High Storage Utilisation for Single-Probe Retrieval

Linear Hashing

S.F.OU aNnD A. L. THARP!

Computer Science Department, North Carolina State University, Raleigh, North Carolina 27695-8206 USA

Many information systems require expandable files. Linear hashing is a well-known technique for growing a file without
requiring a complete reinsertion of the data. With the advantage of expandability comes greater retrieval costs as
compared to static file methods. A recent modification of linear hashing, Linear Hashing with Separators (LHS),
requires only a single access of auxiliary memory. However, this method too has limitations. It introduces secondary
clustering which increases insertion costs and it has lower storage utilisation than might be desirable.

After surveying linear hashing and LHS, this paper introduces an algorithm called High Storage Utilisation for
Single-Probe Retrieval (HSUSPR is read SOO-SPRAH). HSUSPR linear heshing maintains the single probe
retrieval of LHS but with lower insertion costs and greater auxiliary storage utilisation. To achieve these benefits
HSUSPR does use more primary memory for storing index information.

Extensive experimental results are given comparing HSUSPR with LHS. Experimental results also are provided
which indicate that the performance of HSUSPR is independent of the distribution of the key data. HSUSPR is
particularly useful for information systems with many insertions and[or those systems involving real-time updates.

Received October 1990, revised May 1991

L. INTRODUCTION

Over the years, several extendible hashing algorithms
have been developed. Compared with traditional hashing
algorithms, these algorithms have the advantage of
allowing the file size to change without completely
reorganising the file. The three major extendible hashing
algorithms are extendible hashing,! dynamic hashing,?
and linear hashing.? This paper focuses on linear hashing,
which as can be noted from Table 1, has the advantages
of controllable storage utilisation and no indexes. Linear
hashing hashes a key to a page in the file. The overflow
pages are handled by chaining. That is, overflow records
are placed in overflow pages which are linked to the
home page. This whole succession of linked pages is
called a chain. For the file to expand gracefully, each

Table 1. Characteristics of Extendible Hashing, Dynamic
Hashing, and Linear Hashing

Extendible Dynamic Linear

Characteristics hashing hashing hashing
Index-Y /N Yes Yes No
Index depth- 1 >1 0
Expansion 2 2 6.24-9.47
Cost /expansion*
0. of probes
Control storage No No Yes
utilisation-Y /N
axXimum storage 69 % 69% >=9%0%
Utilisation
Successful retrieval 1 1 1.05-1.57
1o. of probes
Unsuccessful retrieval 1 1 1.27-2.48
0. of probes

* Doubling of the file size.

! Please address all correspondence to this author.

chain in the file splits, appending a chain to the file. The
records in the split chain (that is, the primary page and
its overflow pages) are divided between the two chains.
The order of splitting a chain is sequential starting from
the first chain of the file. A pointer, NEXT, points to the
chain to be split next. When all the chains are split, the
file size has doubled.

The graceful expansion of linear hashing is due to
using splitting functions.® The file starts with N chains;
therefore, the hashing function produces a value between
0 and N—1. If ¢ is the key, hy(c) = c mod K. The splitting
functions for hy, are 4, hy, hy, However, these functions
must have the following property: A(c) ={0, 1, 2,...,
2'N—1}.

The file begins with h,(c) = cmod 2°*N. When a chain
is split, the records are rehashed with A,(c) = c mod 2'*N.
hy(c) divides the records into the two chains. Once all the
original chains in the file are split, the pointer NEXT is
reset to 0 and A, (c) becomes the primary hashing function.
Now when chains are split, the records are rehashed with
hy(c). After each doubling of the file, the level i is
increased by one. For splitting, the function for rehashing
the records is always A,,,(c) = cmod 2**'*N. Splitting a
chain occurs when the storage utilisation, a, goes beyond
a given limit. To retrieve a record, we try the hash
function A,(c) = cmod 2**N; if the address is less than the
value of NEXT, then we know that the chain has been
split. We then hash the key, ¢, with A, (¢) = cmod 2***N
to locate the actual address.

Each overflow page access requires one probe; hence,
the longer the chain, the more probes that are needed,
on the average, to retrieve a record for both successful
and unsuccessful retrieval. Litwin indicated in Ref. 3 that
for as of 75% to 90 %, the average successful retrieval
requires between 1.05 to 1.57 probes and an unsuccessful
retrieval requires from 1.27 to 2.48 probes.

Because retrievals require more than one access,
variations of linear hashing to improve retrieval per-
formance have appeared. A recent variation is Linear
Hashing with Separators (LHS).* It handles overflow

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 455

¥20Z Iudy 01 uo 1senb Aq ¥S6EGS/SSY/S/vE/e1Ie/|UulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumoq

S.F.OU AND A. L. THARP

records by linear probing, that is, overflow records are
stored in the first vacant page closest to the home
address. This process causes secondary clustering which
is the occurrence of records belonging to different home
addresses following the same sequence of probe
addresses. Secondary clustering causes poorer insertion
costs, expansion costs, total insertion costs, and an
unnecessarily larger record pool size.

LHS uses separator signatures to indicate the smallest
signature which is rejected from a page. A signature is an
encoding of the contents of a record.® The separator
uniquely separates the records in a page from those in the
immediate overflow page. On retrieval, the separators,
which are stored in primary memory, are searched so
that only one probe of auxiliary memory is needed. LHS
also distributes the records uniformly over all the pages
by partial expansions. With partial expansions, the
doubling of the file occurs after a series of partial
expansions. Instead of one chain expanding into two,
several chains may expand into a group of chains one
greater. If a doubling occurs with two partial expansions,
the first expansion increases the file size to 1.5 times the
original while the second completes the doubling.

Larson himself notes two deficiencies of LHS: (1) the
existence of secondary clustering, and (2) its poor
performance with as above 85 %. This paper presents an
algorithm which eliminates these deficiencies in LHS.
Our goals were to develop an algorithm with the following
properties: (1) one probe per successful retrieval; (2) at
most one probe per unsuccessful retrieval; (3) com-
putation time for the addresses to be totally independent
of the file size ; (4) main memory storage limited to about
two bytes per page; (5) controllable and high as-—
typically greater than 85%, and (6) no secondary
clustering so that the algorithm will perform efficiently in
insertions and expansions with a smaller record pool
size.

2. HIGH STORAGE UTILISATION FOR
SINGLE-PROBE RETRIEVAL LINEAR
HASHING

High Storage Utilisation For Single-Probe Retrieval
linear hashing (HSUSPR is read SOO-SPRAH)® com-
bines the use of separators from LHS with the organis-
ational scheme for overflow pages from the original
linear hashing. Normally, the storage required to link the
separators associated with the data pages would be
excessive for storing in primary memory because of using
explicit links. HSUSPR reduces this effect considerably
by employing a memory management technique which
uses a displacement value to compute the actual location
of an overflow page rather than having an explicit
pointer. Because the displacement value requires much
less storage than the pointer, it may be possible to keep
it and the separators in primary memory. Hence, only
one access of auxiliary memory is needed per retrieval.

