
N. T. SON AND Y. PAKER

new computer communication switching technique. Com-
puter Network, 3, 267-268 (1979).

8. Occam User Group Newsletter, no. 10 (Jan 1989).
9. Vijay Ahuja, Design and Analysis of Computer Com-

munication Network. McGraw-Hill Book Company (1982).
10. A. E. Knowles, Specification for T-Rack

PSF/MU/87/AEK/3 Internal report, Department of
Computer Science, University of Manchester (1986).

11. INMOS, Transputer Technical Reference Prentice Hall
(1989).

12. N. T. Son, An Approach to the dynamic Reconfiguration
of a Multi-transputer Network. PSF/PCL/WP6/89/3

Parallel Computing Research group, Polytechnic of Central
London.

13. Nicos Christofides, An Algorithmic Approach. Academic
Press, London, New York, San Francisco.

14. M. Bozygit, A dense variable topology multicomputer
system. Ph.D. Thesis submitted at Polytechnic of Central
London.

15. Dharma P. Agrawal et al. Evaluating the performance of
Multicomputer Configurations. Computer, 19 (5), 23-37
(1986).

16. Clifford Wallace Marshall, Applied Graph Theory. Wiley
Interscience (1971).

Correspondence
Does a Point Belong to a Polygon?

Sir,
To describe a space region when solving a
boundary problem I wrote a program det-
ermining whether a point belongs to a polygon
specified by the coordinates of its own vertices.
My algorithm when compared with similar
ones, in particular with that by R. Francline,1

turns out to be faster. To my knowledge, such
an algorithm has not yet been published. Its
essence lies in the following.

In the given polygon, one vertex is singled
out, and the remaining ones are connected to
it. Any two adjacent vertices and the one
singled out make a triangle. The point may
belong to one or several triangles or to none of
them. If the number of triangles to which the
given point belongs is even, then the point lies
outside the polygon, otherwise it lies inside it.
The algorithm seems at first sight to be more
cumbersome than the traditional one, based
on counting the number of the points crossing
the polygon boundary by a ray drawn from
the point in any direction, and not well suited
for writing an efficient program. However, the
comparison shows that this is not the case.

If a polygon has N vertices and, conse-
quently, N sides, then, according to the
traditional algorithm, one needs N tests to
find out whether the chosen ray crosses the
line, a part of which belongs to the polygon
boundary. On the average, the number of
these crossings should be N/2; moreover, one
should check whether the crossing point
belongs to the boundary, i.e. whether it lies
between the vertices. Then the average number
of basic checks will be §/V.

In the algorithm proposed, N— I checks are
made to find out on which side of the rays,
emerging from the given vertex and passing
through the other vertices of the polygon the
point lies. If the point lies between two rays,
one checks whether it is inside the triangle. The
number n of such checks is seldom more than
3 and, on the average, is less than 1. (The
figure presents the rare difficult case.) The
number of basic checks is about N.

The necessity in additional checks for
'special cases', when the point is on the
boundary or on the line belonging to it, or in
the polygon vertex, increases the ratio of the
number of checks. In practice, the program
presented in the Appendix runs almost twice
as fast as the one by R. Francline.1

I mention the testing technique since it is
right at the point where we encounter dis-
crepancies when estimating these algorithms.
The running time of the complete test program
consists of the running time r of the program

to be tested plus the running time t of the
remainder of the test program. Therefore if
the test program runs 2.1 times faster with the
program proposed here included, as compared
with the case when Francline's program is
included, this does not necessarily mean that
their efficiencies differ by more than two times.
Here we have

If in the same test program we have two calls
to the program to be tested rather than one, it
is quite possible that one can obtain

from which one can calculate rf./rK ~ 1.75.
These are the numbers obtained by me from
numerous tests of the programs under dis-
cussion.

The sequence of the formulae composing
this algorithm can easily be understood from
the program given in the Appendix.

The general algorithm, applied to domains
of arbitrary dimensions bounded with ar-
bitrary surfaces (in the two-dimensional case
we have lines), is described in Ref. 2, and one
of its modifications will probably be published
in the Soviet journal Programming.

The general algorithm has already proved
its efficiency, for example in determining the
location of the detector matter penetrated by
a particle. This is very important when dealing
with the huge number of particles handled by
experimental high-energy physics.
Yours faithfully,

P. A. KALINCHENKO
USSR 142284, Moscow region, Protvino,
Institute for High Energy Physics,
Computer Centre

References

1. M. Smith, Points, polygons, and areas
(letter to the Editor). The Computer
Journal, 23(2), 189 (1980).

2. P. A. Kalinchenko, Preprint, Institute for
High Energy Physics 86-60. Serpukhov
(1986).

Appendix
SUBROUTINE PPOLYN

* (X, Y, XP, YP, N, IV)
C 30 OCTOBER 1985
C WRITTEN BY KALINCHENKO

DIMENSION XP (N), YP (N)
N 1 = N - 1
XPN = XP(N)
YPN = YP(N)
XN = X-XPN

YN = Y-YPN
IV=1
P=l.
ISTART=-1
1 = 0

1 IQ=-1
2 1=1+1

IF (I-Nl) 4, 3, 16
3 ISTART=-N
4 XIN = XP(I) —XPN

YIN = YP(I) -YPN
IF ((XIN*YN-YIN*XN)*P)

* 5, 7, 2
5 P= —P

IF (ISTART + 1) 9, 2, 9
7 IF (ISTART + I) 11, 11,
8 IQ=1
9 XIJ = XP(I) —XP(I —1)

YIJ = YP(I)) -YP(I-l)
XJ = X-XP(I-1)
YJ = Y —YP(I —1)
IF ((XIJ*YJ —YIJ*XJ) *P)

* 10, 12, 1
10 IV=IQ*IV

GO TO 1
11 XIJ = XIN

XJ = XN
YJ = YN

12 IF (XIJ) 13, 14, 13
13 XI = X-XP(I)

IF (XI*XJ) (15, 15, 1
14 YI = Y —YP(I)

IF (YI*YJ) 15, 15, 1
15 IV = 0
16 RETURN

C —1-INSIDE
C IV: 0-EDGE OR VERTEX
C 1-OUTSIDE

END

n= 1

Fig. 1.

502 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/502/344237 by guest on 09 April 2024

