A New Technique for Self-Organising Linear Searches

(P. M. FENWICK

Department of Computer Science, University of Auckland, Auckland, New Zealand

Searches of sequential lists can be improved by moving active elements closer to the start of the list. Several existing
techniques are investigated on a selection of text and program files, and compared with some new techniques. One of
these new methods, which involves a simple transposition of the element just found with a randomly selected element

about halfway towards the front of the list, is found to be an efficient method if the data are held in an array.

Received April 1988, revised June 1988

1. INTRODUCTION

It is well known that the simple linear search of an
unordered table can be improved by reordering the table
entries according to knowledge gained from searching
the table. Two recent papers (Bentley and McGeogh,!
and Hester and Hirschberg?) contain excellent descrip-
tions and analyses of the techniques which are involved,
together with extensive references. Bentley and McGeogh
in particular mention the following three heuristics
which are representative of the methods used. (The
descriptions are quoted directly from their paper.)

1. Transpose When the key is found, move it one
closer to the front of the list by transposing with the
key directly in front of it.

2. Move-to-Front When the key is found, move it to
the front of the list (all other keys retain their
relative order).

3. Count When the key is found, increment its count
field (an integer that is initially zero) and move it
forward as little as needed to keep the list sorted in
decreasing order by count.

In each case the idea is to try to keep the ‘active’
elements as close as possible to the start of the list, so that
the average search length is minimised. Transpose works
with the minimum possible movement of just one position
at each reference. It provides a very gradual reordering
of the table, in fact a reordering which is so gradual that
in many cases the table does not have time to stabilise
during its lifetime. Move-to-Front is a complete contrast
in that each key, when found, is moved to the very front.
It certainly optimises access to the most recently accessed
element, but at the cost of slower access to all of the other
currently active elements. As a compromise, Count
attempts to maintain an optimum ordering based on the
entire history of past accesses, but can pay little regard to
current locality effects, except in that these affect the
overall history. While it will certainly respond to entries
becoming active, it has no real mechanism for an entry to
become forgotten after a period of intense activity. Yet
another technique is Move-anead-k in which an element,
when found, is moved k positions toward the start of the
list (Rivest*). It may be regarded as a modification of
Transpose and has been investigated by Tenenbaum.?

Both Move-to-Front and Count may involve extensive
data movement if implemented in the obvious way using
data in an array. This is a very real problem, especially
if the cost of moving an entry is comparable to the cost
of a test. It may be eased by using a linked list as the data

structure and ‘moving’ data with appropriate manipu-
lation of the links, but at the cost of space for the links.
In a recent paper Hester and Hirschberg* proposgga
new heuristic JUMP, in which a backpointer is moved3o
the current position if, and only if, the search is sl
unsuccessful and some function of the search historyss
TRUE. When the search succeeds the key is then
transposed with the element located by the backpointer.
JUMP is particularly applicable to a linked list im-
plementation (although it can be use with arrays), aﬁd
with suitable choice of function can have an ave
behaviour similar to that for Move-To-Front, Transpose
or Move-ahead-k. o

1

2. THE NEW TECHNIQUES

The present paper describes some other techniques
implementing a self-organising linear search. As
initial observation, we may note that neither Transpose
nor Move-to-Front is necessarily ideal, Transpose bccau;gc
it is ‘weak’, and Move-to-Front because it is ‘strong’an
its data movement. What then is the performance o
heuristic which moves data by some intermediat
distance? Tenenbaum has investigated some Move-b
heuristics for small values of k. His results may
summarised by the formula k = N*2/115, where N is the
table size and k is the optimum distance by which &n
element should be moved towards the front of the taﬁg-
By contrast, the new methods of this paper are based an
moving data a variable distance. Hester and Herschberg'
mention a generalisation of Move-ahead-k in which déB
are moved a percentage of the distance to the frozt,
rather than moving a fixed distance. =
As an initial attempt (and paralleling the move—aheta'
k generalisation of Hester and Hirschberg?), if Transpos
(i.e. Move by 1) is too weak, and Move-to-Front is t00
strong, what is the effect of moving an element half-way
towards the front? In other words, if an element is found
at position i in the table, it is moved down to position i/2,
with intervening elements moved up. This heuristic wil
be known as MoveAM (Move to Arithmetic Mean)
Another possibility, with stronger movement, ¥
MoveGM (Move to Geometric Mean). These methods
are most immediately applicable to data held in lines
arrays as it is then easy to find the insertion point, ‘?“t
they suffer from the cost of moving the data (a cost w_{hl
has been ignored in the initial measurements, but Wi I
discussed later). Alternative techniques which minimi$
data movement are to modify the simple transpos
method by transposing the found element with one clo$f

