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Many new multi-microprocessor systems are available or have been announced to the market. A method of structured
operating-system construction to present a distributed hardware environment as a single computer to the user is
proposed. Unlike many existing distributed operating systems, which are parallel and process-oriented, the new approach
is based on a hierarchical structure of layers. The concept permits the designer to establish almost any dependencies
between local operating systems. A distribution of UNix-like systems in a heterogeneous multi-microprocessor

-environment-is proposed. _ . - - -
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1. INTRODUCTION
The aims of a classical operating system are primarily to
allocate resources to user programs, and secondly to
make a computer much more friendly than its hardware.
A secure and elegant way to build an operating system
for a one- or multi-processor system is to use structured
programming methods. The philosophy of structured
operating systems design is described in Refs. 3 and 19.

The structured approach to solving a problem is to
split it into sub-problems and to establish relations
between the sub-problems. This approach follows the
Roman principle: divide et impera. A layer-structured
operating system consists of a hierarchy of layers,7 which
are implemented with the operations of lower layers. A
layer 'knows' nothing about the activities of higher
layers. In the most abstract terms, the problem that
concerns an operating system can be denned: 'run a set
of user programs'. The layers of the operating system are
resolutions of sub-problems, while the operating system
is a resolution of the problem. The desired relations
between layers are implemented by inter-layer depend-
encies. In the present paper, a layer is considered as
a dynamically distinguishable entity. The protection of
layers and their dynamic linkage is performed by the
system kernel. Any layer can be extracted from the
system and replaced by another performing the same set
of operations in a different way. This is possible because
the content of a layer does not depend on inter-layer
relations.

Nowadays we have microcomputers that cannot be
said to be classical one- or multi-processor systems. For
instance, there are many heterogeneous multi-micro-
processor systems based on Multibus. There are also
'intelligent' devices based on microprocessors which
can be connected to Multibus. Heterogeneity may be
expressed in both physical and functional terms. Such
systems are multicomputers rather than multiprocessors.8

In this paper, a computer in a multicomputer system is
called a module. More precisely: a module is a classical
one- or multi-processor computer which is serviced by a
single kernel. A local operating system is installed on a
module. A process does not 'know' to which processor
within a module it is allocated.

* This research is supported by the CPBR 8.7 project. The views
and conclusions contained in the paper are those of the author.

Computers are built of microprocessors in the same
way as one builds things of Lego bricks. There are typical
microprocessors, coprocessors, bus drivers, parallel and
serial ports, interrupt drivers and many others, which
may be combined in a practically unlimited number of
ways. The purpose of this paper is to describe a design
method for an operating system (not a number of
interconnected operating systems) for a heterogeneous
hardware environment arranged in a way similar to that
in which Lego bricks may be arranged. The layer concept
proves to be suitable for such an approach.

Section 2 presents the methodology of inter-module
communication: the classical approaches and the new
concept. Section 3 covers some implementation consider-
ations. Various possible inter-module semantic depend-
encies are discussed briefly in Section 4. Section 5
presents the derivation of a module from a physical
input/output device. Section 6 provides an example: a
distributed operating system MOST. Some analogies are
covered in Section 7. The appendix contains a description
and skeleton code of the DIVA kernel.

2. SEMANTIC INTERCONNECTION
CONCEPTS
2.1 Semantics of classical inter-module connections
In distributed systems, local operating systems are usually
interconnected on some abstraction level. This inter-
connection makes some resources of a module visible to
other modules. There are many possible semantics for
such interconnections. For example: a standard UNIX
system18 permits the copying of a file between two
modules' file systems (the uucp command); a system
described in Ref. 1 provides a module with access to files
owned by other modules; the Ring-Star system13 lets a
program be run on a peripheral module by a request
from the central module.

It is, of course, possible to establish interconnection
with other abstraction levels using the interconnection
facilities provided by the system. The disadvantage of
such a methodology is that a higher-level communication
protocol uses a lower-level protocol as a base. Moreover,
to communicate with a remote process, a process must
nest down through the levels to reach the bottom level.
Therefore, if there are several levels of the protocol, the
communication scheme is quite complex. This scheme of
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layered protocol building is addressed in Ref. 21. The
principle of this methodology is that a given layer X of
local system A can talk to the corresponding (on the
same level of abstraction) layer Y of local system B.
These two layers can communicate by means of calls to
the layers immediately below (say, P and Q) in systems A
and B. Layer X sees (logically) layer Y of system B, layer
Z of system C, etc. These layers constitute a level of
abstraction in a distributed system. Layer X talks to
other layers by means of calls to layer P. Layer P
represents the whole world that is potentially visible to
layer X - layers Y, Z, etc. We can understand layer P as
a hardware machine for layer X. Layer X sees the
neighbouring modules as indivisible local systems: layer
Y represents the whole local system B, layer Z local
system C, etc. In such a system, layers need not be
dynamically distinguishable entities, since local and
remote calls are distinct (local connections may be
established statically, while remote calls are performed
using special layers that implement a layered protocol).

For example, a protocol consisting of two layers
established during the implementation of a distributed
UNIX-like system is presented in Ref. 2. The lower layer
is a network handler treated as a special file (device). The
upper layer is a set of inter-process communication
routines implemented in terms of the lower layer's open,
read, write, close and ioctl functions.18

In a classical approach, modules are autonomous and
clearly distinguished sites. The scheme for constructing a
distributed operating system is to establish local oper-
ating systems first, and then to set up some dependencies
between local systems.1 The methodology of layered
protocols was employed to establish closer links between
computers distributed over the network. The result is a
local area network of distinct and potentially het-
erogeneous computers.