The overflow pages are organised into blocks so a
small displacement field can locate the overflow pages
within that block. A group of primary pages share an
overflow block. The separator signature requires 8 bits
and, for convenience, the displacement field is another 8
bits. Each auxiliary memory page can then be represented
by a 16 bit node. With an 8 bit displacement, the
overflow block can only be 256 pages. A group of

primary pages must not require more than 256 overfloy
pages. In our simulation, limiting a group of primary
pages to 128 worked fine.

Logically the size of the group should be proportiona
to the overflow block because the more primary pages in
a group, the more overflow pages that may be requireq.
In the simulation, the overflow block size is the same gg
the group size. Algorithm 1 computes the group siz
given the current level. There are two important issues
here; first, the initial if statement ensures that the divisor
is less than 128. The second if statement decides when the
group size should increase, that is, when there are more
than 31 groups. The number of groups is limited to 3},
rather than 32, because a dummy group is used to
indicate where the free pages begin. 32 groups can be
represented by 5 bits. The more groups there are, the
more bits that are needed to represent these groups;
therefore, it is desirable to keep the number of gro@s
small.

divisor := 0;
no:=-—1;
repeat
if divisor < 128 then
no:=no+l;
divisor ;= 2%v°
nogps : = (N*2¢ur2evel) div divisor;
if (nogps < 31) or (divisor = 128) then

okay : = true;
else
okay := false;
until okay;
group_size := divisor,

Algorithm 1. Computing the group size.

/7€ /8101 ulWwoo/woo dno olwapeoe//:sdiy Woly pepeo|

If a given overflow block is insufficient to meet the
group requests, then a larger block is allocated to the
group. The contents from the former block are copiedio
a new larger overflow block. The block size doub&&s
whenever the overflow block is insufficient to meet ﬂ1c
requests.

Algorithm 2 computes the group number given gme
page number, current level, and group size. In the fﬁs
line, x increases even if the page number does not change
prowded that the current level increases. The actﬁhl
group number is obtained by y mod 31.

x; = N#*2Cur-tevel 4 page no—1;
y:=x div group_size,
group_no.=y mod 31;

Algorithm 2. Computing the group number for a given page and
group size.

$202 |1dy

A bit pattern in the node must indicate the status of
the page. Since it is beneficial to have a large separatof,
8 bits are allocated for it; then the displacement field is
used to indicate the page status. A value of 255 indicates
the page is empty; 254 indicates the page is neither empty
nor full, and 253 indicates the page is full. Therefore, the
values 0 to 252 are possible for page dlsplaoemerlts
Figure 1 shows the nodes representing primary pages 0
1, and 2. The displacement fields of 255 mean that the
pages are empty. The SIG field is the page separator.

456 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

Primary Index
0
SIG
255
1
SIG
255
2
SIG
255
Figure 1. Primary nodes.
ou erflo

Group no.| Starting page

1 16
o 20
dummy 24

Figure 2. The group overflow table.

We assign the largest key signature in a page as the
separator in contrast to LHS where the smallest signature
displaced from the page becomes the separator. The
overflow blocks are assigned based on the sequence of
requests. Therefore, a table is needed to indicate which
block is allocated to what group. This table, the group
overflow table, is shown in Figure 2. It has two fields; the
group number and the starting page of the overflow
block allocated to that group. According to Figure 2, the
group 1 overflow block starts with page 16, and the
group 0 overflow block starts with page 20. Also notice
that subtracting 16 from 20 gives the size of the overflow
block allocated to group 1. The dummy entry indicates
that pages 24 onwards are free. Subtracting 20 from 24
gives the overflow block size of group 0. An advantage of
the dummy entry is that the overflow block size of group
0 can be computed. The dummy entry also indicates
where the next overflow block begins. Assuming that
group 2 requests overflow pages, and the overflow block
size is four, then the dummy entry is replaced by the
group 2 entry. Another dummy entry is appended with a
starting page of 28 because pages 24-27 are assigned to
group 2. The next overflow block would start from page
28. Figure 3 shows the addition of group 2.

Now if group 0 returns all its overflow pages, then the
group 0 entry is replaced by a dummy entry as shown in
Figure 4. With the dummy entry starting from page 20
now, the overflow block size of group 1| can still be
computed (20-16). The dummy entry also indicates that
a hole of size four (24-20) exists starting from page 20.

Group Overflow Table

Group no.| Starting page

1 16
0 20
2 24
dummy 28

Figure 3. Group overflow table with group 2 added.

Group Overflow Table
Group no.| Starting page

1 16
dummy 20
2 24
dummy 28

Figure 4. Gi’oup overflow table with group 0 returned.

This hole will be allocated to the next request for which
its size is sufficient. The dummy entry will then be
replaced by the new group number.

Since not every overflow page in an overflow block
may be used, a bit is used to represent an overflow page.
A ‘0’ indicates that the page is not used, and a ‘1’
indicates that it is. Referring to Figure 2, let us assume
that group 1 only uses overflow page 16, and group 0
only uses overflow page 20; then the respective page
indicators are set to 1. All other page indicators are set
to 0 as shown in Figure 5. Notice that only the first and
fifth bits are set to ‘1° because the first bit represents the
first page in the first overflow block which is page 16, and
the fifth bit represents the fifth page from 16 which is
page 20. The relative positioning of the 1s also indicates
the relative positioning of the respective secondary nodes.
The overflow pages are represented by secondary nodes
using the same format as for the primary nodes. In the
scenario in Figure 5, the secondary index should have
only 2 nodes, 1 node to represent page 16 and the other
to represent page 20.

Page Indicators
1611718192021 (22(23

1]/0 |0 |O |1 |0 |O (O

Figure 5. Page indicators showing that overflow pages 16 and 20
are being used.

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 457

20z 1dy 0} U 1s8NB Aq $GBESS/SSH/S/FE/lRNE/|UlWoo/WOoo"dNo"olWepeo.//:SdNy WOy Papeojumoq

S.F.OU AND A. L. THARP

2.1 Insertion

Next we consider insertion via an example. Let us
assume that the initial file size is 2 pages, the primary
page can accommodate 5 records, the overflow page can
hold 2 records, and the upper bound for « is 80 %. The
file initially appears as Scheme 1.