|g(u§0/u10:)'dno

450 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

P.M. FENWICK

to the front of the list: the two methods tried are
TransposeAM and TransposeGM, with obvious
meanings. Tests were also run with a simple Linear
Search (Linear), a linear search of the table sorted into
decreasing frequency (Optimum Static Ordering), Move-
to-Front, standard Transpose and Count, these being
established methods which may serve as references to
evaluate the new techniques.

The data used were seven Text files, with sizes from
781 to 6241 words and vocabularies of 308 to 1051
words, and eight program source files, from 112 to 2290
words and vocabularies from 40 to 510 words. The
programs were mostly Pascal, with two PL/I and one
B6700 Algol. Only ‘identifiers’ were recognised and text
punctuation and all program special characters were
ignored in the analysis. In all cases the file was read from
the start and the table built up as the search statistics
were gathered (except of course for the Optimum Static
Order case where the table had to be constructed first).
The situation therefore corresponded to a simple lexical
analyser of a text processor or compiler. The tables also
include three results from interpreter traces; these will be
discussed later. No attempt has been made to use
artificial data, constructed according to some assumed
distributions. The measured performance is so sensitive
to the data that it seems most unlikely that any theoretical
model could be a satisfactory representation of reality.

3. RESULTS

Table 1 shows the raw results for the initial tests, with the
values being the average search distance as the data were
read and the table searched and built, all expressed as a
percentage of the final table size. (For Optimum Static
Order the table had to be constructed and ordered first,
and the times given are for only the search phase.) In
Table 2 selected methods are then compared with the
simple Linear Search for each file. (The more important
of these results are presented graphically later in the
paper.) All of the tests used arrays for data storage; none
used linked lists.

Table 1. Average search length, as % of table size

There are two immediate observations from these
results. The first is that MoveAM and MoveGM are often
better than the standard techniques. The second is that
there is an obvious difference between text and program
files. Programs contain many ‘special characters’ which
are clearly identifiable and do not appear as identifiers or
words. The corresponding elements of text files are the
articles, prepositions, conjunctions and the like; they are
all frequent words and all appear in the statistics. Again,
the English language has a rich and varied vocabulary
and some words may appear few times within a document
if synonyms are used extensively. Most program
languages have a relatively limited repertoire of words
with limited scope for synonyms and the vocabulary is
correspondingly restricted. There is a tendency for
MoveAM to be better for text and MoveGM to be better
for program source, indicating that programs need the
stronger data movement.

To investigate the differences between text and pro-
grams, the MoveAM algorithm was modified to move
the element to 10 %, 20 %, 30 %,...,90 % of the distance
from the front of the table towards its previous position.
While the performance is relatively insensitive to move-
ment distance and there is considerable variation between
files, it does appear that for text files the element should
be moved to about 33 % of its present displacement from
the front of the table, while for program source the
element should be moved to about 25% of its present
displacement. The detailed results are not given here as
MoveAM is a relatively costly method (as explained in
the next section), even though its search performance is
quite good.

