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1. INTRODUCTION
This paper discusses the design and implementation of a
distributed object-oriented programming environment.

Our motivation for designing this environment is to
provide a platform for building applications that are
intended to be used by a group of people who would like
to use computers for communication and sharing
information. We assume that users have access to
workstations connected to a local area network.

The type of application we have in mind is illustrated
by the following examples:

• simple shared databases, e.g. address lists, information
about people in a department;

• shared diaries and booking systems;
• shared spreadsheets.

Such applications are characterised primarily by
supporting information that is shared by the members of
a group. Their secondary characteristic is that each
application allows users to manipulate quite complex
information structures. We use the term object* to refer
to a unit of information within an application, such as a
week in a diary or a cell in a spreadsheet. We note that
objects belonging to a particular application generally
contain connections to other objects; for example, a
spreadsheet cell can contain a reference to the objects
containing its value and its formula.

We make no assumption as to whether users access
objects at the same time as one another or at different
times. In the case of shared databases, users will access
objects whenever they require them and will add new
information whenever it becomes available. The fact that
more than one user may access the same object
simultaneously is generally of no importance to the users
involved except in so far as it may cause conflict.

When users choose to access a set of objects
simultaneously, each user can have an independent view
of the information. Although the views of different users
may overlap in that both contain some of the same
objects, there is no assumption that they would share a
view. However, this does not prevent users from having
the same views as one another, as for example in multi-

* This work is supported by the Esprit SPIRIT High Performance
Workstation project.

t To whom correspondence should be addressed.
* It will become apparent in a later section that the notion of object

also includes operations.

user editing systems such as ShrEdit14 and the multi-user
drawing program described by Hagsund.9

Our main design goals relating to the support of
shared applications are to be able to:

• share data that is inherently distributed;
• support user interfaces that are appropriate for shared

information and have acceptable performance.

2. REQUIREMENTS
We have identified the following requirements for a
programming system that provides a platform for
building distributed applications for workstation users
on a local area network:

(i) it must be possible to place shared objects in any
computer that runs our software - this may be in
a user's workstation or in a server; in addition it
should be easy to make objects available for
sharing;

(ii) location and access transparency - the applica-
tion builder should be able to design application
software without concern as to the location of the
objects accessed;

(iii) information should be presented to users through
an interactive user interface allowing them to
view and manipulate the information as easily as
in today's single-user applications; a side effect of
this requirement is the need to place replicas of
shared objects in users' workstations;

(iv) several people must be able to view and edit the
same objects simultaneously and observe one
another's effects;

(v) when objects are accessed by more than one
person at a time, the overall effects should be
consistent;

(vi) privacy and protection of information - un-
authorised users must be prevented from seeing
or altering objects that they are not intended to
use in that way;

(vii) long-term reliable storage of objects is required -
this requires a mechanism for transparent per-
sistency in which certain objects are automatically
preserved for as long as they are needed.

Our requirements and the experience described by
other researchers has led us to choose an object-oriented
programming environment. The object model has been
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shown to be effective for constructing distributed
programs in which objects that reside in different
computers in a local area network communicate by
means of messages (e.g. Arjuna,15 Argus,11 ANSA8).
Object-oriented programming environments have been
proved particularly effective in the design of interactive
software (e.g. Analyst, HyperCard). In addition, object-
oriented programming and databases have been shown
to have potential for sharing data in group work.7 The
Emerald distributed programming language10 and Dis-
tributed Smalltalk1 are examples of distributed object-
oriented programming languages.

Neither Emerald nor Distributed Smalltalk makes any
attempt to deal with privacy, protection or long-term
storage of data. Distributed Smalltalk provides the
ability to construct interactive user interfaces, but has
not addressed the issue of allowing changes made by one
user to be provided immediately to other users of the
same objects.

We have considerable experience building applications
with Smalltalk-80 and have our own local implemen-
tation of Smalltalk-80.13 Our implementation has per-
formance comparable with ParcPlace Smalltalk-80 and,
being written in C, is portable and easy to modify. We
have therefore decided to follow on from the Distributed
Smalltalk project by adding remote invocation to
Smalltalk.

