
Editorial: Distributed Systems
Distributed Systems as a subject of academic study dates
from the later 1970s. Over the past decade it has become a
very broad field as illustrated by the range of topics
embraced in this special issue. The theme common to all the
papers is the design of systems which include explicit
communications between separate computers - in some
cases across networks, in others between closely connected
processors in a single machine or closely coupled con-
figuration of machines.

Distributed systems are now firmly part of the commercial
scene. This has come about because of the widespread
availability of high performance commodity processors and
networking interfaces. The availability of powerful pro-
cessor chips has moved the ownership of instruction sets
away from the computer vendors to the silicon companies.
The computer vendors are increasingly competing on the
basis of system architecture: distributed systems provide a
significant degree of flexibility in cost-performance trade-
offs. The local networking revolution has made the cost of
networking machines in the same office trivial; develop-
ments in the field of telecommunications are now putting
in place the equivalent wide-area capabilities.

The challenge of distributed systems comes from the fact
that they have some additional properties to the sequential
processor model which has been the foundation for
application design since the dawn of the digital age.
Distributed systems have shown that some rather grand
simplifying assumptions are no longer true:

• everything is in one place: many components of a
distributed system will be remote; latency in access
time may be variable, and transient failures may
prevent access; while the details of differences in
communication protocols can be hidden, the potential
for delay and failure cannot

• data can be accessed directly: data may be in a remote
computer and held in a different format; this requires
a procedural view of all interfaces rather than a data-
centred view

• everything is sequential: in a distributed system, there
are many computers and overlapped execution is
inevitable - this concurrency can be exploited to
increase performance, but has also to be controlled if
a system is to operate consistently

• everything is synchronous: achieving ordering in
distributed systems is one of the challenging research
topics; it cannot be assumed that something happening
in one component excludes something else happening
elsewhere in the system

• everything is homogeneous: in the general case a
distributed system will include examples of different
processors, different data formats, different prog-
ramming languages and different network protocols;
abstractions are needed to mask these from the
applications programmer; mechanisms are needed to
bridge between systems that show different technology
choices

• there is one of everything: replication of critical
components can be exploited for increased availability
and fault tolerance because of the inherent redundancy
of distributed systems

• everything stays in one place: components can migrate
in a distributed system, to balance load, to reduce
access times or to reflect changes in configuration to
meet new operational needs

• memory is a common resource: in a distributed system
memory is disjoint because of the introduction of
communications; while there are schemes for giving
the illusion of shared memory in a distributed system,
they are not general enough to scale up to worldwide
systems of heterogeneous machines

• there is a global name space: as soon as two computers
are connected, their name spaces have to be linked; the
same is true for distributed systems. Where systems
belong to different organizations there will be a
tension between the desire to cooperate and the need
to preserve autonomy of control; this predicates
against global management and requires a more
federal approach.

The papers selected for this issue look at a number of
these changing assumptions:

Daszuk and Son & Paker explore closely coupled
distributed systems. Daszuk proposes a structured approach
to the organization of operating systems for distributed
systems. Son and Paker look at the problem of routing
messages across networks of Transputer systems that avoid
deadlock problems arising from one message stuck in the
network blocking the progress of others.

Mancini & Shrivastava, and Dollimore & Miranda look
at issues arising in object-oriented systems based on local or
wide area networks. Mancini and Shrivastava explore how
to deal with the problem of recovering storage assigned to
objects which are no longer referenced by any computer in
a network in a way which is tolerant of communication
failures and processor crashes. Dollimore and Miranda are
concerned with how distributed applications can share
common objects in office automation applications.

Verrall looks at the problems of heterogeneity in
distributed systems: how can one overcome differences in
data representation, differences in access procedures,
particularly in a situation where the focus is on re-using
existing components with minimal change.

Agrawal & Malpani look at a topic of importance in
synchronization and replication; they present efficient
techniques for the propagation of events and their logical
timing amongst interested sites.

Geesink and Boderik & Riordon explore two very
practical problems. Geesink describes procedures for
passing active messages (ones that cause other messages to
be sent and data to be updated) in a coordinated way that
is resilient to failures of nodes in the network. Boderik &
Riordon look at strategies for organizing queries to
minimize latency in a distributed database environment.

From all of these papers emerges the message that
changed assumptions pose a challenge for the designers of
distributed systems - how much should they expose the
application programmer to the new assumptions?

Some people have proposed transparency as a panacea,
requiring that operating systems preserve the old assump-
tions and provide mechanisms to make this true. Others say
expose the distribution to the application programmer, but
in a way in which the costs and benefits are emphasized, and
low-level details are simplified.

It will be interesting to see how this debate is resolved in
the 1990's as distributed systems technology becomes more
widespread.

ANDREW HERBERT

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 481

CPJ 34

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/481/344209 by guest on 09 April 2024