4. COSTS OF DATA MOVEMENT

None of the preceding tests with the ‘Move’ algorithms
allowed for the time to move the intervening data to
create a hole to receive the moved item, if the data is held
in a simple array. If it takes as long to move an element
one position as it takes to search through one position,
the times for Move-to-Front will double, while MoveAM

. Optimum Move Move Move Trans. Trans.
Words Vocab Linear order front AM GM Trans. AM GM Count
Text 1 781 308 33.21 25.27 29.94 28.17 29.07 32.58 29.67 31.55 28.76
Text 2 1481 554 3292 23.80 27.54 26.44 26.92 32.16 28.18 29.81 27.25
Text 3 1744 519 32.58 2421 28.76 27.52 27.63 31.83 28.80 31.81 28.68
Text 4 1950 557 28.50 22.19 26.51 24.60 25.53 2784 26.01 27.99 25.24
Text 5 1971 583 33.20 24.39 28.21 27.25 27.41 3245 28.97 31.36 28.42
Text 6 2379 609 26.42 19.22 21.95 20.96 21.47 25.79 23.13 26.20 22.15
Text 7 6241 1051 24.74 14.44 15.74 15.26 15.36 23.78 17.15 27.89 16.69
Prog 1 112 40 37.06 30.07 36.18 38.08 34.67 36.24 34.80 33.80 33.99
Prog 2 324 66 39.20 26.75 25.17 27.60 24.53 36.54 31.01 32.75 30.47
Prog 3 375 89 4370 28.94 28.54 32.79 28.36 42.49 34.99 37.94 35.10
Prog 4 499 110 40.85 20.66 22.44 23.07 21.91 38.71 25.76 33.53 23.88
Prog 5 573 97 40.55 22.62 22.26 24.14 21.87 36.17 28.21 29.76 26.03
Prog 6 759 173 51.58 19.03 18.85 20.42 18.40 48.30 29.48 34.63 22.96
Prog 7 1114 104 43.58 18.40 22.37 20.19 21.50 34.42 23.28 32.83 19.60
Prog 8 2290 510 30.91 18.27 19.48 19.73 19.17 29.94 21.46 26.03 21.33
lntp 1 865 23 3645 26.57 20.66 19.69 19.63 19.83 19.75 25.71 21.46
Intp 2 1697 60 31.50 21.58 9.99 11.23 9.91 20.93 13.85 18.73 19.04
hp 3 1988 58 39.13 18.33 17.60 15.57 16.80 21.21 16.95 31.97 15.95

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 451

29-2

¥20Z Iudy 60 uo 1senb Aq 8¥6E£GG/0SY/S/vE/81oIe/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumoq

Table 2. Average search length, relative to Linear Search

SELF ORGANISING LINEAR SEARCHES

Opt. Move Move Move Trans Trans
order GM AM front Count Trans AM GM
Text 1 0.761 0.875 0.848 0.902 0.866 0.981 0.893 0.950
Text 2 0.723 0.818 0.803 0.837 0.828 0.977 0.856 0.906
Text 3 0.743 0.848 0.845 0.883 0.880 0.977 0.884 0.976
Text 4 0.779 0.896 0.863 0.930 0.886 0.977 0.913 0.982
Text 5 0.735 0.826 0.821 0.850 0.856 0.977 0.873 0.945
Text 6 0.727 0.813 0.793 0.831 0.838 0.976 0.875 0.992
Text 7 0.584 0.621 0.617 0.636 0.675 0.961 0.693 1.127
Prog 1 0.811 0.936 1.028 0.976 0.917 0.978 0.939 0.912
Prog 2 0.682 0.626 0.704 0.642 0.777 0.932 0.791 0.835
Prog 3 0.662 0.649 0.750 0.653 0.803 0.972 0.801 0.868
Prog 4 0.506 0.536 0.565 0.549 0.585 0.948 0.631 0.821
Prog 5 0.558 0.539 0.595 0.549 0.642 0.892 0.696 0.734
Prog 6 0.369 0.357 0.396 0.365 0.445 0.936 0.572 0.671 5
Prog 7 0.422 0.493 0.463 0.513 0.450 0.790 0.534 0.753 3
Prog 8 0.591 0.620 0.638 0.630 0.690 0.969 0.694 0.842 gg,
Intp 1 0.729 0.539 0.540 0.567 0.589 0.544 0.542 0.705 Q
Intp 2 0.685 0.315 0.357 0.317 0.604 0.664 0.440 0.595 3
Intp 3 0.468 0.429 0.398 0.450 0.408 0.542 0.433 0.817 3
-
g
Table 3. Overall Search costs, relative to linear search g
Opt. St. move Count Random %
order front Count overall Trans trans e
Text 1 0.761 0.902 0.866 0.979 0.981 0.876 %
Text 2 0.723 0.837 0.828 0.936 0.977 0.851 S
Text 3 0.743 0.883 0.880 0.984 0.977 0.874 e
Text 4 0.779 0.930 0.886 1.001 0.977 0.905 E
Text 5 0.735 0.850 0.856 0.982 0.977 0.869 2
Text 6 0.727 0.831 0.838 0.954 0.976 0.844 %
Text 7 0.584 0.636 0.675 0.770 0.961 0.681 @
Prog 1 0.811 0.976 0917 1.072 0.978 0.937 g
Prog 2 0.682 0.642 0.777 0913 0.932 0.742 §
Prog 3 0.662 0.653 0.803 0.963 0.972 0.793 G
Prog 4 0.506 0.549 0.585 0.675 0.948 0.581 §
Prog 5 0.558 0.549 0.642 0.745 0.892 0.625 &
Prog 6 0.369 0.365 0.445 0.527 0.936 0.446 g
Prog 7 0.422 0.513 0.450 0.496 0.790 0.494 Q@
Prog 8 0.591 0.630 0.690 0.794 0.969 0.682 §
Intp 1 0.729 0.567 0.589 0.614 0.544 0.466 §
Intp 2 0.685 0.317 0.604 0.634 0.664 0.374 o
Intp 3 0.468 0.450 0.408 0.432 0.542 0.389 jf
—=