In the next two sections of this paper we outline our
scheme for transparent remote invocation and discuss an
architecture for distributed applications. We illustrate
the use of this architecture in some simple applications
that we have built. These examples will be used as
illustrations later in the paper.

The remainder of the paper contains a discussion of
how we addressed each of our requirements.

3. REMOTE INVOCATION OF THE
METHODS IN OBJECTS

In Smalltalk, all entities are represented by objects that
encapsulate a set of methods and private states. All
computation proceeds by sending a message to some
object which invokes a method which may in turn send
further messages. The only direct access to an object's
state is through manipulations by one of that object's
methods. We can distinguish between mutable objects,
which are objects that provide methods that alter their
state, and immutable objects which do not. Once an
immutable object has been initialised it will never change
its state. Immutable objects include integers, characters
and boolean values.

Transparent remote method invocation allows an object
to send a message to any other object and to receive a
reply without being aware of whether the receiver is local
or remote. Transparency is achieved by automatically
providing a local proxy for each remote object that can
be invoked by a local object.4 The function of a proxy is
to behave like a local object towards the message sender,
but instead of executing the message, it forwards it to the
process (in another computer) where the remote object is
located. The remote object performs the message and
replies without being aware that its reply is sent back to
a sender on a remote computer.

Every object in Smalltalk has a local identifier (or

object reference)* that is valid within a single Smalltalk
process. In our system any object that is to be referenced
by an object in another computer is given a globally
unique object identifier. This global identifier is generated
at the object's local computer the first time its local
identifier is to be sent to another computer in a reply to
a message, in which case the global identifier is sent in
place of the local identifier. The forwarding mechanism
and the marshalling of messages is described in detail in
Ref. 16, in which performance figures are given.

All arguments and return values in Smalltalk are local
object identifiers - that is, parameters and results are
effectively passed by reference. The logical extension in
distributed Smalltalk is to pass global object identifiers
whenever an argument or reply is passed to a remote
process. For example, in Fig. 1 objects A, B and C each
contain three slots - for the identifiers of objects con-
taining their names and of other objects on the left and
right. Object A is connected to objects B and C. Messages
name, left and right cause the receiver to return identifiers
of its name and the left and right objects respectively.
Suppose also that X is an object in another computer and
X sends the message left to A-the result is that a global
identifier for B is returned to X and a proxy is created.

^ - ^ . - " Proxy
Cx) for A

o
Proxy
forB

* * * - * • _ ,

Figure 1. A proxy is created when the global identifier for B is
returned.

Now consider the user of object X, who would like to
see a view of the three objects showing the names and
connections. When X sends the message name, A returns
a global object identifier for the object containing the
name and another proxy is created. To access the
characters in the string, further global object identifiers
and proxies are created. This mechanism has poor
performance and causes an explosion in object identifiers
and proxies. A pass-by-value mechanism can provide
better performance. In general, we would like whenever
possible to copy or move objects between machines
rather than access them via proxies and relatively
expensive remote message sends.

One of our sample applications is a simple depart-
mental database containing information about lecturers,
students and courses. When we first distributed the
objects in this program, we decided that a process in one
computer would contain the potentially shared database
objects and that users could access them via user
interface objects on their workstations. In Fig. 1, imagine
that X is a user interface object and that the database is
represented by objects A, B and C. In our first attempt
we passed all arguments and results as global identifiers,

* This identifier is commonly called OOP - for object-oriented
pointer.
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apa r t from immutable objects which were passed by 
value. The performance was of course extraordinarily 
slow when strings were passed one character at a time to 
the user interface. However , we experienced another far 
m o r e serious problem in that we discovered we had 
placed proxies in the da tabase . T o explain this, assume 
tha t the user creates a new object, Y, and supplies its 
n a m e and then asks that it should be placed on the right 
of B (Fig. 2). If all a rguments are passed as object 
identifiers (or global object identifiers in the remote case), 
the new object remains in the user interface instead of 
being passed to the da tabase . It will be unavailable 
whenever the user decides to quit and may even be lost. 

User interface Database 

Proxy 

Database 

/ 7 \ forA 

09 O 
/TN Proxy 
V J L / fo rB Proxy ( ) 

forY v - y 

Figure 2. Proxies in database. 

