3) Additional cost incurred due to the group re-
organisation. This cost is incurred during the last of the
I insertions. The additional cost incurred due to this is
reading and writing of all other g—1 leaf nodes in the
group and the overflow node.

In the sequel we will compute the upper bound for the
cost of insertion.
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The additional cost due to the first factor can be found
if we know how many out of I number of insertions will
be directed to the overflow node. The additional cost due
to the second factor can also be similarly found out if we
know the number of node reorganisations during these /
insertions. We know that at the start of insertions, out of
M—1 keys of a leaf node, ¢ keys reside in the overflow
node. If v is the probability that an insertion is directed
to the overflow node, the value of v at the start of
insertions is

_c+l
V= M .
The minimum and maximum values of v during the
course of I insertions are as follows:

c+1 2+

= —— and v = ——
™ M4e T M4c+1

v
The total additional cost incurred due to the first factor
in I insertions will be Iv.

The additional cost incurred because of the second
factor can be calculated if we know the number of node
reorganisations that occurred during the course of 7
insertions. The number of node reorganisations depend
on the vacant key spaces available in the overflow node.
At the start the overflow node has M —1-—gc vacancies.
This vacant space is further reduced because of insertions
directed to the overflow node. Therefore the number of
vacancies in the overflow node available for leaf node
reorganisations, in I insertions, will be

M—-1—gc—Iv.

According to the random walk model, all the g leaf
nodes would have overflowed or would be on the verge
of overflowing after g(c + 1) insertions directed to the leaf
nodes. A node reorganisation involves moving ¢ keys
from the overflowing leaf node to the overflow node. If
the vacancies available in the overflow node are less than
¢, as many keys as the vacancies available are moved.
The number of node reorganisations R in I insertions will
therefore be

M—1-gc—Iv
c

R=

or
M—1—gc—1Iv
c

R= +1 (at worst).

The value of I'can be computed from the equation

I = Insertions into
overflow node

leaf nodes+ Insertions into

I=gc+D)+1v
or I= g_(_cj—i)
1—-v
and therefore
_ gmin(c+ 1)
I, = = .

min

The average additional cost incurred per insertion can
now be evaluated by dividing the cumulative additional

cost, due to all the three factors, over I insertions by I ag

i follows

_Iv+2R+12g
=

Substituting R from above and after simplifying we have

2M—1+4¢) 2v
.
Ic c

The worst value of w can be obtained as follows

(/)]

2(M—1+4¢) 2uy,
) . ¢’

min

worst = umnx +

Substituting the values in the above equation we have

MM—1+0)(M=1)  2c+1)
cGlc+1)(M+c) cM+c)

The expression for w,,, can be computed using v
and g,,.. The final expression is as follows.

2c+1
M+c+1

wwom =

_ (c+1)(c—2)+3(M—1—c)(M—l+c)

@ave = 3¢ MGc(c+1)

eoe//:sdny wo.g pspeojumoq

Note that w is inversely proportional to G. That measis
higher values of G will give better performance for
constantly growing B-tree with overflow nodes f@-
deferred splitting.

8

3

(@]

4.4 Cost of insertions in B-tree 3
Yao has shown that :?
%ﬁ

N o

nN)=———, o

(M—1)In2 g

where M is the order of the B-tree and n(N) is the avcra@
number of B-tree nodes obtained after N randofi
insertions, starting with an empty tree and no deletxons@
The average number of splits after N random msertxoﬂ%
is therefore n(N)— 1. The additional cost incurred fo@
split operation on an average is writing the new leaf nodg
and the parent node. The average additional cost inc

in building a B-tree after N random insertions is therefore

o
_2n(N)—1) g
__N S
N
2
or w—m for N>» M.

4.5 Cost of the new tree with insertions and deletions

We shall now consider the case when the tree 15
undergoing both insertions and deletions. We art
interested in the expected number of transactions before
a node, starting with M—1—c keys, overflows 0f
underflows. This problem is identical to the classical run
problem with two absorbing barriers (see Ref. 1, pages
348-349). In our problem one of the barriers is when th
node has M keys and the other barrier is when the node
has M —2—s keys. The values of ¢ and s are such tha!
0 < ¢ < 5 < M/2. The expected duration of the rando®
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walk hitting either barrier, when p # g, is given by the
following expression:

(c+1) s+2 1-(p/g)"
(r—q9) (p—91-(p/9)"*

The expression simplifies to the following when p = ¢
(using L’Hospital’s rule)

ET]l=(c+D(—c+1).