will increase by 50 % and Transpose will be little affected.
The recommended implementation for Move-to-Front is
to hold the data in a linked list and move data by
adjusting the links.

If a linked list is used for MoveAM it would need a
subsidiary vector to trace the history of each search and
locate the 50 % (or 33 % etc.) distance in each case. The
overheads of maintaining this vector are likely to be a
considerable fraction of the actual search cost, and the
MoveAM and MoveGM methods are therefore expensive
in terms of movement, even though relatively efficient in
terms of search distance. As an alternative to a history
vector with MoveAM and MoveGM it is possible to
maintain a subsidiary pointer to indicate the destination
element. If the subsidiary pointer is advanced along the
list by one on alternate steps of the main data pointer we
obtain the MoveAM method (or every 3rd or 4th step

N
may be better in the light of the above discussion). Ifithe
subsidiary, or destination, pointer is advanced by on¢
after first step of the data pointer, then after 3 more
steps, and then after further intervals of §, 7, 9,...,steps
of the data pointer we obtain MoveGM. However, the
cost is probably similar to that of building the history
vector and, unless we have an expensive comparisof
operation (such as programmed string comparison), any
of this subsidiary book-keeping is nearly as expensive a5
a search and must be included in the real cost of the
search. The JUMP heuristic of Hester and Herschbef8
avoids the overheads of maintaining and traversing th
history vector, but (as they point out) one must be
careful of the cost of the test function.)

To summarise the costs of data movement (as distinct
from the cost of the search itself), Move-to-Front 'S
inexpensive with a list and very expensive with an array:

452 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

P.M. FENWICK

while Transpose is inexpensive with both. MoveAM
and MoveGM are relatively expensive with both
implementations. -

Count may be implemented with an array of values or
with a linked list. In both cases it will be necessary to
search back along the structure to find the correct new
position for the target. While a list is probably the more
efficient structure, the cost of a reverse scan along a list
(examining the count) is still similar to the cost of the
forward search (examining the data). We must therefore
include the cost of reorganising the list if we want a true
evaluation of Count. The data movement distance with
Count is found to be about 4 % of the full table, or about
12-15% of the average search length for program and
text files. Count is therefore rather more expensive than
a simple search distance would indicate; the actual
values are given later in Table 3 as part of the final
results.