Thus we have identified a requirement to pass 
a rguments and results by value in two cases: 

• to place copies of shared information in the user's 
works ta t ion for viewing and local manipula t ion; 

• to move new objects to a place where they will be 
available for sharing and if necessary to be made 
persistent. 

We have designed a scheme which exploits the 
Smalltalk memory manager ' s ability to detect the 
referents of an object. When a result of a remote 
invocation has been obtained by the remote process, the 
latter can discover whether that result is referenced by 
other par t s of its system. If the result is not so referenced, 
because, for example, it has been newly created, it can be 
migrated to the invoking process, because as far as the 
rest of its system is concerned, the object does not exist. 
Arguments may be migrated in similar circumstances. 

The two approaches to the treatment of parameters 
and results: 

• copying the immutable objects freely between 
machines 

• migrating objects that are unreferenced by the 
originating system 

significantly reduce the number of proxies that are 
created and hence significantly reduce the number of 
remote-method invocations our system performs. 

As an example, the list of courses shown in the user 
interface in Fig. 3 is obtained by the user interface 
process as the result of a message to the database 
process. The latter constructs the list as a sorted collection 
from the keys in a dictionary of courses in the shared 
database objects. This list has been newly created by 
sorting the keys and would be migrated. The strings in 
the list, being immutable, would be copied. 

4. AN A P P L I C A T I O N A R C H I T E C T U R E 

The facility for remote invocation allows us to construct 
applications in which objects may be placed at any 
computer in the network. We illustrate the requirements 
for an application architecture by reference to the 
departmental database example. We mentioned in the 
previous section that when we distributed the objects in 
our departmental database we considered two kinds of 
objects - (i) the shared objects that represent the in­
formation in the database, for example objects repre­
senting lecturers, students and courses; (ii) user interface 
objects. 

The shared objects must be available before anyone 
can access the database. Ideally they would be in a 
process (e.g. a server process) that is always available. In 
applications that require long-lived stable information, a 
server that provides persistent storage will be chosen. 
Smalltalk provides a degree of persistency that may be 
sufficient for some requirements. We discuss our design 
for persistent objects in Section 7. 

The shared objects form a connected set with roots 
from which all other objects may be accessed directly or 
indirectly. Before a set of shared objects can be accessed 
by remote objects, the root objects must be given global 
identifiers that will be made known to any objects that 
access them. 

Students 

Courses 

l l l l l l Brown 

fflm Leech 

Discrete Structures 

Programming 

Programming 2 

Software engineering 

Lecturer 

Timetable 

D e s c r i p t i o n 

Progamming 2 
Semester 2 
1 Unit 
A course in data st 

Course 
description is \ 
typed here 

Figure 3. Part of the user interface of the departmental database. 
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A set of user interface objects participates in each
user's interaction with the database. During this in-
teraction, each user will at any instant be interacting with
only a chosen subset of the objects in the database. For
example, the user might be a lecturer who decides to
supply a new description for a course in the database. In
order to carry out this task, the user must select the
course, indicate that they want to update its description
and then type the description; finally they must add the
description to the course entry in the database. During
this task the user will have been presented with a view of
a list of courses from which to select one. They will then
select the description attribute of the course and will edit
the description in a pane (see Fig. 3).

Here we have examples of user interface objects - the
list of courses is an object created by accessing the names
from the database and is held as a local replica. The
original version of the course description is obtained
from the database and held as a local replica while the
user edits it. The list of the attributes of courses (lecturer,
timetable, description) is an immutable object belonging
to the user interface.

It is quite common to implement interactive user
interfaces according to an architecture with three types
of component: (i) a model - a collection of objects that
are to be viewed and or changed; (ii) one or more views
- objects that provide visual representations of the
model; (iii) controllers - objects that deal with keyboard
and mouse interactions. We are currently working within
the limitations of this architecture, as discussed for
example by Coutaz.3 We return to these limitations at the
end of this section.

As far as the distributed nature of the application is
concerned, we assume that the user interface objects
consist of models, together with associated views and
controllers. The model can in general consist of any
objects, but in our distributed architecture it will contain
objects from two separate sources - (i) objects that are
always in the user interface; (ii) local replicas of shared
objects. The set of local replicas changes each time the
user alters his or her point of interest. For example, if the
user editing the course description decides to edit another
course description, the replica of the first will be removed
from the set. The set holds sufficient replicas of shared
objects to represent a local model of the user's current
point of interest, but no more. When the user changes a
replica, the change is reported immediately to the
corresponding remote object.