E[T] =

451 Casel:p=gq

We now consider the environment in which the prob-
abilities of insertion and deletion to the tree are same
(namely p = q). Consider a leaf node with (M—1—¢)
keys initially. We are interested in the expected number
of transactions after which the node is either overflows or
underflows. The expression for the expected duration of
the random walk, on a leaf node, hitting either barrier
when p = g is given by the equation above.

As noted earlier, the additional cost of maintaining the
B-tree with overflow nodes for deferred splitting results
mainly when a leaf node overflows or underflows.
Therefore the additional cost will be least if E[T] is
maximum. In the above expression the value of E[T7] is
maximum when ¢ = 5/2.

We shall now derive the expression for the additional
cost of the tree per transaction. A transaction in this case
is either insertion or deletion. The factors affecting the
additional cost are the same as listed in the previous
section. In this case the evaluation of the additional cost
due to the first and the third factors remain the same. For
the second factor we make a worst-case assumption here.
That is, the group will need reorganisation after all the g
kaf nodes have hit either barrier. Some of them may
overflow and the others will underflow. In other words the
number of node reorganisations will be

R=g

From the random walk model, the mean number of
transactions directed to the leaf nodes, after which all the
gleaf nodes would ‘have hit either barrier, with ¢ = 5/2,
is

, (c+1)ig.

The expected total number of transactions (say 1),
directed to the group, after which the group will need
reorganisation, can therefore be obtained from the
following equation

1=g_(c_+_1)1

I=1Iv+g(c+1)* or p—

Where v is the probability that a transaction will be
directed to the overflow node. It starts with value
(c+1)/M and its minimum and maximum values in this
Qse are as follows

2c+1 c+1

V=0, v,,,=———— and o, =—.

™ M4c+1 M
The expression for w in this case is as before:

Iv+2R+2g
w=—

w

Substituting the value of R we get

41-v)
(c+ D)

The worst value of @ in this case will be

_ 4(]_Umjn)
wwont—vmax+ (C-l'l)a *

Substituting the values from above we get

oo e+l 4
YT M4c+1 o (+ D)

w=0v+

The final expression for the average additional cost per
transaction, using v,,., therefore is

4(1 - vuva)

wnve = vlve+ (C+1)2 °

ave?

Substituting the values we have

_c+l dM—-c—1)
Pove =M Y MEH 1Y

452 Case Il: p+qandp>q

We shall now consider the case when p #+ ¢ and both p
and ¢ are non-zero. If the value of p is sufficiently
greater than g, the barrier at M —s—2 can be ignored. As
a result the expected value expression can be simplified?
to
c+1
p-q

The derivation of the expression for the additional cost
in this case is identical to the case when g = 0. The only
difference is that the expression for the mean expected
value of number of transactions after which the random
walk reaches height M now becomes

E[T] =

c+1
p—q

E[TM—1—c,M)] =

The total number of transactions, directed to the group
under consideration, after which the group will need
reorganisation can be obtained from the following
equation:

c+1 c+1
or

P—q I=(p—q)(1—v)‘

The final expression for @ thus becomes

I=h+

Ap—(1-0)(M=1+0) 2
clc+1) ¢’

The final expression for the worst value of w will be

w=v+

_ 20—q) (1 = Vi) M —1+6) 20
Dgorst = Umaxt e+ D) P

Substituting the values we have

2c+1 2p—q)(M=1D)(M—14¢) 2c+1)
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st = Mo+l oAc+ 1) (M+c) ToM+o)
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The final expression for the average additional cost,
using v,,,, therefore becomes

W 2(p_q)(1_vlve)(M_1+c)_2vlve

ave = IVO+

c(c+1) c
or
e+l 2(MAc—1)(M—c—1)(p—¢q)  2(c+})
Pave = 37 + Mic(c+1) + Mc

5. SIMULATION RESULTS

In order to evaluate the correctness of our mathematical
model, we performed some simulation studies on the
proposed data structure, and the results are summarised
in Tables 2-4. We now present the results of the
simulation and compare them with the theoretical results.

