
Adaptive Deadlock-free Packet Routeing in Transputer-based
Multiprocessor Interconnection Networks

N. T. SON AND Y. PAKER
Centre for Parallel Computing, Queen Mary and Westfield College, University of London, Mile End Road, London El 4NS

This paper presents a deadlock-free routeing algorithm for multiprocessor interconnection networks based on store-and-
forward (S/F) communication. The adaptive nature of the method proposed encourages using light traffic paths.
Furthermore it has the properties of avoiding blocked communication (deadlock), reducing communication delay time
between source and destination, using efficiently message buffers as network resources and being able to control
communication traffic flow from each processor of the network. The routeing algorithm has been implemented on a 64-
node transputer network (T-Rack) configured as a number of well known topologies to evaluate the behaviour of the
algorithm and some performance figures have been derived.

Received January 1990, revised April 1991

1. INTRODUCTION

For interconnected multiprocessor systems based on
transputers or other processors such as Intel hypercube,
the limitation of links per processor implies that the
network topology, except for very small sizes, is not fully
connected. Consequently, messages exchanged between
two processors, if they are not neighbours, have to be
sent through one or more intermediate processor(s). This
requires a routing scheme so that at each processor
incoming messages are guided by a router to follow a
path towards the destination. A well-known technique
for network routeing is based on the store-and-forward
method; at each intermediate processor when a packet
arrives it is first stored fully in the memory and then
forwarded to the next neighbouring processor. The fact
that this method involves only two processors at any
given time in transmitting a packet makes it relatively
easy to implement. However, there are stringent require-
ments on the minimum buffer space in each processor to
be able to accommodate a number of full length packets.1

Many different routeing algorithms have been de-
veloped for S/F interconnection networks.2"5 Most of
these (such as refs 2 and 4) have introduced the concept
of buffer classes or virtual channels, mainly to solve the
problem of deadlock. The technique used provides
directed paths of buffers from any source to any
destination so that none of these paths contains a cycle,
a condition which can cause deadlock. However, as the
network size grows, this technique requires an increase in
the buffer space at each processor, for instance in ref. 4
it is shown that the growth is linear with the network
diameter. On the other hand, restrictions of buffer and
routeing assignments in these algorithms often lead to a
situation where some processor buffers are full while
others are almost empty. This unbalanced usage leads to
inefficient use of system resources (i.e. memory). Fur-
thermore, the upper bound of necessary buffer size in
these algorithms cannot be always satisfied since this
depends on traffic generated by an application which is
usually not predictable.

A more sophisticated method called wormhole6 im-
plemented by special hardware avoids unnecessary
overheads of intermediate buffering of packets. Instead
of storing a packet completely, wormhole operates by

advancing the header of the packet directly from
incoming links to outgoing links. As soon as a processor
examines the header of a packet, it selects the next link
to forward the packet. As the packet header gets shifted
down the link, the rest of the packet follows and spreads
out across the links between the source and the
destination. It is possible that the header of a packet
arrives at the destination before the last part of the
packet has left the source. But if the header is blocked for
some reason, the transmission of the packet is stopped
along its transmission path, waiting in the network. This
blocks the progress of any other packets requiring the
links tied up by the blocked packet.

The cut-through method in ref. 7 is similar to the
wormhole technique. It differs in that the packet is
buffered when it is blocked, thus freeing the links on its
path. Therefore resources (links) can be used more
effectively, increasing the network throughput. However
at each intermediate processor, a buffer has to be
allocated for storing blocked packets. If the number
of blocked packets is high, then allocation of buffers
could require huge amount of memory. The overheads
for allocating and reallocating buffers is relatively high.
This can become a crucial factor to degrade system
performance.

An effective and reliable multiprocessor inter-
connection network requires a routeing algorithm that is
able to avoid deadlock and to use efficiently the existing
communication links and buffers. This paper presents an
adaptive routeing algorithm which controls the trans-
mission of messages through the network. Due to
influence of messages en route on others as the congestion
builds up, the algorithm tries to reduce the blocking of
traffic by using adaptively the existing idle buffers in the
network. The traffic is not always routed over a single
path, i.e. shortest path, therefore, local conditions can
sometimes influence traffic patterns over a wider neigh-
bourhood and, thus contributing to the global traffic
flow. The method described, called adaptive deadlock-
free routeing (ADR), ensures deadlock avoidance and
effective use of system resources.

In Section 2 we first introduce a router model. We then
describe the basic structure of the routeing algorithm in
Section 3. Section 4 presents the architecture of the
routeing module, which implements the method intro-

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 493

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

N. T. S O N A N D Y. P A K E R

duced in Section 3. The problem of deadlock prevention
is discussed and a constructive proof has shown the
correctness of the algori thm in Section 5. In Section 6 a
discussion is presented on the routeing algorithm as
implemented and tested on a specific t ransputer machine,
the T - R a c k . 1 0

2. O V E R V I E W O F T H E R O U T E R M O D E L

The router model is shown in Fig. 1. It contains three
functional uni t s : (1) the input unit, (2) the routing unit
and (3) the ou tpu t unit. All the functional units handle
t ransmission of packets.