2.2 Further approach: tightly coupled modules

Ever since the concept of C.mmp was announced,
attempts have been made to build a distributed system
from scratch rather than by interconnecting local systems.
Examples of such systems include Cm*,20 Micronet22 and
the Transputer.15 These systems consist of large numbers
of anonymous modules, but they present themselves as
monolithic computers to their users. A single module is
almost unable to work as a separate computer.

In such an environment, the operating system is built
as a set of distributed processes communicating by
means of a message-passing system. A local module's
local operating system consists of two layers. The lower
layer constitutes the message-routeing system, the upper
one a set of local processes. Examples of systems
constructed in this manner are Medusa,16 Micros22 and
Chorus.10 If such a system is constructed using Trans-
puter,15 the lower layer is built into hardware.

The concept of tightly coupled systems is used to
distribute multiprocessors, as opposed to linking remote
computers closer together by means of layered protocols
(see Section 2.1). The common feature of these two
approaches is that a process acting in a layer sees the
whole underlying system as a monolithic message-passing
system. Therefore, neither concept requires the dynamic
linkage of layers.

2.3 The new concept

There is a gap between classical systems (those using
layered protocols), and tightly coupled systems. In a
classical system, it is difficult to establish various kinds of
inter-module dependencies at the same time. Typically,
all but the highest layers of a protocol are set up to
service this highest, semantic level. The new concept
moves the classical, potentially heterogeneous system in
the direction of a tightly coupled system. The idea is to
set up a hierarchy between layers across the distributed
system. Each layer (potentially) can access layers from
both its local and neighbouring modules. The only
limitation is the requirement of partial ordering in inter-
layer dependencies. A local system is made visible to
other modules' layers as a set of layers rather than as one
indivisible unit. In the previous approaches, a layer could
talk to the corresponding layer in a neighbouring module.
In the new concept, the layers of neighbouring modules
are accessible to a certain layer as if they were layers of
its local operating system. A layered protocol is replaced
by a common mechanism of layer calling. Simple
call/return parameter passing is required. This mech-
anism should be hidden in the lowest level of abstraction
in the local operating system, the kernel. An inter-
module call may be syntactically identical to a local call,
since the layers are dynamically linked. A designer need
not even know whether the called layer is local or remote.
Moreover, an operation could be implemented locally in
one version of the system and remotely in another. The
presented interconnection scheme allows the designer to
establish different kinds of semantic dependencies be-
tween modules at the same time, as will be shown in
Section 4.2. The dependencies outlined in Section 2.1 can
be found among the dependencies thus established.

In the new concept, the modules are brought much
closer together than in classical systems, yet they are still
autonomous and clearly distinguished sites and the
system may therefore be built out of physically and
functionally heterogeneous modules. On the other hand,
systems built in a manner following the new concept may
cover a much wider set of computer architectures than
Cm*,20 Micronet22 or Ring-star,13 which are based on
homogeneous distributed modules.

2.4 Process—transaction scheduling equivalence

There are several dualities and equivalences of phenom-
ena in natural science such as wave-particle duality and
mass-energy equivalence in physics. In electronics, the
product: (amplification x bandwidth of an amplifier) is
constant. In distributed systems, there is one more
equivalence.

If there are / transactions (calls to operating system
from user programs) to be served by m modules, t > m,
two methods maybe applied: (a) scheduling of trans-
actions ; (b) scheduling of processes.

In case (a), in every module there is a set of processes,
interconnected by a message-passing system. The trans-
action migrates between modules, where partial services
are performed by local processes. In this approach a
pair: (process, message buffer) is a prototype of a local
operating system. The internal structure of local systems
is of no importance as far as a distribution feature is
concerned. Many distributed operating systems are built
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in this manner.1-2161722 A type of message-passing
system construction is presented in Ref. 10. Principle (a)
is brought to perfection in the Occam concept.15

In case (b), each transaction is served by an associated
process. This process migrates between modules per-
forming partial services for a transaction. The real
concurrency degree of a module (the number of processes
implemented in a module) is finite, and usually much less
than t, therefore processes associated with transactions
must be scheduled. In this case scheduling of transactions
is replaced by scheduling of processes. A layered structure
is appropriate for building a system in this manner. Case
(b) is based on inter-process synchronization, case (a) on
process communication. Some aspects of this duality are
addressed" in Ref. 14. - - - - - - - -

The advantage of process scheduling is that it does not
require a special message-passing system. In addition, a
hierarchial structure of layers (b) is more deadlock-
protected than a parallel structure of processes (a). The
possibility of a deadlock in message-passing communi-
cation (not in resource allocation!) is addressed in Ref.
16.

3. IMPLEMENTATION CONSIDERATIONS
3.1 Classical inter-module communication

Each of the classically interconnected distributed
systems113'18 contains a special software unit dedicated
to intermodule communication. In the present paper this
unit is called a network handler. Of course, there can be
several network handler levels, one for each level of
communication abstraction. Network handlers existing
on a given level may be distinct because they may
implement different protocols. A network handler 'sees'
the local operating system of a neighbouring module as
one indivisible unit of the same abstraction level. A local
system does not 'know' whether its neighbour is
constructed structurally or not! The overheads of the
presented methodology are: network handlers; special
processes in callee modules (a caller decides when the
communication is to occur, so a callee must be able to
receive signals at any time); many additional layer calls
and returns (calls to network handlers). Several examples
of classically interconnected distributed UNIX-like
systems are covered in Refs. 2, 13 and 17.