The number of keys used in the simulation for a given
order is large enough for at least three levels in the tree
to be obtained. For instance, 20,000 keys were used to
build a tree of order 91. To simulate the new tree with
p =gq, the insertions and deletions were performed

Table 2. Space utilisation

B-tree with deferred splitting B-tree

n n

G s=2c¢ M Simulation Theoretical Simulation Theoretical

10 18 91 0.87 0.87 0.68 0.69
8 16 65 0.84 0.84 0.68 0.69
6 14 43 0.80 0.80 0.68 0.69
4 12 25 0.73 0.73 0.68 0.69

Table 3. Average additional cost per insertion with no deletion
¢=0)

B-tree with deferred splitting B-tree

w w

G s=2c¢ M Simulation Theoretical Simulation Theoretical

10 18 91 0.32 0.37 0.03 0.03
8 16 65 0.36 0.42 0.04 0.04
6 14 43 0.44 0.48 0.07 0.07
4 12 25 0.56 0.57 0.12 0.12
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Table 4. Average additional cost per transaction when
insertion and deletions are done with equal probability (p = ¢)

B-tree with deferred splitting B-tree

/)] @

G s =2c M Simulation Theoretical Simulation Theoretical

10 18 91 0.12 0.13 0.04 —
8 16 65 0.14 0.16 0.06 —
6 14 43 0.18 0.21 0.10 —
4 12 25 0.24 0.31 0.20 —

alternately. The number of insertions and deletions wag
three times the number of keys present in the tree.

6. CONCLUSION

B-tree is considered as the de facto standard access path
for providing random access to databases. However,
conventional B-trees and their variants are not space.
optimal; those that are space-optimal are also nearly
time-optimal. With that result in mind, this paper
proposed a method to improve the space utilisation of B-
trees. A new data structure is proposed where overflow
nodes are attached to the leaf nodes of the conventiona]
B-trees. The data structure is formalised and its per-
formance is analysed both mathematically and by
simulation. o
From the results it can be seen that the proposed d&ta
structure can achieve high storage utilisation compared
to the conventional B-tree even for moderate ord%s_
Trees of the order 91 can achieve a storage utilisationas
high as 89 per cent. However, this increase in storége
utilisation does come with a penalty in the form of the
effort required during the reorganisation of the free
structure. The analysis shows that the cost of insertiomsis
much higher than that of conventional B-trees for
applications which involve only insertion. However, the
performance of the new data structure is comparableto
that of conventional B-trees in situations where fhe
insertions and deletions are intermixed and occur with
near-equal probabilities. Such situations are more pric-
tical. Because of higher storage utilisation the propo%d
data structure can provide improved response timésto
retrieval queries without degrading the performanceZof
index maintenance. '
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The algorithm in Fig. 1 is the square-move
version of the cubic generating algorithm
given in this Journal, vol. 11, p. 120. The
algorithm is similar to the conic generating
-algorithm (see Fundamental Algorithms for
Computer Graphics, 1985, vol. 17, pp. 219-237)
m that it permits the plotter to use square
moves only. (It is wuseful in rendering
spplications where it is necessary to visit, in
turn, all the pixels intersected by a given cubic
curve.)

Initial conditions for the cubic form are:

k42vx —2uy—ay®—fx* —2yxy

————— px'y—gqxy* = 0.

(We are here assuming that u and v are

yes

'

Change sign: d, b, Ky, L1, L3, Ysiep

Ky=-K3-Lq4
K, =K, + L
K2 =K2+L2
b=b-K,

no

Figure 1. The cubic drawing algorithm for a plotter which
permits only square moves.

positive, but, if they are not, the algorithm
responds by searching through the quadrants.)

L =2

Ly=2p

Ly=2%

L,=2s

K, =28—r+p

K, =2

K, =2a—s+9q

yes

v

Change sign: d, a, K3, Ly, La, Xuep

K|=—K|—L|
K=Ky + L3
Ky =K3+1L4
a=a+K3
K1=K|+L2
b=b-K;
d=d-a

Yours faithfully

F. HUSSAIN and M. L. V. PITTEWAY
Department of Computer Science,
Brunel University, Uxbridge,

Middlesex, UBS 3PH.
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