Output

Channels

I t
Packets from Packets to

the Host the Host
Figure 1. Router model of a S/F node.

Packets from input channels are stored in the input
unit. Only one buffer is reserved for packets coming from
all the input channels. The input unit distinguishes two
kinds of packe t s : (1) transit packets which come from
neighbouring processors and (2) entry packets which
come from the local processor (host) .

The packet buffered in the input unit is immediately
routed. After processing in the routeing unit, the packet
is passed to the corresponding ou tpu t channel leading to
an adjacent processor or to the host. This is done by
consul t ing the routeing table stored in the routeing
unit as a vector which maps the current and desti­
na t ion processor addresses to the output channel, i.e.
R: Nx N-+ C, where N is the number of processors and
C the set of ou tpu t channels.

The ou tpu t unit contains a set of output channels
connected to the neighbouring processors and one to the
local processor. Each output channel is modelled as a
first-in-first-out (F I F O) queue.

3. T H E ADR A L G O R I T H M

A routeing algori thm provides rules that are used to
t ransmit messages or packets through the network from
a source to a destination processor. Based on how
routeing varies with traffic conditions, a routeing
a lgor i thm is classified as a deterministic or an adaptive
one. Wi th deterministic routeing strategies, the path for
any source-dest inat ion pair is determined a priori which
is independent of existing traffic. Messages are forced to
move in a single determined direction (such as the
shortest pa th as used in this paper) . Adaptive routeing
strategies provide an alternative whereby messages could
follow different paths , depending on the prevailing cir­
cumstances such as the level of network traffic, failed
links or extreme traffic congestion. Basically, the A D R

algorithm is based on a combination of deterministic and
adaptive routeing. The algorithm is deterministic for
light-traffic and becomes adaptive for heavy-traffic
conditions.

Before we describe the A D R algorithm the following
properties are assumed:

Assumption 1. The network contains a finite number of
processors and it is connected (each processor is reachable
from any other processor). Links connected to adjacent
processors are bi-directional.

Assumption 2. All processors, communication links,
etc. are functioning properly so that no message can be
lost.

Assumption 3. Messages are transmitted as complete
uni ts : each message fits into one unit of buffer.
Packetising and re-assembly are functions of higher
layers of network protocols, which fall outside the
scope of this paper. Unless explicitly stated otherwise,
'message ' and ' packe t ' are used interchangeably.

Assumption 4. A message that arrives at its destination
might not be consumed immediately due to two reasons:
(1) the consume rate is smaller than the arrival rate and
(2) there is no synchronisation between the producer and
the consumer so that packets can arrive at their
destination before they are needed. However, all such
packets must be consumed eventually.

The simplified listing of the A D R algorithm is given
below, where da represents the destination address of a
packet, the link / is obtained from the routeing function
R{n} where n is the destination, and q(i) stands for the
state of queue i, i.e. full or not full. The adaptive routeing
algorithm in O C C A M style is presented below.
W H I L E running

SEQ
... Input a packet
. . .Find link l-=R{da)
IF

q(l) N O T full
. . . S e n d the packet to q u e u e /

T R U E
SEQ

... Find the q{i) that is N O T full

. . . Send the packet to q u e u e /'

The A D R algorithm must satisfy the rules as listed
below:

Rule 1. A new packet from a local host can enter the
network (local input unit) if and only if there is at least
one output channel queue at its local output unit which
is not full. This means

S ? i < S f i , or £ q(^(B-2),
i-i f-i (-i

where qt and Qi are the current and maximum queue
lengths respectively and B is the total buffer capacity in
each processor (B = 1).

Rule 2. If packets arrive from a number of input
channels a t the same time, then they are handled by a
scheme to ensure fairness.

Rule 3. A transit packet has higher priority than an
entry packet.

Rule 4. If the local host is not ready to receive a packet
destinated to it, then it is sent to the output channel
queue with the smallest queue length.

494 T H E C O M P U T E R J O U R N A L , VOL. 34, N O . 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

DEADLOCK-FREE PACKET ROUTEING FOR MULTIPROCESSOR NETWORKS

Rule 5. If the queue of an output channel determined
by the routeing function R{n) is full, then the packet is
sent to the queue of the output channel with the smallest
current queue length.

Rule 6. If there is more than one queue with the
smallest current queue length, one is chosen randomly.

From the above rules, it follows that messages try first to
follow the path as defined by the routeing function, such
as the shortest path. According to ref. 9, for networks
which consist of homogeneous processors with links of
equal bandwidth, for light message loads, the choice of
shortest path between any source and destination gives
the optimal performance. The adaptive strategy is used
only when a shortest path starts getting overloaded or a
destination processor is temporarily unable to consume
incoming messages.

4. ARCHITECTURE OF THE
COMMUNICATION ROUTER

The architecture of the communication router is defined
by its logical components, their characteristics and
interfaces. As shown in Fig. 2, a communication router
consists of the following modules.

Inputs

[Data buffer) Queue Manager

Output Driver

Ol O2 On

Figure 2. Communication architecture of a processor.