(local systems are treated as sets of layers) is performed
by the kernels of modules, so every kernel in the system
must speak the common language (handshake). This
concept requires a tighter hardware interconnection.
Modules must be joined by an interrupt net or an
equivalent signal-passing system. They have to operate a
common memory or fast communication links for
parameter passing. These requirements are fulfilled by
stems based on Multibus like /i*.s Environments such as
Cm*20 and Micronet22 are also acceptable for the new
concept (the message-passing system may be used as a
basis for call/return parameter passing).

4. SEMANTIC INTERCONNECTIONS OF
LOCAL OPERATING SYSTEMS
4.1 Decomposing a local system into layers

Typically a local operating system is specified as a
program written in a structured programming language.
The structure of such a system is natural, i.e. it depends
on sets of operating system features corresponding to
specific implementation areas. A typical set of layers in a
layer-structured local system is:
- device handlers,
- a file system,
- a niche supervisor,
- niches.
A niche is treated statically as 'a place to run programs'.
The term 'niche' is taken from ecology: it denotes an
area which may be occupied by anyone, but once
occupied, cannot be occupied by anyone else. Niches are
occupied by user tasks, i.e. the dynamic entities cor-
responding to the execution of user programs. A
supervisor implements a system interface for programs.
Operations like 'run a program', 'terminate a program',
'send a signal to a program' are implemented in this
layer. A file system manages the address space of the
mass-storage devices by means of an information
structure. Device handlers unify access to devices and
give them some non-hardware features.

The above hierarchy (with some modifications) covers
such different application areas as the SOM-5 embedded
hierarchical database,6 the Toronto University UNix-like
TUNIS system9 and a family of operating systems
described in Ref. 1.

3.2 New concept-implementation considerations

Since in the new concept local and inter-module layer
calls are uniform, the only way to call a layer is to do it
by invoking the kernel. The kernel is a unit that handles
the trivial operations of an operating system, i.e. inter-
layer transitions (calls and returns) and inter-process
communication and synchronization. Executing a layer
call, the kernel decides whether to enter a local layer or
to send a signal to a neighbour module's kernel. In order
not to overcomplicate the kernel, which is expected to be
a small and simple unit, the interconnection of modules
can be performed by a simple handshake mechanism
(which will be presented in the appendix).

A local system connected to other modules' local
systems by means of network handlers can speak to them
in various 'languages' (protocols). The physical inter-
connection of modules may be as loose as a computer
network. Interconnection following the new concept

4.2 Semantic interconnections in distributed systems

A question could be asked: why not establish all the
kinds of interconnection presented in Section 2.1, i.e. the
ability to access a file, to copy a file and to run a program
(in a neighbour module)? The new concept makes it
possible to set up these, and many other inter-module
dependencies, all at the same time. Fig. 1 shows various
possible inter-module connections and their meanings.
Inter-module dependencies outlined in Section 2.1 are
among those presented in Fig. 1: C,18 D,1 B13. Inter-
connection in terms of the new concept is semantic
because it allows the designer to establish semantic
dependencies between layers of local systems.

5. THE INPUT/OUTPUT DEVICE AS A
MODULE
The concept of semantically interconnected modules

484 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/482/344216 by guest on 10 April 2024



A SEMANTIC DESIGN OF DISTRIBUTED OPERATING SYSTEMS

L

Left module

Figure 1. Various possible inter-module connections. A, the L
niche is served by the R supervisor. B, the program in the L
niche can be transferred to the R niche. C, the L module niches
see two independent file systems, L and R. D, the R file system
is a part of the L file system. E, the R devices are immediately
visible to the L file system. The connections (kernel activities)
are represented by arrows between layers.

may be derived from making a physical device more and
more intelligent.

The first step is a simple character-oriented device
which can read or write one character, and which signals
an interrupt when the transmission is completed. Such a
device may be treated as a defective layer in the system:
it needs a 'push' from the caller after each character is
transmitted, and the call parameters are different from
the parameters of an ordinary layer calling.

The second step is a device driven by a direct memory
access unit. It can signal the caller when the whole
operation (a transmission of a sequence of characters) is
completed. It is a less defective layer, since it does not
need a 'push' after every elementary transmission. Yet
the layer (device) call parameters are still non-standard
in such a system.

The third step is a device supported by its own internal
processor. It may be programmed to satisfy the standard
layer-calling requirements in the system. So the device is
a module in the distributed system (E in Fig. 1), and the
new concept system may use it as a single-layered local
system.

The fourth step is a hierarchy of layers established in
the device's module. These layers define sets of operations
on some abstraction levels that allow the programmer to
use the device as a virtual device. The hierarchy
constitutes a multi-layered module.

The last step is a layer-structured local operating
system provided with one or several niches. Such a
system may perform its own activity and constitutes an
autonomous module in the distributed environment.

6. AN E X A M P L E : THE ' M O S T '
O P E R A T I N G S Y S T E M

6.1 Overview

The MOST operating system has been implemented in
MERA-system Laboratories ('most' means 'bridge' in
Polish). The semantic interconnections concept is used in
this system. MOST is a UNix-like system in a distributed
environment.