We try inserting the record with key 3780 and signature
207. We used Larson’s recommendation in Ref. 7 of
generating signatures using a random number generator
with the hash value of the record key as the seed. Like
linear hashing, the hash function used is key mod
N*(21™%) = 3780 mod 2*2° = (. Instead of accessing page
0 straight away, we first examine the page 0 primary node
which is the first node in the primary index. Since the
displacement field of the page 0 primary node has a value

N=2
LEVEL = 0 Both LEVEL and NEXT are initially set
NEXT = 0 to 0 as in linear hashing.

max a = 80X

The group overflow table:

o
(]
2
=
o
V)
Q.
(]
Q.
3
3
=
=]
Group no:| Starting page:| the dummy entry, because there is no request g
at all. The table indicates that page 2 2
dummy 2 onwards are free. %
3
o
Primary Index: 9
0 The first primary node represents primary page 0, and the g
255 second primary node represents primary page 1. All the 9]
displacement fields are initialized to 255 because all the %
255 pages are empty. o
1 3
255 9_?
255 S
I
&
Scheme 1. X
&
N =2 ﬁ
LEVEL = 0 @
NEXT = 0 Q
max a = 80% g
«Q
Primary Index s
0 Notice that.the displacement field of the page 0 primary node has a value 2
255 of 254, because the primary page it represents is neither full nor empty. S
o
254 >
1 S
255)
o
N
255

group overflow table

Group no | Starting page

Durmmy 2

Pages fn the file:
0 1

3780(207)

The group overflow table only has 1 entry,

of 255, page 0 must be empty. Therefore, record 3780 is
stored in page 0. At this stage, the value of the separator
for page 0 is unimportant because the page is empty; the
only time that we need to use the signature value is when
the page is full. Next the displacement field for the page
0 primary node is set to 254 because page 0 is no longer
empty. After inserting record 3780, the a is computed. I
this case, the « is 10 % which is not more than 80% so
there is no need to expand the file. The file now becomeg
Scheme 2.

2.2 Overflow pages

To demonstrate how overflow pages are processed, we
insert record 8304 with signature value 214 into the file of

There are no changes in the group overflow table because there has been no
request for overflow pages yet.

Page 0 has record 3780 and the signature is in the parentheses.

Scheme 2.

458 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

N=2

LEVEL = 0
NEXT = 0
max a = 80%

Primary Index:

0
238

253

255

255

The Group Overflow Table:

Group no | Starting page

Dummy 2

Pages in the file:
0 1

7456(30)
1610¢181)
3780(¢207)
7172(213)
5890(238)

Figure 6. File before overflow page is added.

Figure 6. Record 8304 hashes to page 0 (8304 mod 2*2°).
The value of 253 in the displacement field of the page 0
primary node indicates that the page is full. The page 0
separator has a value of 238 which is larger than 214, the
signature of record 8304, so record 8304 must be placed
in page 0. The record with the largest signature in page
0, 5890, is temporarily removed to make way for record
8304. If multiple records have the maximum signature
value among all the key signatures in the page, then all
those records must be temporarily removed. After
inserting record 8304 into page 0, a new separator is
chosen. According to our convention, the new separator
for page 0 is 214 since it is the largest signature on the
page.

The next task is to reposition record 5890 into an
overflow page. According to Algorithm 2, page 0 belongs
to group 0; according to Algorithm 1, the page 0
overflow block size is 4. Therefore, an entry for group 0
1s added to the group overflow table. Its overflow block
starts from page 2 where the dummy entry was. A new
dummy entry is added after the group O entry with a
Starting page of 6. The page indicators for all the
overflow pages assigned to group 0, that is, pages 2 to S,
are established as 0 because none of them is being used
Currently. Out of the four overflow pages assigned to
group 0, page 2 is selected because it is the first unused
Page. The page indicator for page 2 is then set to 1.

A secondary node representing page 2 is included in

the secondary index. Since page 2 is the only page which
18 being used, its node is the only node in the secondary
Index. All the fields in the page 2 secondary node are set
10 255 because page 2 is empty. Now page 2 is accessed
and record 5890 is inserted. The displacement field of the
Page 2 secondary node is changed to 254 because page 2
18 no longer empty. Next, overflow page 2 must be linked

N=2

LEVEL = 0
NEXT = O
max a = 80X

Primary Index: Secondary Index:

0 0
214 255
0 254
1
255
255

The Group Overflow Table:

Group no | Starting page

0 2
Dummy 6

Page Indicators:

2 (3[4 |5

1 {0 (0|0

Pages in the file:
0 1 2

7456(30) 5890(238)
1610¢181)
3780(¢207)
7172(213)
8304(214)

Figure 7. File after overflow page is added.

from page 0. The linking is done by updating the
displacement field of the page 0 primary node to 0
because page 2 is the first overflow page in the overflow
block assigned to group 0. Again the « is computed to
ensure that it does not go beyond 80 %. In this case, the
a is 6/12 = 50%. The status of the file is shown in

Figure 7.

2.3 Using separators

To demonstrate how the separator can improve the
insertion performance, let us try inserting record 1796
with signature 253 into Figure 8. Record 1796 hashes to
page 0. The displacement field in the page 0 primary
node having a value less than 253 indicates that page 0 is
full and there is an overflow page following it. In
checking the signature field, it is apparent that the
separator for page 0 is less than the signature of record
1796. Therefore, record 1796 cannot be placed in page 0.
The next overflow page is checked. According to the
page 0 primary node, the displacement field has a value
of 0. From Algorithm 2, page 0 belongs to group 0;
Algorithm 1 tells us that page 0 has an overflow block
size of 4. Therefore, a displacement value of 0 implies
overflow page 2 because the overflow block assigned to
group O starts from page 2 as shown in the group
overflow table.

According to the page indicators, page 2 is the only
overflow page being used, so the page 2 secondary node

THE COMPUTER JOURNAL, VOL. 34, NO. §, 1991 459

¥202 I4dy 01 uo 1senb Aq $S6£GG/SST/S/vE /810 e/ |Uulwoo/woo dnorojwapede//:sdiy wolj papeojumoq

S.F.OU AND A. L. THARP

N=2

LEVEL = 0
NEXT = 0
max a = 80%

Primary Index: Secondary Index:
0 0
213 238
0 253
1
255
254

The Group Overflow Table: -

Group no | Starting page
0 2
Dummy [

Page Indicators:

2131415

1{0 |0 |0

Pages in the file:

0 1 2
7456(30) 3717(174) | [8304(214)
0736(106) 4667(232)| (5890(238)
1610(181)

3780(207)

7172(213)

Figure 8. Use of separators; file before insertion of record.

must be the only one in the secondary index. Accessing
the page 2 secondary node, we know that page 2 is full
because the displacement field has a value of 253. Again
the separator for page 2 is examined. Because the
signature for record 1796 is larger than the separator,
record 1796 must be placed in the next overflow page.
However, the displacement field for the page 2 node has
a value of 253 which indicates that there are no overflow
pages following page 2. Since page 0 belongs to group 0,
and the group 0 overflow block consists of pages 2 to 5,
the page indicators tell us that page 3 is the next available
overflow page; therefore it is selected. The page indicator
for page 3 is set to 1. A secondary node representing page
3 is added directly below the page 2 secondary node. All
the fields of the page 3 secondary node are set to 255.
Page 3 is accessed and record 1796 is placed there. The
displacement field of the page 3 secondary node is set to
254 because page 3 is no longer empty.