1. Traffic Manager implements the ADR communi-
cation algorithm. The Manager controls the current state
of the router and synchronises the activities of other
modules in the router.

2. Data Buffer is organised as a queue structure. One
queue is used for each link. Packets are stored in queues
before they are transmitted to the next processor.
Handling of packets in each queue is controlled by a
queue manager.

3. Output Driver removes packets from queues and
transmits them via the links. It provides the same effect
as an output guard.

All modules run in parallel and they refer to one
another by means of internal communications (channels).

Figure 3. The traffic manager.

At a given time only one packet can be handled by the
traffic manager. Unlike many other S/F communication
networks, there is only one buffer for all input channels
and the host input. This input buffer handles one packet
at a time. Therefore a packet is accepted only if the
previous one has been removed.

For an incoming packet when the traffic manager finds
the routeing information from the routeing function R:
{/?} H> link, it sends a request to the corresponding queue
manager to ask for a place in the queue. The response is
a value of the current queue length. If the queue length
is smaller than the maximum queue size allowed for each
link, then the packet is sent to that queue and another
packet can be received by the traffic manager. A fairness
structure using a round-robin technique8 has been
implemented to avoid the starvation in the case whenever
there is more than one packet waiting in the link inputs
at the same time. When the queue length of the desired
queue reaches its maximum, then the adaptive nature of
the algorithm becomes effective. In this case the traffic
manager sends requests simultaneously to other queue
managers. A queue with the shortest queue length, if it
exists, is chosen. A critical situation arises when all
queues reach their limits. In this case, the packet is kept
in the traffic manager until there is space in one of the
queues.

4.2. Queue manager

The queue manager (Fig. 4 a), is the module used to
control the buffering of packets. The number of current
packets buffered in a queue is updated when a packet is
received from the traffic manager or a packet is taken by
the output driver. A circularly linked list has been used
for the data structure. *•

4.1. Traffic manager

The traffic manager is the main part of the router whose
task is to receive packets arriving at input links or from
a user process (host) and to channel them following the
routeing strategy. The flowchart given in Fig. 3 presents
the semantic function of the traffic manager.

4.3. Output driver

This module is used as an interface to the external link.
It requests the queue manager for a packet each time
(Fig. 4b). If there are any, then it takes one and tries to
send the packet down the link. As soon as the link is
ready the packet is sent and the output driver requests

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 495

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

N. T. SON AND Y. PAKER

(a)

Refuse-ack
Receiv Pack
from Queue

Send Pack
to link

Figure 4. (a) The queue manager and (A) the output driver.

the queue for another one. If the link is not ready the
packet is kept in the output driver until the link becomes
ready. During this waiting time no packet can be taken
out of this queue. The queue may be filled by new
incoming packets until the traffic manager realises that
this queue is full and no more packets are accepted.

5. VALIDATION

5.1. Correctness issues
For communication networks deadlock implies a situ-
ation in which: (1) no packet can be forwarded due to all
buffers being full of packets waiting in a cyclic fashion, or
(2) there are still packets moving in the network, but can
never arrive at their destinations. This is referred to as
livelock.

Fig. 5 a shows a very simple example of a S/F
deadlock case (called direct S/F deadlock4) in which
given two adjacent processors A and B, A's buffers are
full with packets destinated for B, and B's buffers are full
with packets destinated for A. As a result, no packet can
move.

Another more complicated deadlock example is shown
in Fig. 5 b. In this case, more than two processors are
involved in the deadlock. The packets are forced to move
in the direction of a cycle. Each processor obtains a full
buffer of packets, which are destinated to the next
processor in line but one. No packet can advance toward
its destination, thus causing deadlock.

The S/F deadlocks given refer to the situation where
there is a cycle of the buffer requests among a set of
communicating processors, all of them having no empty
buffers left. One of the main reasons is the input load
probably exceeds the network capacity and the routeing
algorithm forces a single direction on a packet, causing
blocking of communication links. Most routeing algo-
rithms assume that a packet which arrives at its
destination will be consumed immediately. But, in
practice this is not always true. Consumption of packets
depends so much on user applications which run
asynchronously in each processor. To store all the
incoming packets while consumption rate is falling
behind requires increasingly large memory for each
processor which can easily exceed the available size
which is only few Mbytes for transputers. If message
communication is not well synchronised, this becomes
one of the reasons causing communication blocking.

From Section 3 describing ADR algorithm, three
important points have to be stated: (1) the algorithm

(A)

D

B

B

B

* 1

c

c
c IK

\ ^ - ^ fJJ
y /

, ->

A

A

A

V
\ ;

D

D

D

r
Figure 5. Deadlock situation, (a) Direct deadlock; (b) undirect

deadlock.

simply prohibits the generation (but not passing) of a
packet into the last empty buffer at a processor; (2)
packets are not restricted to move along any fixed path;
wherever they are blocked, they try to find free space in
the neighbourhood in order to get to their destinations;
and (3) packets coming from different inputs to a
processor are always accepted in a certain order. To
clarify the algorithm, the examples given below are
chosen which are usually deadlock prone.