In the MOST system a layer is considered as a
dynamically distinguishable and protected entity, as
described in Refs. 7 and 11. This has several advantages,
for example: an error in a layer does not propagate to
other layers; a layer may be replaced by another,
implementing the same set of operations in a different
manner (such a replacement does not require the
recompilation of the whole system); user tasks can
operate using various virtual machines related to the
subset of layers they see.7

A layer can access other layers (enjoys a privilege to
call them) if they are passed to it as actual parameters
during the system generation. If a parameter is not a
local layer, in a callee module containing this layer there
are special processes dedicated to handle the calls from
the neighbours, as described for the classical concept.
Yet these agent-processes are hidden in a kernel, so they
are invisible on the abstraction level of a structured
programming language. From the designer's point of
view, a process moves from a module to a neighbour.

6.2 Notation

As a notation, the structured language PROSO (modified
Concurrent PASCAL4) proposed by Chrobot7 is used in
the design of MOST. The differences between PROSO
and Concurrent PASCAL are:
- queue variables replaced by delay-resume primitives;
- layer construct, proposed in Ref. 5; the semantics of

this construct are extended to meet the requirements
mentioned in the previous section;

- coprocedure instead of sequential process; a co-
procedure is a procedure which, when called, continues
executing concurrently with its caller (and never
terminates);

- local system construct, which embraces layers of a
module and makes layers owned by neighbours visible
to local layers (lets the programmer pass them as
parameters to local layers); the externally visible layer
is marked entry.

The latter feature prevents the operating system being
split into two separate areas: the operating system itself
and its user tasks. A user task is a system layer consisting
of a single coprocedure (in the case of a niche for
sequential program, of course).
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6.3 Structure of local MOST
The structure of local MOST is presented in Algorithm
1. It corresponds to any of the systems L and R in Fig.
1. The algorithm includes the core-style implementation
of the exec system call, as an example of decoding an
operation of a layer into operations of lower layers. The
action performed by the initial statement of a niche is to
start a process acting as a user task. This process
(coprocedure task) invokes the exec system call to run
the shell - a UNIX command interpreter. The shell is
contained in a file named 'sh\ The exec system call is
decoded by the supervisor into the file system's opera-
tions. First, the file containing a program whose name is
supplied as a parameter of the exec command is opened.
Then, the file content is read into memory, and the file is
closed. In the file system the operations open and read are
implemented as sequences of calls to the block handler to
read a number of disc sectors, close is an empty operation
in this case. To illustrate that a process need not be
started in the niche-layer, the releaser coprocedure in the
file system is shown. This process frees sectors when a file
is unlinked.

6.4 Semantic dependencies in distributed MOST

MOST has been implemented in a distributed environ-
ment consisting of various Intel family microprocessors
attached to Multibus. It is not a true multiprocessor
because of its heterogeneity. A minimum hardware
configuration consists of one 8080 module and one 8086
module. The 8080-based computer is a slow text module,
dedicated to the preparation of source documents. The
8086-based computer is a fast-calculating main module
performing such activities as compilation and numerical
computation. Algorithm 2 constitutes the skeleton code
for the system. The semantic dependencies are as follows.

(1) The text module's shell may be moved to a niche in
the main module (B in Fig. 1). When working on its own
module (autonomous mode), the shell applies a limited
set of UNIX commands (for instance, there is no
background processing or pipes). This is because the text
module contains only one niche. When the shell is moved
to the main module's niche (non-autonomous mode), it
operates as an ordinary UNIX program. Then it can
create a family of programs using the fork system call.

(2) In the autonomous mode, a user program sees the
text module's file system (B in Fig. 2). In the non-
autonomous mode, the program sees the main module's
file system and the text module's file system as a part of
the main module's file system (A + B in Fig. 2, D in Fig.
1), while other main module programs (not transferred
from the text module) see the main module's file system

Figure 2. Main module's (A) and text module's (B) file system
trees.

only (A in Fig. 2). The text module's display remains an
input/output device of the shell after its move to the
main module's niche.

The extended (and, possibly, not final) version of the
MOST system consists of a number of text modules and
two modules adopting the device handling functions of
the main module (E in Fig. 1). They are the disk driver and
multiplexer. In this version, the main module is replicated
and constitutes a classical multiprocessor (not a multi-
computer!).

The UNix-like system will not be the only application,
because MOST is a scheme of operating system design
rather than an instance of an operating system. Various
kinds of systems will be built as MOST. Of course, all of
them will use the same kernel, and a majority will include
the layers of device handlers.

7. ANALOGIES

A task force of Medusa16 installed on a cluster of Cm*20

may be considered as a local system installed on a
module. The main difference (in addition to those
described in Section 2) is that task forces implement
operating system utilities, such as file systems or memory
managers, rather than autonomous local systems. An
inter-cluster communication failure, a run-time extrac-
tion or a destruction of a cluster may crash the entire
system. MOST contains similar utility systems (multi-
plexer and disk driver), but it also contains autonomous
modules (main module, text module). The latter are still
able to work locally in case of a communication failure,
or the removal or destruction of a neighbour module.

This facility brings the new concept closer to the
system described in Ref. 1, although in the latter there is
only one interconnection level (data ports).

Each individual module of Micronet22 or Cm*20 can be
considered to be a basis for a single-layered local system.
Specifically, there is an analogy between the concept of
interconnection of heterogeneous modules and an early
version of Micronet consisting of a number of Micros22

and a number of UCSD Pascal local systems. Modules in
Micros and Medusa are interconnected at the task level.
Higher-level protocols between tasks are established
using the basic protocol (messages) supported by local
operating systems, as described in Section 1.

Since the kernel of a MOST-like system is small and
simple, a semantically interconnected operating system is
static and non-reconfigurable on the operating system
level. Yet a user task running in a niche can be transferred
around the modules if there are semantic interconnections
between local system supervisors. Thus a system may act
like Micros or Medusa above the supervisor level.