We then need to link all the overflow pages belonging
to page 0. This is done by updating the displacement field
of the page 2 secondary node to 1 because page 3 has a
displacement of 1 from page 2. Again the a is computed
and since it does not exceed 80 %, there is no expansion.
The resulting file appears in Figure 9. By using separators,
pages 0 and 2 do not need to be accessed when inserting
record 1796; only page 3 does.

N=2

LEVEL = 0
NEXT = 0
max a = 80%
Primary Index: Secondary Index:
0 0
213 238
0 1
1 1
255 255
254 254

The Group Overflow Table:

Group no | Starting page
o 2
Dummy 6

Page Indicators:

2 (3]4 (5

11110 |0

Pages in the file:
0

lwod/wod dno™diwapede//:Sapy Wol} papeojumod

1 2 3
7456(30) 3717¢174) | |8304(214)] 11796(253)
0736(106) 4667(232)| [5890(¢238)
1610(181)
3780(207)
7172¢213)

Figure 9. Use of separators; file after insertion of record; seco!
overflow page added.

S6E5G/SGY/S/yEPIonIe/|u

To demonstrate expansion, we assume the file in Figuf
10 which has an a > 80%. Because NEXT is 0, chaif
0 is split. All the records in chain 0 must be temporari

stored in the record pool. The displacement field in the
page 0 primary node tells us that page 0 is full and has an
overflow page at a displacement of 0. Since pagc@
belongs to group 0, and the group 0 overflow block
begins with page 2, the first overflow page must refer @
page 2. According to the page indicators, page 2 is the
first of the used pages; therefore, its node must be the
first node in the secondary index. The page 2 secondary
node indicates that page 2 is full and has a successor
overflow page at a displacement of 1 which implies page
3. The page 3 secondary node must be directly below the
page 2 secondary node. The page 3 secondary node
indicates that it is full, and there is no overflow page
following it because its displacement field is 253. After
the records have been moved to the record pool, the page
2 and 3 secondary nodes can be eliminated because the
corresponding overflow pages are not being used-
Actually the group 0 entry in the group overflow table
can be ecliminated because none of the overflow pages
allocated to group 0 are used. For the same reason, the
page indicators for the pages allocated to group 0 can be

460 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

N=2
LEVEL = 0
NEXT = 0
max a = 80%

Primary Index: Secondary Index:

0 0
207 214
0 1

1 1
255 253
254 253

The Group Overflow Table:

Group no | Starting page

0 2
Dummy 6

Page Indicators:

2 |3 (4 |5

11110 |0

Pages in the file:
0 1 2 3

7456(30) 0671¢111)| |7172(213)| |5890(238)
0736(106) 3717¢174)| |8304(214)| [1796(253)
7830(145) 4667(232)
1610(181)
3780(207)

Figure 10. File before expansion of chain 0.

removed. After eliminating the group 0 entry, the group
overflow table only has a dummy entry with a starting
page of 6.

Now we are ready to compute the newly added page.
Like linear hashing, it is NEXT + N*2" = (0 4 2*2° = 2.
We need to check the group overflow table to determine
if page 2 is being used as an overflow page. In this case,
the table only has a dummy entry with a starting page of
6, which is beyond 2; therefore, page 2 is not being used
as an overflow page. If page 2 were being used as an
overflow page, then its respective block would have to be
copied onto a new location to free page 2. A new node
representing page 2 with its displacement field initialised
to 255 is appended to the primary index. Now all the
records in the record pool are ready for rehashing. Like
linear hashing, these records are rehashed with the
function key mod N*2™*"®+! that is, key mod 2*2' = key
mod 4. This rehashing is similar to inserting.

The record with key 7456 hashes to page 0; likewise
for the record with key 736. Keys 7830 and 1610 hash to
Page 2. Keys 3780, 7172, and 8304 hash to page 0. Page
0 is now full. Key 5890 hashes to chain 2. Key 1796
hashes to page 0. Because key 1796 has a signature value
of 253, which is greater than the largest signature of 214
for page 0, it cannot be placed in page 0. Instead we need
1o request an overflow page.

Algorithm 2 tells us that page 0 belongs to group 0 and
Algorithm 1 tells us that the group size is four. A request

N=2

LEVEL = 0
NEXT = 1
max a = 80%

Primary Index: Secondary Index:
0 0

214 255

0 254

255

254

255

254

The Group Overflow Table:

Group no | Starting page

0 6
Dummy 10

Page Indicators:

61718 |9

1 {0 {0 |0

Pages in the file:
0 1 2 ()

7456(30) 0671¢111)] 17830(145)| |1796(253)
0736(106) 3717¢174) | |1610(181)
3780(207) 4667(232) | |5890(238)
7172¢213)
8304(214)

Figure 11. File after expansion of chain 0; overflow page for
chain 0.

for an overflow block of four pages is made. An entry for
group 0 is added to the group overflow table. The
overflow block assigned to group 0 consists of pages 6 to
9. The dummy entry now has a starting page of 10. Four
page indicators, for pages 6-9, are added and set to 0 to
indicate that none of them are used yet. There are only
four page indicators because there is only one overflow
block active. Page 6 is selected from the overflow pages.

A secondary node representing overflow page 6 is
placed in the secondary index. We need to update the
displacement field of the primary node of page 0 to 0
because its overflow page is the first one in the overflow
block assigned to group 0. Now page 6 is accessed, and
record 1796 is stored there. We then update the
displacement field of the secondary node of page 6 to
254.

Once all the records in the record pool are rehashed,
the variable NEXT is incremented by 1. If the new value
of NEXT equals N*2'*%_ a]l the pages in that level have
been split; LEVEL would be incremented by 1, and NEXT
would be reset to 0. The new value of NEXT does not
equal N*2X%%: therefore, NEXT remains as 1. Because
the a is < 80 %, another expansion is not needed. Figure
11 shows the file resulting from the expansion of chain 0.

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 461

20z udy 0} uo 1s8nb AQ $SEESGS/SS/S/PE/E1o1E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PAPEOjUMOQ

S. F.OU AND A. L. THARP

2.5 Retrieval

For retrieval, let us try retrieving record 5890 with
signature 238 from the file in Figure 12. The hash
function is key mod N*2“"¥ which implies 4890 mod
2*2! = 5890 mod 4 = 2. Like linear hashing, we check if
2 is < NEXT; if it is, then we would apply the hash
function key mod N*2M57¥+1_In this case, 2is > NEXT, so
page 2 is the proper address. Comparing the separator of
the page 2 primary node and the signature of record
5890, we note that the signature of record 5890 is larger
which implies that record 5890 cannot be in page 2.
According to Algorithm 2, page 2 belongs to group 1,
and according to the group overflow table, its overflow
block begins with page 10. The displacement field value

N=22

LEVEL = 1
NEXT = O
mex a = 80%

Primery Index: Secondary Index:

0 0
214 255
0 254
1 1
255 216
254 1
2 2
196 255
0 254
3
232
253
The Group Overflow Table:
Group no | Starting pege
0 6
1 10
Dumrmy 14

Page Indicators:

6 |7 |8 |9 [10|11[12|13

110 (0011 |0 |0

Pages in the file:
0 1

2 3

7456(30) I717¢174) | [4966¢0)| [0671¢111)
0736(106) 8046(63)| 10871(139)
3780(207) 7830(145)| (6611177)
7172(213) 1610(181)| |7883(203)
8304(214) 7462(196)| |4667(232)
6 10 1

1796(253)| |0330(213) 5890(238)

2814(216)

Figure 12. File for retrieval example.

of 0 for the page 2 primary node refers to overflow page
10.