Example 1. Two-processor communication: one sends
and the other one receives.

As shown in Fig. 6 a the user process in A sends
packets to B and B receives packets from A. Supposing
that due to some reason, for instance consumption of
packets in B is slower than sending of packets in A, these
are not accepted by B and therefore they are buffered in
the output channel queue in B to be sent back to A. If
user in A keeps sending packets, then after a certain time
all buffers in both processors will become full. Notice,
however, that the router prohibits the user in A
introducing a packet into the last empty buffer, hence at
least one empty buffer must exist in A. We call this case
where only one empty buffer exists the critical situation.
Those packets which are sent back to A are treated in* A
as transit packets. These packets still keep moving
between A and B. Packets returning to the sender act as
a brake on the incoming traffic generated by the sender.

Example 2. Two-processor communication: each sends
and receives concurrently.

In this case the two processors (A and B) execute
concurrently two tasks, namely send and receive packets.
Packets to be transmitted at each processor are placed
into the queue of the output channel leading to the other
processor. For any reason as in Example 1, to avoid
blocking, the packets refused are sent back and since the

496 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

D E A D L O C K - F R E E P A C K E T R O U T E I N G F O R M U L T I P R O C E S S O R N E T W O R K S

External link

(a) A sends, B receives

External link

(b) Both send and receive-end up with two empty buffers

(c) Both send and receive with only one empty buffer (black
hole) left

Figure 6. Critical situations between two adjacent nodes.

source is unaware of this it keeps sending packets until all
queues are full. The result is each processor ends up with
one last empty buffer as shown in Fig. 6b. This does not
remain so for long, since priority is given to the transit
packet, there is a moment when, say, in processor B a
packet is received from the input channel, freeing one
buffer in the output channel queue of the processor A
and therefore, one more packet can enter the network
resulting only one free buffer as shown in Fig. 6 c causing
the critical situation. We call the last empty buffer black
hole. Suppose that there are only two processors in the
network, then the black hole is forced to hop along a
cycle, forcing packets to move along the same cycle, in
the opposite direction.

Example 3. An irregular network.

In case of more than two processors in the network
one can refer to the example of an irregular network as
shown in Fig. la this is a more complex case where more
than two processors are involved. These processors are
connected in an irregular topology which represents a
general case provided that the Assumption 1 (connected)
is valid. For simplicity we assume a maximum queue
length of one for each output queue. The communicat ion
requirement is random and the rate of packet entry is
higher than the consumption.

initial first move second move

3 rd move 4th move 5th move

6th move 7th move 8th move

(til

Figure 7. The trajectory of the 'black hole' in an irregular
topology.

One can trace the network and finally find out that
after a certain time, the critical situation arises with the
black hole. The fairness structure provided by the
algorithm determines the path along which the black
hole moves. Connectivity and fairness are sufficient
conditions to show that the black hole will move around
and visit each processor at least once. Fig. lb illustrates
the trajectory of the black hole for the topology given in
Fig. la.

From the two examples described above, it is clear that
the input unit of the router simply prohibits the
acceptance (but not transit) of a packet into the last
empty buffer (input buffer) at a processor, hence at least
one empty buffer must exist somewhere in the network.
The empty buffer hops from node to node a round the
network causing the packets not to follow the shortest
path but the path in the opposite direction to that
followed by the black hole.

Let us say, the situation is that only one empty buffer

32

T H E C O M P U T E R J O U R N A L , VOL. 34, N O . 6, 1991 497

CPJ 34

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

N. T. SON AND Y. PAKER

exists somewhere in the network and moves in the
network according the fairness rule.

5.2. A proof for ADR algorithm

Let us consider a network as a graph G = {X, A) where X
is a set of communication processors and A is the set of
communication links. G is considered a connected graph
and links connecting two processors are bidirectional. In
this case the move of the empty buffer is equivalent to the
problem of finding one's way in a maze. This is a classical
problem in graph theory where a person gets lost in a
maze and does not know the maze plan. However, it is
still possible to find the exit, if one follows the simple rule
that one never goes twice in the same direction along any
one path (link) and at the junction (node) one takes the
path from which one first arrived at the same junction
only when no other choice is available. This ensures that
following these rules, one traverses all paths so that each
junction will be visited until the exit is found as proven
theoretically in ref. 16.

(a)

0

n
i

r

k*

3

n
i

r

i*

6

2

1

2

*

1

*
r

kj

4

* r

7

»

*

*

f

2

i

r

ii

5

i

t

ki

8

(*)

0

i^ r

3

4

h

6

i

i

2

I

* 2

2

2

1

r

r

i kl

4
i k3

7

3
•

9

1

i

r

i

2

^i

5

k i

8

0

i

r

k2

3

]1 r

6

i k

2

— •

2

1

r

3, r

i kl

4
i k

3

/

2
*

3

1

1

2
•

l "

21

r

—

4

2

5

i k
l

8

Figure 8. Illustration of black hole move, (a) State before the
block hole occurs in node 3. (b) First round, (c) Second round.