The static image of the new concept is dedicated to
architectures of several or tens of functionally distinct,
specialised modules rather than to hundreds or thousands
of homogeneous and anonymous modules like Cm*,
Micronet or ^*.8 The new concept does not require
special hardware to perform physical interconnection
like Slocals and"Kmaps of Cm* or front-end computers of
Micronet.

System schemes like those of Medusa and Micros may
be considered as degenerate cases of the semantic
interconnections principle.
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8. CONCLUSIONS

To establish minicomputers and mainframes, the work
of hundreds of people, large amounts of money up to
millions of dollars, and years of time were needed. A
microcomputer can be built by one person, for a few
hundred dollars during free afternoons. This is possible
because a microcomputer is constructed in a brick-style,
like a house built of Lego bricks. Application software
can be established in a similar way, using software
packages such as graphics, databases, spreadsheets,
window managers, etc. An operating system can be built
in a brick-style by means of the structured programming
methods. And the concept of semantic interconnections
of local operating systems permits a distributed operating
system to be constructed in a similar manner.

This concept enables the designer to remove all
network handlers from the classical system, and to
replace them with the common interconnection strategy
hidden in the kernel. Yet this concept lets him preserve
some network handlers, namely handlers of' unintelligent
devices' and of non-standard modules in the system,
' speaking' a language different from a simple handshake.

A structured approach to operating system design
allows one to establish a family of systems.11 Every layer
works regardless of the activities of higher layers, so a
number of systems may be constructed using the given
layer operation set as primitives. The layer simply defines
a virtual machine on a certain abstraction level.
Therefore, it may be used for several purposes, depending
on the set of layers installed above it.

The concept of semantic interconnection extends this
facility to cover distributed applications, since the level
of abstraction denned by a layer may be applied as a
basis for both local and remote higher layers. The new
structuring method partly bridges a gap between the
classical approach of layered protocols and the idea of
tightly coupled systems. A distributed structured opera-
ting system, constructed using semantic interconnections
of modules, is like a Cartesian product of processes,
layers and modules (Fig. 3).

/

A • « -

/ / /

/ / A

- A

/

B
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/
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/
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/ •*&*
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Figure 3. A Cartesian-like product of processes, layers and
modules: A, interprocess communication and synchronisation
(concurrent system); B, layer calling (structured system); C,
intermodule layer calling (distributed system).

The MOST operating system is under development in
the MERA-System laboratories, concurrently for the
main module and the text module.
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APPENDIX-THE 'DIVA' KERNEL

The IVA kernel of the local MOST operating system
supports the primitives of the PROSO programming
language. It performs the following generation functions:

(1) adding layers to the system;
(2) starting processes (coprocedure calling); this can be

done only during the system generation, because the
total number of processes is the main invariant of the
IVA kernel;
and the following run-time functions:

(3) inter-layer communication (layers are dynamically
protected by the kernel, and the only way to call a layer
is by invoking the kernel);

(4) synchronisation of processes in monitor layers by
delay-resume operations (it could be done using Hoare's
conditions12 or Brinch Hansen's queue variables as well);

(5) process-interrupt synchronisation;
(6) traps (exceptions) handling.
The semantic interconnection of local systems is

performed by their kernels, instances of DIVA (dis-
tributed IVA). The kernel of a calling local system must:

(7) distinguish local calls from calls to neighbouring
modules;

(8) implement a protocol for calling neighbours;
(9) handle returns from calls.
The kernel of a callee local system must:
(10) handle requests (calls) from its neighbouring

modules;
(11) redirect requests to agent-processes in the layers

which have been called;
(12) distinguish between local returns and returns

from calls from neighbours;
(13) implement a protocol for returning from remote

calls.
Since every module may be both a caller and a callee,

its kernel must perform all of the functions 1-13.
Algorithm 3 presents a formal specification of the DIVA
kernel. The representative set of the local kernel entry
operations is:
- for inter-layer communication, call a layer and return

to the calling layer,
- for synchronisation of processes, delay and resume.
These operations are the only ones that change a process
state. The following states of a process in a layer are
allowed:
- active, occupying a monitor layer critical region;
- ready, waiting for a monitor layer critical region or

running in a non-monitor layer,
- delayed, after execution of delay,
- calling, after execution of call a layer.
The data structures that support these kernel operations
are layer descriptors and process descriptors. The Cart-
esian-like product of these two vectors determines layer
state records, which describe the status of processes in
layers. A layer state record holds the contents of processor
registers of a process in the layer.

Fig. 5 shows an instantaneous state of the kernel data
structures for a frozen state of a sample system consisting
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Figure 4. A frozen state of the system consisting of three layers;
the coprocedure PI from layer LI calls the entry procedure of
layer L2, and the latter calls the entry procedure of layer L3;
the coprocedure P2 is running in the layer LI; and the
coprocedure P3 from layer LI calls the entry procedure in
layer L3.

| 
L
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er
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1 
L

3 
I 

L
2 

I 
L

I

Processes
PI 1 P2 I P3

LSR 11 \-\ LSR 12 | - | LSR 13

LSR 21

LSR 31 LSR 33

Figure 5. The kernel data structures for the frozen state of the
system shown in Fig. 4.

of three processes and three layers, Fig. 4. In a process
dimension (vertical in Fig. 5), the layer state records are
organised in stacks. After a process has called a layer, a
layer state record is pushed onto the stack. It is popped
when a process returns to a calling layer. In the initial
state each process has only one layer state record on its
stack. This is a record describing the status of the process
in the layer where it was started. In a layer dimension
(horizontal in Fig. 5), the layer state records are joined to
layer descriptors through queue links. A queue collects all
processes that are in the same state in a layer.