The group overflow table indicates that group 0 is the
only group before group 1. The group 0 block of
overflow pages starts on page 6, and the group 1 block of
overflow pages starts on page 10. The page 10 indicator
must be the fifth indicator in the page indicators. In
checking the page indicators, we realize that page 10 i
the second overflow page which is used; therefore, the
page 10 secondary node must be the second node in the
secondary index. That node reveals that page 10 is full
and the largest signature is 216 which is less than 238, the
signature of record 5890. Therefore, record 5890 is not in
page 10. The next overflow page is checked. According to
the secondary node of page 10, the next overflow page
has a displacement value of 1 which implies page 11. The
page 11 secondary node is directly below the page 1§
secondary node. Page 11, which is not full because it has
a displacement value of 254, is accessed to search for
record 5890. This example demonstrates one auxlllari
memory access per successful retrieval. =

For an example of unsuccessful retrieval, we tr§y
retrieving record 5203 with signature 255. Record 5203
mod 4 = 3 which is larger than NEXT so page 3 is th¢
proper address. From the page 3 primary node, we know
page 3 is full, and its separator is 232 which is less tha&
255, the signature of record 5203. This compansog
indicates that record 5203 is not in page 3, neither is it ig
the file because there is no overflow page following page
3. No probe of auxiliary memory is needed for thE
unsuccessful retrieval.

2.6 Deletion

Deletion consists of two steps: retrieving the record to [
deleted and then physically removing it and updating thﬁ
indexes, group overflow table, and page indicators %
necessary. If the page has only one record before deletion;
then after deletion it is empty and its displacement field
is updated to 255. If the page is an overflow page, théﬁ
the page can be freed, its page indicator reset to 0, and ws
corresponding node removed. Then the dlsplacemem
field of the predecessor node is set to 253 because t.h@
page must be full. The entire overflow block can be freed

if all its pages are not used. If this freed overflow bloc%
is the first overflow block among all the overflow blOij%
then its entry can be removed from the group overflo®
table; otherwise, its group number can be replaced by thc;
dummy entry.

If the page is not full before or after deletion, then no
updating is necessary because the status of the page has
not changed.

If the deleted record falls on a full page, then it is
necessary to determine whether there are any overflow
pages following it. If the displacement field value is less
than 253, then there is an overflow page following. The
record with the smallest signature on the following
overflow page needs to be moved into the space vacat
by the deleted record and the signature field of the node
representmg the page with a deletion needs to be updat
If there is no overflow page following, then after deleting
the record, it is only necessary to update the displacement
field to 254 because the page would be partially full. If
the overflow page following the page of the deletion has
more than one record with the same minimum signaturt,

IHe/|ulwoo/w

462 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

it would not be possible to move multiple records to the
page of the deletion because there is only room for one.
In that case, a new separator must be selected from the
remaining records in that page. If the deleted record is
not the separator for the page, then the signature field is
not affected since there are no new records moving into
the page.

Next the vacancy on the following overflow page
needs to be filled. This page is handled like the one with
the deleted record. This process continues until the last
page of the chain.

Because linear hashing is often used for applications
where deletion is infrequent, the overall performance of
HSUSPR would not be strongly affected by the deletion
cost. HSUSPR has lower deletion costs than an algorithm
which uses linear probing such as LHS.

After updating the indexes, group overflow table, page
indicators, and after returning the overflow page for
reuse, the storage utilisation is checked to determine if it
is below the limit set by the user. If it is, the file size
contracts to contain one fewer chain. All the records
belonging to the most-recently-added chain are moved to
the record pool; its primary and secondary nodes are
removed and the data pages are returned for reuse. The
value of NEXT is decremented; if it is negative, then
LEVEL is decremented. NEXT is then set to N*2MV— |,
Then all the records in the record pool are rehashed as
with insertion.

3. EXPERIMENTAL RESULTS

To ascertain its effectiveness, we tested HSUSPR with a
file of 20000 authors’ names. Both the primary and
overflow page sizes were 10 records, a was 80 %, the
separator length was one byte, the maximum group size
was 128, and all data were collected at level 8 (more than
1024 pages). The data were shuffled and run 4 times. The

Table 2. Average insertion costs, 95 %, and 99 % confidence
measurements for an « of 80 %

Upper bound Upper bound

Average: 95% 99 %

no. confidence confidence
Costs - | probes no. probes no. probes
INSERTION 1.960 1.963 1.966
EXPANSION 0.39 0.40 0.41
PGMOBKEXP/RE 0.174 0.180 0.186
PGMOFLEXP/RE 0.0017 0.0057 0.0094
TOTAL COST 2.70 2.73 275

averages plus 95% and 99 % confidence levels for one
sided t-tests® for the true means are presented in Tables
2,3, and 4.

Table 2 presents the total insertion costs which include
the cost of insertion, expansion, and moving overflow
pages due both to overflow pages due both to overflow
block expansion and overflow pages being included as a
primary page. The average total insertion cost was 2.70

Table 3. Average, 95% and 99 % confidence measurements for
the following: record pool size, maximum number of page
indicators, and maximum number of overflow pages which are
used for an « of 80%

Upper bound Upper bound

Average: 95% 99%

no. confidence confidence
Costs records no. records no. records
RECPL 27.25 27.34 27.42

Upper bound Upper bound

Average: 95% 9%

no. confident: confidence :
Costs pages no. pages no. pages
MPAGEARR 3008 3008 3008
MUSEPAGE 1252.25 1284.23 1313.97

RECPL: The record pool which temporarily holds all the
records during an expansion. The value is in number of records.

MPAGEARR: The maximum total number of page
indicators needed at level 8. It is the same as the total number
of overflow pages allocated at level 8 because each overflow
page allocated has one page indicator.

MUSEPAGE: The maximum total number of overflow
pages that are used at level 8.

Table 4. Main memory storage needed in number of bits per
chain for 80 % a«; averages, 95%, and 99 % confidence
measurements

Upper bound Upper bound

Average: 95% 99%

no. confidence confidence
Costs bits no. bits no. bits
MOLTENTRY/CN 0.25 0.26 0.27
MPAGEARR/CN 1.32 1.34 1.36
STOARGEINBIT 1.57 1.60 1.62
TOTALSTORAGE 17.57 17.60 17.62

' INSERTION: The insertion cost per record inserted at level

lcVEXPANSION: The expansion cost per record inserted at
el 8.