The ADR algorithm, in particular Rule 2 ensures that
the empty buffer moves along a path which covers all
links at least once and comes back to the starting
processor. To illustrate, Fig. 8 a shows the state of a
network at the moment just before the black hole occurs.
Each input channel of a processor is assigned with an
index not greater than the total number of input channels
of this processor. These indices express the order in
which the packets from neighbours enter this processor.
The asterisk (*) indicates the channel from which the
next packet will be accepted. Supposing that the black
hole occurs in processor 3, then Fig. 8(b, c) shows the
two rounds of the path, traversed by the black hole,
covering all the links and also all the processors of the
network. (Note that the black hole moves in the opposite
direction of packets.)

If we put all the links in the order they are traversed,
then we have a circuit of all links of the network. Imagine
that packets are stored along these links. Since the empty
buffer moves along this circuit in one direction, packets
certainly move in opposite direction so that they also
visit each node of the network until packets reach their
destination.

In order to prove that deadlock will not occur, the
following definitions mentioned in ref. 6 will be used:

Definition 1. A channel dependency graph D = G(C,
E) is obtained from a given interconnection network /
with its routeing function R and the messages to be
routed according to this function. D is a directed graph
where each vertex ci of D (c(e C) corresponds to one
channel of/if and only if there is a message to be routed
via this channel. An edge of D between c(and c} exists if
c(and Cj are adjacent in / and there is a message in c,
which is to be forwarded to cj according to the routeing
function R.

Definition 2. A deadlocked configuration for a routeing
function R is a configuration of the channel dependency
graph where there exists a cycle along which

Vc(e C, (c, = R(ct, n) \ = cap{c^)).

498 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

D E A D L O C K - F R E E P A C K E T R O U T E I N G F O R M U L T I P R O C E S S O R N E T W O R K S

Above sizeicj) denotes the number of messages in the
queue for channel c} and cap{c^) denotes the capacity
(maximum queue length) of channel cy

In this configuration no message can advance because
the queue for the next channel is full. A routeing function
R is therefore deadlock free if no such deadlock
configuration occurs which means that there must exist
at least one channel with the channel capacity exceeding
the current channel requirement (free buffer).

Assertion. The A D R algorithm is deadlock free.

Proof. Suppose the A D R algorithm leads to a deadlock
situation. This means that packets move to wherever
there are empty buffers after attempting unsuccessfully
their shortest paths, since queues on shortest paths are
full of waiting messages. The resulting network con­
figuration is such that the queues of all channels reach
their capacity and hence, the condition in the Definition
2 is satisfied. This however contradicts the Rule 1
(Section 3) which ensures that there is at least one empty
buffer in the system. In this case the routing function is
determined only by the move of that empty buffer which
has been shown above to traverse along a circuit covering
all the channels at least once. Therefore, in this
configuration, there always exists one channel with the
capacity exceeding the current channel requirement.
Messages will move through all channels (all nodes) at
least once and they will eventually be consumed. This
proves that the A D R algorithm is deadlock free.

The A D R algorithm so far has been demonstrated to
be deadlock free. However it is not free of livelock which
is a situation where one or more packets are never able to
reach their destinations. As long as packets are able to
move along their shortest paths between the source and
destination, it is obvious that they will definitely reach
their destinations. Due to the adaptive nature of the
algorithm, it may happen that at each node packets (i.e.
livelock packets) arrive, links leading to the packet
destination are saturated so that packets must follow the
other way which never reaches the destination. Fig. 9,
below, illustrates such a case.

Figure 9. A livelock case .

The central node is the destination of the packet.
Assume that when the packet arrives at one of the three
surrounding nodes, the link leading to the central node
has just been filled up by a new packet or any transit
packet from somewhere else. It has to move to the next
node to which the link is still free and so on it never

reaches its destination. In reality, this would not happen
in the network containing communicat ion processors
which run asynchronously. However, to ensure that this
is avoided one can introduce a path length counter to the
packet header. The path length counter is initialised as 0
by the source and incremented each time when a packet
arrives at a node. Those packets whose path length
counter is greater than a prescribed constant L(L> 2*r,
where r is the number of total links in the network) are
delayed in each node as they go through until the link on
the path leading to their destination accepts them or a
time which is proportional to the value L is reached.
This, therefore, enables all packets to reach their
destinations eventually, meanwhile the adaptive nature
of the A D R algorithm is still preserved and livelock is
prevented.

6. I M P L E M E N T A T I O N

6.1. System overview

The A D R algorithm has been implemented on a target
system (T-Rack) shown in Fig. 10 which is a network of
64 t ransputers . 1 0 Each transputer has four links to
connect with others. Since the links are au tonomous
D M A engines, 1 1 the processor is free to perform
computat ion concurrently with link communicat ion
which makes it particularly suitable for implementing the
S / F technique. Different desired connection pat terns can
be generated on the system by using the switch facility. 1 2

The network is connected to the host, a S U N 3/160
system, via an interface transputer board (Tadpole) .

C o n t r o l
T r a n s p u t e r Backp lane Moni tor Bus

I
s

Tadpole Tl T2 Tn Tadpole Tl T2 Tn

SWITCH BOARDS

Figure 10. T-Rack architecture.