Inter-module communication is implemented as
follows:
- Each kernel is supplied with a parameter own which is

a unique identifier for its module in the system.
- There is a table home, which for every layer ' known'

to the local system contains the identifier of this
module in the system to which a layer belongs. So the
kernel contains module identifiers for all its local
layers and for all layers in neighbouring modules,
accessible to its local layers. If home [layer] = own, then
the layer is local to the module; otherwise it belongs to
a module identified by home [layer]. For all layers, for
which home [layer] 4= own, a table orig contains names
of layers in their original modules.

- Inter-module call and return are performed by a
handshake mechanism. Each module has its own area
in a common memory. This area is called a window. A
module owning the window can read and write to it,
but other modules can only read. If the kernel performs
an inter-module call or return operation, it writes the
call parameters into its own window and causes an
interrupt in the neighbouring module (or sends another
kind of signal). Then it waits for a reply.

- After receiving an interrupt signal from a neighbour,
the kernel copies the call parameters from the
neighbour's window to its own memory area, and then
sends a reply for the interrupt. The call parameters are
received by the callee while executing the inter-module
call operation, and by the caller while executing the
inter-module return operation.

- There is a special process (or processes) called an agent
which is dedicated to handle calls from the neigh-
bouring modules. In the called layer, an agent behaves
just like an ordinary process.

- If a process invoking the return operation is an agent,
the operation is an inter-module return.
The implementation of generation of the system

(adding layers and starting processes) is omitted from
Algorithm 3. The handshake mechanism is performed by
pairs of routines: operation call with interrupt service
routine arrive, and operation return with interrupt service
routine leave. The interrupt construct defines an interrupt
service routine which is treated as an ordinary kernel
entry; interrupts are mutually exclusive with other entries.
The kernel is a monitor12 as far as the mutual exclusion
of entries is concerned. As there is no internal synchron-
isation mechanism in the kernel, only a busy form of
waiting is allowed. This facility is suitable for the
synchronisation of kernels of distinct modules during the
handshaking.

Note that the inter-module versions of the call and
return operations are split in a very symmetric manner.
The caller invokes call and leave operations in the calling
layer descriptor, while the callee invokes the enter and
return operations in the called layer descriptor.

The software interface (handshake) presented in
Algorithm 3 is not tight. The callee kernel can answer a
signal and start an agent, while the caller may decide that
a call has been unsuccessful. The algorithm can be made
tighter, for instance by the caller sending a clearing signal
when it decides that a call fails.
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ALGORITHM 1. The local MOST operating system
type locaLMOST — local system ;

type char-handler = layer monitor ;
procedure entry read (...);

begin ... end ;
procedure entry write (...);

begin ... end ;
begin ... end ;

type blockjhandler = layer monitor ;
procedure entry read (...);

begin ... end ;
procedure entry write (...);

begin ... end ;
begin ... end ;

type filesystem = layer monitor
(ch:charJxandler;bh:blockJiandler);

procedure entry open (...);
begin ... bh.read (...) ... end ;

procedure entry read (...);
begin ... bh.read (...) ... end ;

procedure entry close (...);
begin ... end ;

procedure entry ...

coprocedure releaser (...);
begin ... end ;

begin ... releaser (...) ... end ;
type supervisor = layer monitor (fs.filesystem);

procedure entry fork (...);
begin ... end ;

procedure entry exec (a,...);
begin ...

fs.open (a);

fs.read (contents);
fs.close (a);

end ;
procedure entry exit (...);

begin ... end ;
procedure entry wait (...);

begin ... end ;
procedure entry ...

begin ... end ;
type niche = layer class (s.supervisor);

coprocedure task (...);
begin ... s.exec (sh) ... end ;

begin ... task (...) ... end ;
var

console : char-handler ;
disk : block-handler ;
fs : file system ;
s : supervisor ;
p0,p\ : niche ;

begin
init console, disk, fs(console, disk),

s(fs), P0(s), p\(s)
end.

ALGORITHM 2. The distributed MOST operating
system
type MOST = system ;

type text^module = local system
(mms : main-module.supervisor);
type char-handler = layer monitor ;
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begin ... end ;
type block-handler = layer monitor ;

begin ... end ;
type filesystem = layer monitor
ch : char-handler; bh : block-handler);

begin ... end ;
type supervisor = layer monitor (fs : filesystem;

mms : main-module.supervisor);
begin ... end ;

type niche = layer class (s : supervisor);
begin ... end ;

var
console : char-handler ;
disk : block-handler ;
entry fs : file system ;
s : supervisor ;
p : niche ;

begin
init console, disk, fs(console,disk),

s{fs,mms), p(s)
end ;

type main-module = local system
(tmfs : text-module.filesystem);

type char Jiandler = layer monitor ;
begin ... end ;

type block-handler = layer monitor ;
begin ... end ;

type filesystem — layer monitor
(ch : char-handler;
bh : block-handler;
tmfs : text-module.file system);

begin ... end ;
type supervisor = layer monitor (fs : filesystem);

begin ... end ;
type niche = layer class (s : supervisor);

begin ... end ;
var

consoles : char-handler ;
disks : block-handler;
fs : filesystem;
entry s : supervisor;
pO,p\,...,pn : niche;

begin
init consoles, disks, fs(consoles,disks,tmfs),

s(fs), pO(s), pl(s), ... , pn(s)
end ;

var
tm : text-module;
mm : main-module;

begin
init tm (mm.s), mm(tm.fs)

end.