To summarise, the application architecture that we
propose consists of two kinds of sets of objects as
follows.

(i) The shared objects: these form a rooted connected
set, in which the roots have global identifiers. The
set of objects may be located in one or more
computers, but without replication. All that need
be done to make the set of shared objects available
for sharing is to publicise the global identifiers of
the roots.

(ii) The user interface objects-with one set in each
active user's process. This includes replicas of
shared objects comprising a model of that user's
current point of interest.

The global identifier of the root of the shared objects
must be known to the user interface objects, which

communicate with it via a proxy. The remoteness of the
shared objects from the user-interface objects is entirely
transparent in all subsequent communication.

4.1 Room-booking program

Our second example is a room-booking program. It
provides a user interface to a database of buildings,
rooms and weekly booking sheets. The shared objects
comprise a rooted tree of objects with the buildings at the
top. Under each building there is a list of rooms and
under each room is a list of weekly bookings. These
objects could be arranged with different buildings in
different servers, in which case each building would have
an independent root with its own well-known global
identifier.

The model in the user interface will include replicas of
the names of all the buildings of interest, then for a
selected building the names of all the rooms in that
building. When the user selects a room and a week, a
replica of the booking sheet for that week will be added
to the model. When a particular time is selected a replica
of the object containing the details of the booking will be
added.

4.2 Chess program

The chess program was originally implemented as a user
interface to the UNIX chess program. The communication
between the two programs provided for turn-taking and
reporting moves. There are two approaches to making
this program available for use by a pair of competing
players on separate workstations - the remote player and
the shared board.

In the first approach, there is a single shared object
representing a remote player and two user interface
processes - one for each player. The shared object knows
whose turn it is and the most recent move. A user
interface process can send messages to the shared object:
(i) at the end of a turn - to report a move made by their
user; (ii) at the beginning of a tu rn - to ask about the
move made by the opponent. On receipt of the first
message the shared object informs the appropriate user
interface about its user's turn. The two user interfaces
contain the positions of the pieces on the board and the
ability to check moves, as well as controllers and views,
including objects containing bit maps representing the
pieces.

The chess application can also be structured by sharing
the board. In this model the shared objects include the
board, the positions of each piece and the rules for legal
moves, as well as knowing the player whose turn it is and
the most recent move. The shared objects might also
contain the bit maps representing the pieces - to be
copied to the user interfaces when the game commences.
The user interfaces are concerned with displaying the
current state of the board and with allowing the local
user to make a move when it is their turn.

4.3 Shared spreadsheet

The shared spreadsheet program is illustrated in Fig. 4.
The shared objects consist of a two-dimensional array of
cells, each of which has a name, a value and an optimal
formula. The formula defines an expression that may
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Figure 4. User of shared spreadsheet provides new value in text box. 

involve the values in any of the other cells and is used to 
calculate the value of the cell. Thus the value of any cell 
with a formula depends on the values of the cells 
ment ioned in its formula. 

The user interface objects include a model containing 
replicas of the values of all the cells that are currently 
visible and of the currently selected formula (if any). The 
value or formula of the currently selected cell may be 
edited in the test box, and when the user is ready the new 
value will be assigned to the corresponding cell in the 
shared objects. 

4.4 Keeping the views up to date 

The model-view-controller architecture makes use of a 
dependency mechanism that allows any object to be 
m a d e a dependan t of another object. Any object can 
broadcas t messages to all its dependants . In particular, 
sending a changed message to an object causes all its 
dependan t s to be sent an update message. The changed 
and upda te messages can be parameterised in order to 
localise the effects by saying more precisely what has 
changed. 

In a user interface it is assumed that there can be 
several different views of a model , and all the views are 
m a d e dependants of the model . Each time something 
changes in the model a notification of the change is 
b roadcas t to all the views. The views then send messages 
to the model to get the information they require to keep 
their display up to date . 