There is also a facility to access each individual
transputer through the backplane bus from the control
transputer. This facility is used for monitor ing and
synchronisation of transputers without affecting the
communicat ion performance of the system. The main
task of the control transputer is to set the array of
switches of the crossbar switch so that a desired topology
of the network can be obtained. This is done before the
routeing process is loaded together with the user process
from the S U N host to the individual processor of the
network. This allows setting different types of topologies
for experiments shown.

T o set up the system, a user generated information file,
which defines the transputer network topology, is
required. A facility on the SUN host allows determining
information from this file, a b o u t : (1) the system
configuration for setting switches and (2) the routeing
table of an N x N matrix. Each row of the matrix defines
the routeing function for corresponding processor to any
others. The initial routeing strategy is chosen, depending
on the purpose of communication. There are two
alternative strategies being available in our system, i.e.

T H E C O M P U T E R J O U R N A L , VOL. 34, N O . 6, 1991 499

32-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

N. T. SON AND Y. PAKER

the simple Floyd's shortest path technique13 and the
balanced shortest path technique.14 The system initiation
includes setting switches for topology selected and
loading the routeing tables.

The transputer architecture supports any number of
concurrent processes sharing the processor time so that
the routeing software can run as procedures executed
concurrently with the user application in a transputer.
To communicate the user needs only to call corre-
sponding procedures (send(), receive()) serving as system
communication functions. The format of a communi-
cation packet is defined as follows:

typedef struct {
unsigned char DEST

SOURCE
BLOCK_NUM
DATE_TYPE
LENGTH

char 'Block
} packet

There is no need for user to know how packets reach
their destinations.

6.2. Experimental implementation

The ADR algorithm has been implemented and tested on
the T-Rack and also on the PARSYS supernode machine.
Some experiments have been carried out on several
topologies shown in Fig. 11. There are two additional
processes called report() and sample rate() which are used
to monitor the communication activities in each pro-
cessor such as the arrival rate, the current length of each
output queue, etc. After a certain time interval, the
sample rate invokes the report process to record all
monitoring information which have to be collected. At
the end of a run this is sent to the SUN host.

The first experiment has been carried out to test the
deadlock situation. To create heavy traffic, for each valid
link the outgoing queue has been assigned one buffer unit
and the input load has been made to exceed the
consuming capacity by adding a delay in the receiving
processes. Each processor sends packets to others in a
uniform manner. The test program has been run for
different topologies with increasing input loads. Com-
munication in all cases has been successfully completed
and the results have shown that no deadlock occurs even
for the critical case.

For the deterministic routeing algorithm the deadlock
state does not arise so long as there are enough buffers in
queues. The number of necessary buffers increases rapidly
with the input load. An experiment has been carried out
where the output queue of each link has been assigned
with the maximum length of eight. The input load of the
network is defined as follows: for each unit of the input
load each processor sends packets to all other processors,
which means if n is number of the processors, then there
are «*(«— 1) packets entering the network at a time. This
procedure has been repeated for a number of times. After
a certain time, one observes none of the packets are able
to move. Using monitoring facility allows us to find out
where the deadlock has occurred.

Fig. 12 shows the measurement results of communi-
cation throughput in different topologies, namely ring,
binary tree, 2D mesh, cross mesh, and hypercube, using

the ADR algorithm and the same input load as mentioned
above. For each topology, the curve first rises since the
input load of the network is small. If the input load
increases, all the links reach the maximum capacity, thus
the throughput is then saturated. Among these topo-
logies, the cross mesh is found to be the best one, better
than the hypercube, since the cross mesh has a diameter
less than the cube (diameter of cube is 4 and of cross
mesh is 3) and there is almost no difference of the average
distance between them (average distance of cube is 2.20
and of cross mesh 2.2215).

Comparing the binary tree with the ring, the former
has a communication throughput worse than the latter,
although it has smaller diameter (diameter of tree is 6
and ring is 8). The reason is due to the difference of the
average distance between them (tree 5.089 and ring 4.25).
For a given size topology, the less the average distance,
the more alternative paths it contains. Clearly, our
routeing algorithm is more suitable for topologies with
several alternate paths for every pair of processors.

(b)

Figure 11. Some typical topologies, (a) Ring; (b) cross mesh; (c)
2D mesh; (d) binary tree; (e) hypercube.

Fig. 13 shows the number of packets arriving at
their destinations which has been measured in unit time.
The input load is lighter than in previous experiments.
The result also suggests that the hypercube gets more
packets to their destinations in a unit time and the tree
which is the worst one.

From the above experiments one can say that in the
design stage of a multiprocessor network like transputers,
using the adaptive routeing algorithm, the cross mesh is
the most suitable topology due to following reasons: (1)
the network is extendable with fixed number of processor
links; (2) it has small average distance and therefore (3)
there are more paths between any pair of processors
paving packets moving fast in the network.