PGMOBKEXP/RE: The number of overflow pages moved
due to a block expansion per record inserted at level 8.

PGMOFLEXP/RE: The number of overflow pages moved
due to overflow pages being included as the primary page per
fecord inserted at level 8.

TOTAL COST: The total cost for inserting a record at level
- This cost includes the insertion cost, expansion cost, and the
Cost of moving overflow pages, both due to overflow block
®xpansion, and overflow pages being included as a primary
Page.

MOLTENTRY/CN: The maximum number of entries in
the group overflow table per chain in terms of bits. A chain
includes the primary pages, and the maximum overflow pages
used at level 8.

MPAGEARR/CN: The number of page indicators shared
by a chain at level 8. A chain includes the primary pages, and
the maximum overflow pages used at level 8.

STORAGEINBIT : The storage in bits per chain at level 8.
This value is obtained by adding MOLTENTRY/CN, and
MPAGEARR/CN.

TOTALSTORAGE: The total storage per chain in terms of
bits at level 8. This value is obtained by adding 16 to
STORAGEINBIT. The value 16 is added because the index
needs two bytes per chain.

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 463

20z Iudy 0 U0 1s9nB AQ $SEESS/SSH/S/PE/BIOIME/|UlWOS/WOo"dNO"OILSPEDE//:SARY WOl PAPEOIUMOC

S.F.OU AND A. L. THARP

70

40 -

Coate

30

20

10 -

MANNN
G

N V77N

N\

:

IPGE

ZZ AVG. HSUSPR

Differant cost measu ements
2 PART EXP /777 3 PART BXP

EXPANS 1ON: TOTALCOST :

Figure 13. Comparison of costs for LHS versus HSUSPR.

probes, and with a 99 % confidence that no more than
2.75 probes would be required.

Table 3 presents the record pool size, the maximum
number of page indicators, and the maximum number of
overflow pages used. The average record pool size was
27.25 records per expansion, and with a 99 % confidence
fewer than 27.42 records per expansion.

Table 4 presents the total primary storage needed per
chain which includes the maximum number of entries in
the group overflow table per chain, and the number of
page indicators per chain where the chain includes the
primary pages and the maximum number of overflow
pages. In addition, the storage needed for the indexes is
added. With a 99 % confidence, each chain required no
more than 18 bits.

We compare the HSUSPR linear hashing results with
those of Linear Hashing with Separators (LHS) for an «
of 80 %. Figure 13 contrasts the averages of HSUSPR
with those of LHS for two and three partial expansions.
Figure 14 does the same for 95% and 99 % confidence
measurements. Both figures contrast the record pool size,
insertion, expansion, and total insertion costs. Figures 13
and 14 indicate that the HSUSPR record pool size per
expansion is about half of that needed by three partial
expansnons and abut 70 % of that needed by two partial
expansions.

Typically the average, 95%, and 99% confidence
measurements for the record pool size were 27.25, 27.34
and 27.42 respectively versus 39, and 63.2 records for two
and three partial expansions respectively. The com-
putation for obtaining the average record pool size for
two and three partial expansions is shown in Ref. 6. It is
also apparent from Figures 13 and 14 that the total
insertion cost is less than half of that needed by LHS.
According to Table 2, the total insertion cost for

00°dno-olwapeoe//:sdyy Wolj) papeojumo(

HSUSPR was 2.73 and 2.75 probes with 95% and 99%/»
confidence respectlvely versus 6.1 and 6.6 for two and
three partial expansions respectively. A second test \é’as
performed with alphabetical data (authors’ names)

an a of 90 %, an initial file size of two pages, a pnmg‘y
and overflow page size of 10, a maximum group size%of
128, and data collected at level 7 (more than 512 pagé,’g’)
The results are shown in Tables 5, 6, and 7.

Table § presents the insertion cost, expansion cost, Eﬂe
cost of moving overflow pages due to overflow blcgk
expansion and the overflow pages being included jas
primary pages, and the total insertion costs. Tablg 6
contains the record pool size, the maximum number&f
page indicators, and the maximum number of overﬂg*w
pages. Table 7 has the maximum number of entries in the
group overflow table per page, the maximum numberSof
page indicators per page, and the total storage needzd
per page. All these results are in terms of bits per chgn
where the chain includes the primary pages and the
maximum overflow pages used. The total storage needed
per chain includes the storage for the indexes. For an a
of 90 %, the overflow block needs to be more than 256
pages but fewer than 512 pages; therefore, the dis-
placement field needs to be 9 bits instead of 8. Hence, a
node requires 17 bits. The total storage needed per page
is fewer than 19 bits.

Larson did not record the LHS results for an « beyond
85% because he said that the performance was s0
unfavourable. Therefore we cannot directly compare
HSUSPR with LHS; however, we do compare HSUSPR
results with an « of 90% with those of LHS for an « of
only 85%. Despite HSUSPR being tested with a higher
a, its performance was better than that of LHS. The
comparisons appear in Figures 15 and 16. Figure 15
contrasts the HSUSPR averages with LHS of 2 and 3

464 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

40

Coate

30

20

NNNNNAN
)

o ane 77\ 1772\ I N
RECPL. INSEAT : EXPANS ION: TOTALCOST:
Differsnt cost moasuements
A 9sx con 8N ag% con B3 2 re Y 3 e

Figure 14. Comparison of costs from LHS for two and three partial expansions with those from HSUSPR with the 95% and 99%

confidence measurements.

partial expansions. Figure 16 contrasts the 95% and
99 % confidence measurements for HSUSPR with those
of 2 and 3 partial expansions for LHS.

Figures 15 and 16 show that the record pool size for
our 90 % « is only about 60 % of the size required for 3
partial expansions, and about 90 % of the size needed for

Ttblt;, 5. Average insertion costs, 95 %, and 99 % confidence
neasurements for an « of 90%

Upper bound Upper bound

Average: 95% 99 %

no. confident: confident:
Costs - | probes no. probes no. probes
INSERTION 332 3.36 3.40
EXPANSION 0.31 0.34 0.37
PGMOBKEXP/RE 0.18 0.19 0.21
PGMOFLEXP/RE 0.00 0.00 0.00
TOTAL COST 3.98 4.07 4.15

. INSERTION: The insertion cost per record inserted at level

h"‘:EXPANSION: The expansion cost per record inserted at
17,
PGMOBKEXP/RE: The number of overflow pages moved
to a block expansion per record inserted at level 7.
PGMOFLEXP/RE: The number of overflow pages moved
to overflow pages being included as the primary page per
®cord inserted at level 7.
TOTAL COST: The total cost for inserting a record at level
- This cost includes the insertion cost, expansion cost, and the
of moving overflow pages, both due to overflow block
;Pansion, and overflow pages being included as a primary
ge.