A L G O R I T H M 3. The distributed kernel program-
parts marked .. . are not of interest
type DIVA = monitor (own : module^number);

const none = 0 ;
const max-p = ... ;
const max-1 = ... ;
const maxs — max-l;
const max-ag = ... ;
const handshake-timeout = ... ;
type process-number = O..max-p ;
type agent-number = \..max-ag ;
type layer-number = Q..max-l;
type stack = O..maxs ;
type call ̂ parameters = ... ;
type agents = class ;

var list : {a structure} of
record

p : process-number;
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m : module-number;
ag : agent-number

end ;
procedure entry insert

(p : process-number; m : module-number; ag :
agent-number);

begin
{add '(p,m,agY at the end of list}

end ;
procedure entry remove (m : module-number;

ag : agent-number; var p : process-number);
begin

{remove a node containing 'm' and 'ag'
from the list, and fill the reply '/>' parameter}

end ;
begin ... end ; {agents}
type window = class (a : address);

procedure entry fill (par : call-parameters);
begin

{send 'par' into the window of address 'a'}
end ;

procedure entry get (var par : calLparameters);
begin

{get 'par' from the window of address 'a'}
end ;

begin ... end ; {window}
type windows = array [module-number] of window;
type layer state-record = class ;

type registers = ... ;
var reg : registers ;
var lay : layer-number ;
procedure entry fill (par : calLparameters;

I: layer-number);
begin

lay: = l;
{allocate a stack for the calling process in 'lay'}
{fill the bottom of stack with 'par'}
{set initial value for 'reg'}

end ;
procedure entry remove (var par : call-parameters);

begin
{deallocate the stack}
{return reply parameters to 'par'}

end ;
procedure entry set (var par : calLparameters);

begin
{get 'par' from the top of stack in 'lay'}

end ;
procedure entry put (part : calLparameters; var / :
layer-number);

begin
{put 'par' on the top of stack in 'lay'}; 1 : = lay

end ;
procedure entry start ;

begin
{send 'reg' to the processor's registers}

end ;
begin ... end ; {layerstate-record}
type process-descriptor = class (own : module-number; w :

windows);
var top : stack;
var state : array [stack] of layer slate-record;
var cm : module-number ;
procedure entry inter-module-call (m : module-number);

var par : calLparameters;
begin

state [top].get(par);
w [own]fill(par)

end ;
procedure entry agentstart (m : module-number; I :

layer _number);

6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/482/344216 by guest on 10 April 2024



A SEMANTIC DESIGN OF DISTRIBUTED OPERATING SYSTEMS

var par : calLparameters;
begin

cm:=m;
w [cm].get(par);
top:=0;
state [top].fill(par,l)

end ;
procedure entry push (I : layer-number);

var par : calLparameters;
begin

state [top].get(par);
top: = top+\;
state [top].fill (parj)

end ;
procedure entry pop (var / : layer-number; var m :

module-number);
var par : calLparameters;
begin

state [top].remove(par);
if top = 0 then
begin

m: = cm;
w [own].fill(par)

end
else begin

m: = own;
top : = top—\;
state [top].put(par,l)

end
end ;

procedure entry inter-module-return (m : module-number;
var / : layer-number);

var par : calLparameters ;
begin

w [m\.get(par);
state [top].put(par,l)

end ;
begin ... end ; {process-descriptor}

type queue = class ;
procedure entry insert (p : process-number);

begin
{add '/»' at the end of queue)

end ;
procedure entry get (var p : process-number);

begin
{get first in the queue into 'p' and remove it from the
queue; if the queue is empty then 'p' = none}

end ;
procedure entry remove (var p : process-number);

begin
{remove 'p'from the queue and return '/>'; if'p' is not in
the queue, 'p' = none}

end ;
function entry first : process-number ;

begin
{'first' = first in the queue;
if the queue is empty then 'first" = none)

end ;
begin ... end ; {queue}

type layer-descriptor = class ;
var kind : (mon,cls);
var active : process-number ;
var ready,delayed,calling : queue ;
procedure entry delay ;

begin
if kind = mon then
begin

delay ed.inser tractive);
ready.get(active);

end
end ;

procedure entry resume (p : process-number);
begin

if kind = mon then
begin

delayed.remove(p);
if p 4= none then
begin

ready, inser tractive);
active: =p

end
end

end ;
procedure entry call (p : process-number);

begin
calling. insert{p);
if kind = mon then ready.get(active)
else ready.remove(p)

end ;
procedure entry leave (p : process-number);

begin
calling. remove(p);
if p 4= none then

if (kind = mon) and (active = none) then
active: =p

else ready.insert(p)
end ;

procedure entry enter (p : process-number);
begin

if (kind = mon) and (active = none) then
active: =p

else ready.insert(p)
end ;

procedure entry return (p : process-number);
begin

if kind = mon then ready.get(active)
else ready.remove(p)

end ;
function entry choose : process-number ;

begin
if /«W = /won then choose: = active
else choose: = ready.first

end ;
begin ... end ; {layer-descriptor}
var processes : array [l..max_p] of process-descriptor;
var /ayers : array [layer-number] of layer ^descriptor;
var free-agents : array [agent-number] of boolean;
var active-calls : agents;
var no/ne : array [layer-number] of module-number;
var orig : array [layer-number] of layer ^number;
var w : windows;
var currenUp : process-number;
var current-l: layer-number;
procedure choose ;

var j : layer-number;
var /? : process-number;
begin

for j in layer-number do
if /lowe [i] = otvn then
begin

/?: = layers [i].choose;
if /7 4= none then exit

end ;
current-l: = /';

p/;
processes [current-p].start

end ;
procedure entry C4LL (/: layer-number);

var rep/y : agent-number;
var / : 0..handshake-timeout;
begin

if no/Me [/] = ow/; then
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begin
layers [current _l\.call {current_/?);
processes [current-p].push{[);
layers [l\.enter {current-p)

end
else begin

processes [current_p].inter_module-call {home[l\);
{send an interrupting signal "ARRIVE
to the 'home [I]' module,
with parameter 'orig [/)'};
/: = 0;
repeat