6.3. Communication performance

An analysis about the impact of the routeing overhead is
being prepared as another publication. The routeing
algorithm has been tested with different network traffic
loading offers and also compared with other common

500 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

DEADLOCK-FREE PACKET ROUTEING FOR MULTIPROCESSOR NETWORKS

0
0 10 20 30 40 50 60 70

Input load 16.8 Kbytes/unit

Figure 12. Network throughput versus input load for different
topologies.

Packets (70 bytes/pocket)
160

150

140

130

120

110

100

| 90

f 80
I 70

60

50

40

30

20

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time interval (50 msec/unit)

Figure 13. Arrival rate for different topologies.

routeing algorithms in terms of performance such as
average packet delay, and network throughput. The
results given in Fig. 14 show the average normalised
network throughput versus the network traffic load of
the ADR algorithm and the deterministic shortest path

Bin aryhVper

[Cross me

- I -
rf

N

cube

sh

—\2Dm

V \

1
1

I I I ! !
i

i
!

;sh"

1
t

i

i i

i i

i

i
i

i
L I y \ i L i j-x-li? i I i

1 i

t
ft

~\ i\r i INI L
\i /

IF

Bin irytr

-1 1

\

ADR

10 20 60 7030 40 50
Traffic load (packets/sec)

Figure 14. Throughput versus traffic load in two different routeing
algorithms.

algorithm respectively. The experiment has been carried
out on the PARSYS supernode machine, which contains
16 transputers (T800). The traffic load is defined as the
number of packets sent from every node i to every node
j per second (y0), which is an exponential distribution
function. Looking at the figure, the ADR algorithm
shows its advantage against the deterministic one at the
high rate of the network traffic load.

7. CONCLUSIONS
We have shown a simple deadlock-free routeing al-
gorithm which can be constructed and applied for any
arbitrarily connected communication network. The al-
gorithm uses a dynamic routeing strategy that exploits
the possible different paths that exist between a source
and a destination so that the existing resources (both
links and buffers) can be used effectively. The correctness
of the algorithm of being free of deadlock has been
constructively shown and verified by implementation.
Furthermore, results obtained from measurements have
shown the efficiency of this algorithm over the determin-
istic one, in particular when the network becomes heavily
loaded. The ADR routeing algorithm program is easy to
integrate to application programs written to run on
different types of transputer networks.

Acknowledgements

The first author expresses gratitude to Unesco/UNDP
for their fellowship support. The work was carried out
within the framework of the Alvey-Parsifal project and
the Esprit Parallel Application Programme. The authors
wish to acknowledge the support of the Polytechnic of
Central London and the Centre for Parallel Computing,
Queen Mary and Westfield College, London. Many
thanks to Mr Malcolm J. Shute for the informal
discussion and special thanks to the referee who made a
number of useful comments on this paper.

REFERENCES
1. J. Yantchev and C. R. Jesshope, Adaptive, low latency,

deadlock-free packet routing for networks of processors.
IEE Proceedings, 136E, (3), 178-186 (1989).

2. K. D. Gunther, Prevention of deadlocks in packet-switched
data transport systems. IEEE Trans, on Comp., C-29,
512-524(1989).

3. Alan Knowles and Todor Kantchev, Message passing in a
transputer system. Microprocessors and Microsystems, 13
(2) (1989).

4. P. M. Merlin and P. J. Schweitzer, Deadlock avoidance in

store-and-forward network. IEEE Trans, on Comp., C-28,
345-360 (1980).

5. Cheung Wing Chan and Tak Shing P. Yum, An algorithm
for detecting and resolving store-and-forward deadlocks in
packet-switching networks. IEEE Trans, on Comp., C-35
(8), 801-807(1987).

6. W. J. Dally and C. Seitz, Deadlock free message routing in
multiprocessor interconnection networks. IEEE Trans, on
Comp., C-36 (5), 547-553 (1987).

7. Kermani Parviz and L. Keinrock, Virtual cut-through: a

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 501

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

N. T. SON AND Y. PAKER

new computer communication switching technique. Com-
puter Network, 3, 267-268 (1979).

8. Occam User Group Newsletter, no. 10 (Jan 1989).
9. Vijay Ahuja, Design and Analysis of Computer Com-

munication Network. McGraw-Hill Book Company (1982).
10. A. E. Knowles, Specification for T-Rack

PSF/MU/87/AEK/3 Internal report, Department of
Computer Science, University of Manchester (1986).

11. INMOS, Transputer Technical Reference Prentice Hall
(1989).

12. N. T. Son, An Approach to the dynamic Reconfiguration
of a Multi-transputer Network. PSF/PCL/WP6/89/3

Parallel Computing Research group, Polytechnic of Central
London.

13. Nicos Christofides, An Algorithmic Approach. Academic
Press, London, New York, San Francisco.

14. M. Bozygit, A dense variable topology multicomputer
system. Ph.D. Thesis submitted at Polytechnic of Central
London.

15. Dharma P. Agrawal et al. Evaluating the performance of
Multicomputer Configurations. Computer, 19 (5), 23-37
(1986).

16. Clifford Wallace Marshall, Applied Graph Theory. Wiley
Interscience (1971).

Correspondence
Does a Point Belong to a Polygon?