5. METHODS WITH LIMITED
DATA MOVEMENT

Given that an array searched linearly from the beginning
is a simple and convenient form of data storage, it is
desirable to consider search techniques which reorganise
the table without extensive data movement. The Trans-
pose methods form a convenient basis. While the simple
Transpose gives a quite modest improvement over the
simple search, the table shows that TransposeAM is
relatively efficient. TransposeAM was therefore
investigated more fully, transposing an element at
position / with the element at position f* i, where 0 < f
< 1. The results (not given) show generally broad minima
around f = 0.5. (The cost for favouring one element is an
equal penalty in some other arbitrary element; it seems
reasonable that the effects should balance at 50%
movement for each.) While most of the curves were
reasonably smooth, some had quite abrupt dis-
continuities. On the assumption that these were due to

| Opt stat order ® Move to front

Text |
Text 2
' Text3
Text 4
Text 5
Text 6
Text 7 i

Prog |

Prog 2

Prog 3

Prog 4 | ® X
Prog 5 q
Prog 6] x +
Prog 7 | *e

Prog 8 |

Intp | x ce 4+
Intp 2 . x
Intp 3 x +of o

contention between search targets, the algorithm was
modified so that the exchange position was not i/2, but
some randomly chosen element near i/2. This change not
only reduced the discontinuities, but also improved the
performance on most files, usually by 3-5%, but in one
case by 27%. In general the performance is similar to
that for Move-to-Front, and is better than that for Count,
even without the data movement overheads. There is no
systematic effect from varying the selection among the
surrounding 3, 5 or 7 elements, provided only that there
is a random selection.

RandomTranspose is therefore a reasonable low-cost
heuristic for simple applications. With data stored in an
array it is little more complex than even the simple
Transpose, while giving a considerably better perform-
ance. Its essence is that the data order adapts reasonably
quickly to a newly-active element. For example, the
largest of the text files used has a vocabulary of 1051
words and on average it takes only 6 references for an
element to move to within 8 positions of the start of the
list; in this it is much better than Transpose. In
comparison with both Move-to-Front and Count it is
much better at ‘forgetting’ elements which become
inactive.

Table 3 summarises the results for the standard
methods of Optimum Static Order, Move-to-Front, Count,
Transpose, and Random Transpose, in all cases with
respect to Linear Search for that file. All of the values
reflect the cost for the ‘best’ implementation; Move-to-
Front assumes a linked list, the Transpose methods
assume an array, and Count assumes a list, but with an
extra cost for moving the element. MoveAM, MoveGM
and TransposeGM are omitted because of their poorer
performance or high cost. These results are also shown in
a graphical form in Figure 1. For text files there is little
to choose between the traditional Move-to-Front and the
new Random Transpose, provided of course that data
movement is minimised by implementing Move-to-Front
as a list and RandomTranspose as an array. Move-to-
Front is somewhat better for program files. In all cases

© Transpose X Rand transpose + Count

Y

02 03 0-4 0-5 0-6

=T Y T T

0-7 0-8 0-9 10 11

Figure 1. Search cost relative to linear search.

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 453

¥202 Iudy 60 U0 1s8nb Ag 8¥6EGG/0SY/S/YE/e1o1e/|ulWwoo/woo dno-olwepeoe//:sdiy wolj papeojumod

SELF ORGANISING LINEAR SEARCHES

these two methods are better than Count when its
unavoidable data movement cost is included.

6. DYNAMIC EFFECTS

A trace of the names in an interpreter should show a
quite different behaviour from the text and source files
used in these investigations. The files used so far have a
modest degree of locality within procedures (or perhaps
paragraphs), but an actual interpreter should show much
more locality as a result of loop execution.

Two interpreter files have been analysed. The first
smooths data from a spectrometer and locates peaks
within the spectrum, and has a relatively simple loop
structure. Two ‘traces’ are given —a partial one which
includes only the initial filtering and differentiation of the
raw data, and the full one which includes also the final
peak location and line fitting. The two traces are
sufficiently different in behaviour to warrant the inclusion
of both. They are shown as Intp I and Intp 2 in Table 3.
These, and especially Intp 1, are representative of numeric
programs which are dominated by loops with little
logical decision involved. The second case, shown as Intp
3, is a program which generates a Huffman code, given
the symbol probabilities. It is mostly numerical, but
involves much more testing and conditional execution.