{read 'reply' from 'home [/]'};
/: = *+1

until (/ = handshake-timeout) or {reply 4= none);
if reply = none then {ERROR}
else begin

layers [current-l\.call {currenl-p);
active-calls.insert{current-p, home[l\, reply)

end
end ;
choose

end ;
interrupt ARRIVE

(m : module-number;
I : layer_number);

var ag : agent-number;
begin

{gef a free agent 'ag' from the table 'free-agents'};
{send reply 'ag' to the module 'm'};
process [ag].agentstart{m,l);
layers [l\.enter{ag);
choose

end ;
procedure entry RETURN ;

var / : layer-number;
var m : module-number;
var reply : agent-number;
var /' : 0..handshake-timeout;

begin
layers [current J\.return{current-p);
processes [current-p\.pop{l,m);
if m — own then layers [l\.leave{current-p)
else begin

{send an interrupting signal 'LEA VE to the module
with parameter 'current~p'};

i: = 0;
repeat

{read 'reply' from 'm'};
/: = /+1

until (/ = handshake-timeout) or {reply 4= none);
free-agents [current-p]: = true

end ;
choose

end ;
interrupt LEA VE {m : module-number;

ag : agent-number);
var p : process-number;
var / : layer-number;
begin

active-calls-remove{m,ag,p);
processes [p].inter_module-return{m,t);
{send reply other than 'none' to the module 'm'};
layers [l\.leave{p);
choose

end ;
procedure entry DELA Y;

begin
layers [currentJ\.delay;
choose

end ;
procedure entry RESUME {p : process-number);

begin
layers [currentJ\.resume(p);
choose

end ;
begin ... end.

Announcements
5-8 JANUARY 1992

Second International Symposium on Artificial
Intelligence and Mathematics,
Fort Lauderdale, Florida

Approach of the Symposium

The International Symposium on Artificial
Intelligence and Mathematics is the second of
a biennial series featuring applications of
mathematics in artificial intelligence as well as
artificial intelligence techniques and results in
mathematics. There has always been a strong
relationship between the two disciplines; how-
ever, the contact between practitioners of each
has been limited, partly by the lack of a forum
in which the relationship could grow and
flourish. This symposium represents a step
towards improving contacts and promoting
cross-fertilisation between the two areas. The
editorial board of the Annals of Mathematics
and Artificial Intelligence serves as the per-
manent organising committee for the series of
Symposia.

Sponsors

The symposium is sponsored by Florida
Atlantic University and IJCAII. Additional
funding is pending. Partial travel subsidies
may be available to young researchers.

Information
Contact Frederick Hoffman, Florida Atlantic
University, Department of Mathematics,
PO Box 3091, Boca Raton, FL 33431, USA
(E-mail: horTman@acc.fau.edu or hoffman®
fauvax.bitnet) for further information and to
receive future announcements.

25 and 26 MAY 1992
Conference on Eiffel, Damstadt, Germany.

Organiser German chapter of the ACM
e.V./Gesellschaft fur Informatik e.V, FA PS
and PE.

Information: Prof. Dr Hans-Jiirgen Hoff-
mann, University at Darmstadt, Department
of Computer Science, FG PU, Alexanderstr.
10, D-6100 Darmstadt, Germany. Tel:
+ 49 6151 163410. Fax: +49 6151 165550.
E-mail: EARN/BITNET: XIPHJHO®
DDATHD21.

29 June to 3 JULY 1992

Second International Conference on the Math-
ematics of Program Construction, Oxford, UK
Call for Papers

The second International Conference on the
Mathematics of Program Construction is to
continue the theme set by the first - the use of
crisp, clear mathematics in the discovery of

algorithms. But recent developments within
this philosophy have shown that the approach
is remarkably diverse, applying not only to
sequential programs but also to parallel or
concurrent applications, real-time and reactive
systems, and even designs realised directly in
hardware. In this the second conference,
therefore, it is hoped to take advantage of the
ever-widening impact of precise mathematical
methods in program development.

The second conference is to be held at St
Catherine's College which, while situated only
a few minutes' walk from the city centre, lies
on Oxford's famous 'punting' river (flat-
bottomed boats propelled by poles) in bucolic
surroundings.

Attendance will be limited to 150-200.
Submissions of papers (5 copies) should be
sent to Carroll Morgan, clearly marked MPC,
by 20 January 1992; acceptance will be notified
from 9 March; and final camera-ready copy
would in that case be due by 8 June for
distribution at the conference and publication.

Although there is no page limit on sub-
missions, the usual advantages of brevity are
strongly commended.
Carroll Morgan and Jim Woodcock, Pro-
gramming Research Group, 11 Keble Road,
Oxford OX1 3QD, UK. Tel: +44 865 273840.
E-mail: carroll(a prg.ox.ac.uk; jimw@
prg.ox.ac.uk.

492 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/482/344216 by guest on 10 April 2024