2 partial expansions with an « of only 85 %. Our average,
95%, and 99 % confidence readings are 63.5, 64.0, and
64.4 records respectively versus 71.8 and 107.6 records
for 2 and 3 partial expansions with an 85% «.

Our total insertion cost was only about half of what
was needed for 2 and 3 partial expansions despite our

Table 6. Average, 95%, and 99 % confidence measnrements
for the following: record pool size, maximum number of page
indicators, and maximom number of overflow pages for a
90% a

Upper bound Upper bound

Average: 95% 99 %

no. confidence: confident:
Costs records no. records no. records
RECPL 63.54 64.01 64.44

Upper bound Upper bound

Average: 95% 99 %

no. confident: confident:
Costs pages no. pages no. pages
MPAGEARR 3200 334418 3478.25
MUSEPAGE 1953 1992.17 2028.60

RECPL: The record pool which temporarily holds all the
records during an expansion. The value is in number of records.

MPAGEARR: The maximum total number of page
indicators needed at level 7. It is the same as the total number
of overflow pages allocated at level 7 because each overflow
page allocated has one page indicator.

MUSEPAGE: The maximum total number of overflow
pages that are used at level 7.

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 465

CPl 34

20z Iidy 01 uo 3senb Aq $SEEGS/SGH/S/PE/I0IHE/|UIWOD/WOo dNO 0l PEdE//:SARY WOy POPEOJUMOC]

S.F.OU AND A. L. THARP

Table 7. Main memory storage needed in number of bits per
page for an a of 90 %: averages, 95%, and 99 % confidence

measurements
Upper bound Upper bound

Average: 95% 99%

no. confident: confident:
Costs bits no. bits no. bits
MOLTENTRY/PG 0.35 0.37 0.40
MPAGEARR/PG 1.30 1.35 1.39
STOARGEINBIT 1.65 1.70 1.74

TOTALSTORAGE 18.65 18.70 18.74

MOLTENTRY/CN: The maximum number of entries in
the group overflow table per chain in terms of bits. A chain
includes the primary pages, and the maximum overflow pages
used at level 7.

MPAGEARR/CN: The number of page indicators shared
by a chain at level 7. A chain includes the primary pages, and
the maximum used overflow pages at level 7.

STORAGEINBIT: The storage in bits per chain at level 7.
This value is obtained by adding MOLTENTRY/PG, and
MPAGEARR/PG.

TOTALSTORAGE: The total storage per chain in terms of
bits at level 7. This value is obtained by adding 17 to
STORAGEINBIT. The value 17 is added because our index
needs 17 bits per chain.

a being 5% higher. The total insertion cost for 2 and
3 partial expansions were 8.94 and 9.38 probes per record
respectively versus 3.98, 4.07, and 4.15 probes per
record for our averages, 95% and 99% confidence
measurements.

Next we consider the effect of different distributions of
key data on performance. Four sets of 25000 numerical

values each were created. Each set of data had a differey

distribution: one set had a heavy concentration in thy

beginning range of numbers, another set had a hea

concentration in the middle range of numbers, the thirg
set had a heavy concentration in the high number range
and the fourth set had a heavy concentration in both the
beginning and ending range of numbers. These sets of
data were tested with the following parameters: initig|
file size of 2, primary and overflow page size of 10, a of

80 %, and a maximum group size of 128. Each set of daty

was tested 4 times. The results collected from the 16 rung

were tested with the Single-Factor Analysis of Varianc

test.® The test results indicated that the four distributions

of data did not affect the performance of HSUSPR.
In general, our simulation suggests three major points:

1. By rernoving secondary clustering, the insertion,
expansion, and the total insertion costs were less, ghd
the record pool size was smaller.

2. HSUSPR linear hashing has high storage utxhsatﬁm,
and our performance results with 90% storag
utilisation are more favourable than those of Linear
Hashing with Separators for a storage utlllsatloB of
85%.

3. The performance of HSUSPR linear hashm& is
independent of the key distributions.

4. THE ADVANTAGES OF HSUSPR
LINEAR HASHING

The advantages of HSUSPR linear hashing includes
1. One access to secondary memory for suooe@ful
retrieval.
2. Maximum of one access to secondary memory foian
unsuccessful retrieval.

t02°dnoolwapeoe,

U

B 3 B
1

Costs
8
1

Vi

¥20z Iudy 0} uo 1sanb AQ #S6ESS/SSH/S/PE/RI0!

:

INSEAT :

ZZ] AVG. HSUSPR

Different cost meesuroments
Y] 2 PART exP

EXPANS 1ON: TOTALCOST:

3 PART EXP

Figure 15. Costs for LHS with 85% storage utilisation versus HSUSPR with 90 % storage uatilisation.

466 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

HSUSPR LINEAR HASHING

Coate

NN

7] 9sx con Y sg9x coN

Different cost moesu ements

EXPANS ION: TOTALCOST:

2 2 s XY e

Figure 16. Costs for LHS with 85% storage utilisation versus HSUSPR with 90 % storage utilisation for 95 %, and 99 % confidence

measurements.

3. Stability and predictability, since we can guarantee
successful retrieval in one access or a maximum of
one access for unsuccessful retrieval.

4. Support for extendibility.

5. Direct and simple computation of addresses as
compared with Linear Hashing with Separators.

6. Lower insertion and expansion costs since there is no
secondary clustering as compared with Linear
Hashing with Separators.

7. A relatively small record pool for holding records
during an expansion because there is no secondary
clustering.

8. About two byte nodes: one byte for the separator
field, and the next byte for the displacement field.
These sizes agree with one of our goals.

9. Chaining without secondary clustering. Since there is
no secondary clustering, all the records in a page
must belong to a particular chain. Then each chain
tends to have fewer records. With fewer records in a
chain, there is a lower chance for the file to ‘wander
away ' because there is a lower chance for b records
to have the same signature values, where b is the
capacity of the page.

10. Controllable storage utilisation.

Il. High storage utilisation. Storage utilisation can be
set as high as 90 %.

5. THE COSTS OF HSUSPR LINEAR
HASHING

T!le good performance of HSUSPR linear hashing is not
Mithout costs. They include:

- The current version of the modified algorithm is more

complex because we need to handle multiple overflow

blocks as a result of limiting the displacement field to
only 256 unique values.

2. Holes may be created within an overflow block. This
phenomenon exists because we break up the overflow
pages into blocks so that the displacement field of 8
bits can reach out for all the overflow pages in a
block.

3. During an insertion, records may propagate. How-
ever, it must be remembered that this propagation is
the cost of obtaining one access per successful
retrieval, and at most one access per unsuccessful
retrieval.

4. During an expansion, when one of the overflow pages
in an overflow block is to be included as a primary
page, the whole overflow block must be reallocated
which means, we may need to do multiple copying.
The worst case is, if the whole overflow block is full
then all the overflow pages within that block must be
copied.