Sir,
To describe a space region when solving a
boundary problem I wrote a program det-
ermining whether a point belongs to a polygon
specified by the coordinates of its own vertices.
My algorithm when compared with similar
ones, in particular with that by R. Francline,1

turns out to be faster. To my knowledge, such
an algorithm has not yet been published. Its
essence lies in the following.

In the given polygon, one vertex is singled
out, and the remaining ones are connected to
it. Any two adjacent vertices and the one
singled out make a triangle. The point may
belong to one or several triangles or to none of
them. If the number of triangles to which the
given point belongs is even, then the point lies
outside the polygon, otherwise it lies inside it.
The algorithm seems at first sight to be more
cumbersome than the traditional one, based
on counting the number of the points crossing
the polygon boundary by a ray drawn from
the point in any direction, and not well suited
for writing an efficient program. However, the
comparison shows that this is not the case.

If a polygon has N vertices and, conse-
quently, N sides, then, according to the
traditional algorithm, one needs N tests to
find out whether the chosen ray crosses the
line, a part of which belongs to the polygon
boundary. On the average, the number of
these crossings should be N/2; moreover, one
should check whether the crossing point
belongs to the boundary, i.e. whether it lies
between the vertices. Then the average number
of basic checks will be §/V.

In the algorithm proposed, N— I checks are
made to find out on which side of the rays,
emerging from the given vertex and passing
through the other vertices of the polygon the
point lies. If the point lies between two rays,
one checks whether it is inside the triangle. The
number n of such checks is seldom more than
3 and, on the average, is less than 1. (The
figure presents the rare difficult case.) The
number of basic checks is about N.

The necessity in additional checks for
'special cases', when the point is on the
boundary or on the line belonging to it, or in
the polygon vertex, increases the ratio of the
number of checks. In practice, the program
presented in the Appendix runs almost twice
as fast as the one by R. Francline.1

I mention the testing technique since it is
right at the point where we encounter dis-
crepancies when estimating these algorithms.
The running time of the complete test program
consists of the running time r of the program

to be tested plus the running time t of the
remainder of the test program. Therefore if
the test program runs 2.1 times faster with the
program proposed here included, as compared
with the case when Francline's program is
included, this does not necessarily mean that
their efficiencies differ by more than two times.
Here we have

If in the same test program we have two calls
to the program to be tested rather than one, it
is quite possible that one can obtain

from which one can calculate rf./rK ~ 1.75.
These are the numbers obtained by me from
numerous tests of the programs under dis-
cussion.

The sequence of the formulae composing
this algorithm can easily be understood from
the program given in the Appendix.

The general algorithm, applied to domains
of arbitrary dimensions bounded with ar-
bitrary surfaces (in the two-dimensional case
we have lines), is described in Ref. 2, and one
of its modifications will probably be published
in the Soviet journal Programming.

The general algorithm has already proved
its efficiency, for example in determining the
location of the detector matter penetrated by
a particle. This is very important when dealing
with the huge number of particles handled by
experimental high-energy physics.
Yours faithfully,

P. A. KALINCHENKO
USSR 142284, Moscow region, Protvino,
Institute for High Energy Physics,
Computer Centre

References

1. M. Smith, Points, polygons, and areas
(letter to the Editor). The Computer
Journal, 23(2), 189 (1980).

2. P. A. Kalinchenko, Preprint, Institute for
High Energy Physics 86-60. Serpukhov
(1986).

Appendix
SUBROUTINE PPOLYN

* (X, Y, XP, YP, N, IV)
C 30 OCTOBER 1985
C WRITTEN BY KALINCHENKO

DIMENSION XP (N), YP (N)
N 1 = N - 1
XPN = XP(N)
YPN = YP(N)
XN = X-XPN

YN = Y-YPN
IV=1
P=l.
ISTART=-1
1 = 0

1 IQ=-1
2 1=1+1

IF (I-Nl) 4, 3, 16
3 ISTART=-N
4 XIN = XP(I) —XPN

YIN = YP(I) -YPN
IF ((XIN*YN-YIN*XN)*P)

* 5, 7, 2
5 P= —P

IF (ISTART + 1) 9, 2, 9
7 IF (ISTART + I) 11, 11,
8 IQ=1
9 XIJ = XP(I) —XP(I —1)

YIJ = YP(I)) -YP(I-l)
XJ = X-XP(I-1)
YJ = Y —YP(I —1)
IF ((XIJ*YJ —YIJ*XJ) *P)

* 10, 12, 1
10 IV=IQ*IV

GO TO 1
11 XIJ = XIN

XJ = XN
YJ = YN

12 IF (XIJ) 13, 14, 13
13 XI = X-XP(I)

IF (XI*XJ) (15, 15, 1
14 YI = Y —YP(I)

IF (YI*YJ) 15, 15, 1
15 IV = 0
16 RETURN

C —1-INSIDE
C IV: 0-EDGE OR VERTEX
C 1-OUTSIDE

END

n= 1

Fig. 1.

502 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/493/344229 by guest on 10 April 2024