The first observation is that almost any method of
reorganising the list gives a useful improvement in
performance. Even the poorest cases with the interpreters
give more improvement than is achieved with the best
methods for many text files. Optimal Static Order is now
one of the poorer methods, whereas it was one of the best
ones for text files, demonstrating the effects of locality in
the data. An important observation from all of these
results is that the performance of all of the heuristics is
very data sensitive. Variations of a few percent between

REFERENCES

1. J. L. Bentley and G. C. McGeogh, Amortized Analyses of
self-organizing sequential search heuristics. Commun. ACM
28 4, (1985).

2. J. H. Hester and D. S. Hirschberg, Self-Organising Linear
Search. Computing Surveys 17 3, 295-311 (1985).

3. J. H. Hester and D. S. Hirschberg, Self-Organizing Search

methods are insignificant compared with the variationg
between data.

Once again, the two best reorganisation techniques are
the traditional Move-to-Front and the new Random
Transpose. There is some evidence from the detaileq
results for the Interpreter traces that Random Transpose
may be improved slightly if the transposed element jg
about 60-70% up from the start towards the targe
element, rather than the 50 % which has been used.

7. CONCLUSIONS

Some established methods of self-organising linear
searches have been investigated on several text and
program source files and compared with some new
methods. The best of the new methods involves a simple
transposition of the accessed element with a randomly
chosen element approximately halfway towards the start
of the table. It is found to give a similar seageh
performance to the established Move-to-Front meth

often better than the other methods, and is approprrate
where data must be held in an array. The mw
RandomTranspose heuristic complements the JUAP
heuristic which is designed more especially for lmkedﬁist
data storage. It is mterestmg to note that both Ramgpm
Transpose and JUMP improve the performance8by
introducing a random aspect to the choice of trg]s.
position target.

Acknowledgements

09°dno-ol

Thanks are due to the referee for especially hel ul
comments and criticisms. He also pointed out the

recent paper on the JUMP heuristic (which appcared
after the manuscript was prepared), and emphasisedZhe
complementary nature of JUMP and the new Ran@m.
Transpose.

Lists Using Probabilistic Back-Pointers. Commun. A
30 12, 1074-1079 (1987).
4. R. Rivest, On Self-Organizing Sequential
Heuristics. Commun. ACM 19 2, 63-67 (1976).
5. A. Tenenbaum, Simulations of dynamic sequential segych
algorithms. Commun. ACM 219, 7950-791 (1978).

81‘7@99/091‘7/9/‘79/

nb

Announcement

vfoz Iudv| 60 uo ¥

23-27 MARCH 1992

International conference on Extending Data-
base Technology, Palais Auersperg, Vienna,
Austria

The Conference

EDBT 92 will be a forum for presentation of
new results in research, development and
applications of database technology. The
conference will favour the sharing of inform-
ation between the researchers and practi-
tioners and outline future developments of
database systems and applications.

Tutorials will be offered in the first two days
of the Conference, and keynote speakers will
be invited. The Conference and Tutorials will
be held at the Palais Auersperg in Vienna.

Topics of interest

EDBT 92 will accept scientific and technical
papers on all areas related to database
technology. Major topics of interest include,
but are not limited to the following.

@ Deductive databases

o Knowledge bases

o Multimedia databases, Hypermedia sys-
tems

o Object-oriented database systems, Object
managers

o Environment and technology to support

database design and programming

New applications of databases

Active databases and real-time databases

Performance issues and implementation

techniques

o Extensible systems

454 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

o Database machines
o User interfaces
e Theory of data and knowledge bases

Conference organisation

Conference chairperson: C. Delobel, Univer-
sity of Paris-Sud and GIP Altair

Vienna is a very busy and popular tours!
centre, in order to facilitate arrangements and
to ensure hotel reservation you are ki
requested to contact the organisers as soon &
possible.

For further information on EDBT 92 pleast
contact Brigitte Haberstroh, Conference S¢
retariat, EDBT 92, Technical University
Vienna, Panigl 16, A-1040 Vieont
Austria. Tel.: +43 (1) 58801/6122. Fax: +4
(1) 5055304, E-mail: haberstroh@vexpert:
dbai.tuwien.ac.at.