5. A relatively small amount of storage is needed for the
page indicators: one bit per overflow page.

6. Memory space is needed for the group overflow table.
The size of the group overflow table depends on the
size of the entry in the table and the number of entries
in the whole table. In our simulation, each entry was
allocated 24 bits.

6. CONCLUSIONS

In conclusion, HSUSPR linear hashing is recommended
for applications where insertion costs need to be low, and
retrieval time needs to be fast and constant. Examples of
such applications are: medical information systems,
databases for books, articles, and albums, databases for

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 467

30-2

20z 1dy 0} U 1s8NB Aq $GBESS/SSH/S/FE/lRNE/|UlWoo/WOoo"dNo"olWepeo.//:SdNy WOy Papeojumoq

selected groups of the population such as prisoners,
drivers, and drug addicts, databases used by compilers
and text editors, and information systems which are

accessible by networks.

REFERENCES

1. R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong,
Extendible hashing—a fast access method for dynamic

S.F.OU AND A. L. THARP

algorithm.

Acknowledgement

—. The authors wish to thank an anonymous referee for the
helpful suggestions for improving the presentation of the

hashing scheme achieving one-access retrieval, ACM
Transactions on Database Systems, 13 (3), 366-388 (1988).

files, ACM Transactions on Database Systems, 4 (3), 5. Alan L. Tharp, File Organization and Processing, Wiley,
_ . New York 398 (1988).
2. P. A. Larson, Dynamic hashing, BIT, 18 (2), 184-201 6. Seng Fuat Ou, HSUFSP linear hashing, Internal Report,

315-344 (1979).

(1978). N.C. State University, Raleigh NC, U.S.A. (1990).
3. Witold Litwin, Linear Hashing: a new tool for file and 7. P. A. Larson, Personal Communication (1990).
table addressing, Proc. 6th International Conference on 8. Devore Jay L. Probability and Statistics for Engineering

Very Large Database, Montreal, 212~223 (1980).
4. P. A. Larson, Linear hashing with separators — a dynamic

and the Sciences, Brooks/Cole Publishing Company,
Monterey, California (1982).

Book Review

i papeojumo(

GORDON BLAIR, JOHN GALLAGHER, DAvID
HurtcHisoN and DouG SHEPHERD
Object-Oriented Languages, Systems and Ap-
plications

Pitman Publishing, London, £22.95
0-273-03132-5

Object-Oriented Languages, Systems and Ap-
plications is a collection of chapters by various
authors covering a varicty of object-oriented
topics. It aims to provide comprehensive
coverage of the object-oriented paradigm and
its applications, rather than concentrating on
one application area.

The book is logically divided into four
parts. The first five chapters (Part I) are
concerned with basic concepts. The first
chapter introduces the notion of ‘object-
orientation’ and describes the structure of the
book. A ‘dependency chart’ is provided
showing the interrelationships between the
chapters, and a guide is provided for readers
who may wish to work through the book in
stages or from different viewpoints, rather
than from beginning to end. After this intro-
ductory chapter, there are three chapters on
basic concepts. The first of these introduces
the well-known object-oriented concepts of
encapsulated objects, classes and inheritance.
Chapter 3 discusses some variations on the
traditional approaches. It introduces a number
of techniques for behaviour sharing and
evolution, including delegation, actors and
photocopying, which are associated with class-
less systems. Chapter 4 introduces concepts
associated with abstract data types (ADTs),
and includes a useful section on the differences
between types and classes. Chapter 5 then asks
the question: * What are Object-Oriented Sys-

tems?’ A model of object-oriented computing,
embracing four dimensions — encapsulation,
classification, polymorphism and interpret-
ation - is discussed. This is followed by an
introduction to formal approaches to object
orientation which seems a little out of place;
since the subject is re-introduced in the final
chapter, this material might have been better
placed there.

The next five chapters (Part II) discuss the
application of the object-oriented approach to
the following areas respectively : programming
languages, database systems, design methods,
distributed systems and interactive user inter-
faces. These serve toillustrate the wide-ranging
applicability of the object-oriented paradigm.
Although these chapters are structured in
different ways (having been written by different
authors), they all introduce and compare
different systems/languages, after covering
general aspects and issues in the relevant
application areas. Chapters 11 and 13 (Part
IIT) describe three specific object-oriented
products: an object-oriented processor, REK-
URSIV; an object-oriented language, BETA ;
and an object-oriented database system, Iris.
The final chapter (Part IV) considers future
directions for research. The authors stress the
importance of embarking on a period of
consolidation, obtaining practical experience
and establishing consistent terminology and
semantics. It is interesting to note that in
chapter 5 the model of object-oriented com-
puting which is presented is said to provide a
‘more general interpretation {which] widens
the scope of object orientation’. Some would
argue that the scope should be narrowed, not
widened ! But perhaps this widening in scope is
an essential prerequisite for an effective period

of consolidation and subsequent narrowing%f
concepts and terminology. In this final
ter, specific areas of importance for the futgre
are singled out: software engineering methe-
dologies, formal methods, sharing and dis
tribution, ODP standardization work and
multimedia objects. %
The book is oriented towards postgraduais
computer scientists and computer profS-
sionals; with its broad coverage of obje3-
oriented topics, it is certainly importsat
reading for researchers in the field. The auth¢n
suggest that it could form the basis of a
year undergraduate option course, but 1
that some awarencess of the widely recognised
object-oriented concepts is essential for a eg
appreciation of the more specialised materl
and the issues addressed. Q
A large number of authors have contribuied
to the book. Although this could have resulty}
in a very disjointed production, the edités
have attempted to ensure that the coverage o
particular topics is balanced, and have pro
vided a guide to the structure of the wo
However, while there are certain advantags
in having different authors for the chapters@a
application arecas and specific products, Gt
might have been more appropriate for l@
chapters on basic concepts to be written by
single author. These chapters are not &
integrated as they might be. It must be
though, that there is a wealth of material 2
this book for anyone with a basic knowledge
of object-oriented computing wishing to &%
tend that knowledge.
ELIZABETH OXBORROW
Canterbury

Announcement

International Journal of Applied Intelligence

Special issue on
Distributed Al in Manufacturing. Guest editor
Mark S. Fox, Carnegic Mellon University.

Papers are solicited for this issue on any topic
that demonstrates the use of DAI in any facet
of industrial organisation such as design,
planning, production, distribution, field ser-

vice, sales, marketing, finance, etc. The fol-

lowing are examples of topics.

o Concurrent design

@ Control of autonomous automated guided
vehicles

o Enterprise integration

® Group sales forecasting

o Distributed field service

@ Distributed planning and scheduling

468 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991

Dates to note: deadline for paper submissio®
March 1992; scheduled for publication 1 JuY
1992.

Please send your papers to:
Karen S. Cullen,

Kluwer Academic Publishers,
101 Philip Drive,

Norwell, MA 02061, USA