In our distributed architecture, the model in the user 
interface objects contains replicas of some of the shared 
objects. Therefore if the user changes their point of 
a t tent ion, the set of replicas in the model must be 
refreshed from the shared objects. Similarly if the user 
alters something, the replica should be replaced by the 
new value proposed by the user and the new value passed 
on to the shared objects. 

As an example of how this works when the model in a 
user interface contains replicas of the shared objects, we 
return to the depar tmenta l da tabase shown in Fig. 3. 
Suppose now that the user selects Timetable instead of 
Description in the middle pane . The model component of 
the user-interface objects requests a replica of the 
information abou t the t imetable from the shared objects 
and then notifies its views that this aspect has changed. 
The effect is tha t the view object displayed in the right 

pane requires updating and it gets the information from 
its local model. 

As a second example, we return to the spreadsheet and 
consider what happens when a user changes the value of 
a cell. The model component of the user-interface objects 
will inform the shared objects about the new value of the 
cell involved. The change in this cell will cause further 
changes in the values of any cells whose formulas depend 
on its value. The user interface will need to refresh its set 
of replicas of the cell values from the shared objects. 

The spreadsheet example illustrates a limitation of the 
model-view-controller architecture. The problem is that 
the shared objects have many inter-dependencies due to 
the way formulas are used to calculate the values of cells. 
The model in the user interface has no knowledge of 
these dependencies and therefore resorts to requesting 
new replicas of the values of all the cells currently of 
interest to the user. In most cases, only a few of the cell 
values will have changed. A similar problem will occur in 
any application in which there are non-hierarchic 
dependencies between the data objects. 

5. S H A R E D V I E W S 

In this section we discuss the issue of allowing several 
people to view the same information at the same time 
and to observe one another 's actions on the information. 

Suppose that several users are working together on a 
shared application and that one of the users makes a 
change affecting one of the objects. We described in the 
previous section the mechanism by which the user that 
makes a change may be shown a view of the effects of the 
change. We now discuss the issue of showing the effects 
to the other users involved. 

In the normal course of events, the other users will not 
be aware of any change until they do something to 
change the set of replicas in their user-interface objects. 
For example, if a user changes their focus of attention, 
the set of replicas is altered and the affected views are 
redisplayed. 

To illustrate the point about showing changes to other 
users, we return to our example where a user has just 
altered a value in a spreadsheet and suppose that this 
user belongs to a group of people who have agreed to 
work together on the spreadsheet. The other users in the 
group will not see the change unless they have done 
something such as scrolling the spreadsheet view that 
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causes the set of replicas in their user-interface model to
be replenished.

We now describe our solution to the problem of
passing the changes on to all the users currently involved
in an application. This mechanism has been tried out
with our departmental database application.

We have made additional use of the object-dependency
mechanism to enable the broadcast of changes to all
users who currently observe a set of shared objects. This
is achieved by providing a shared model as a component
of the shared objects. Initially the shared model has no
dependants, but each time a user interface first accesses
a set of shared objects it makes its local model a
dependant of the shared model (by the normal procedure
for becoming a dependant, but using remote invocation).
Whenever the user changes something, their model sends
a changed message to the shared model. The latter
automatically broadcasts update messages to its depend-
ants - the models in each of the currently active user
interfaces. These 'broadcast' messages are sent trans-
parently one by one to their remote receivers.

The receivers of the update messages from the shared
model are the models of the currently active users. Each
of these models requests new replicas of the shared
objects and then informs its local views about the
change. The latter behave in their normal way by
requesting the latest information from the model.

When users are sharing a view they will all see one
another's changes through this mechanism. In situations
where users have not chosen to share a view, it is unlikely
that two users will have identical views. In the de-
partmental database example, all users see the lists of the
names of lecturers, students and courses, but the
likelihood of two users viewing the same course
description at the same time is quite low.

To take this factor into account, the model in the user
interface is selective about its subsequent actions when it
receives an update message. The local model contains
only the objects in the user's current focus of interest -
if the update message refers to other objects it is ignored.

Hagsund's multi-user drawing editor that we men-
tioned earlier maintains the same view at all sites by
means of the ordered multicast protocol provided by the
Isis system.2 Isis provides virtual synchrony - when order
is relevant, events are observed in the order they were
initiated. This semantics is not appropriate for the sort of
applications we plan to support - in our case, events are
observed if and when they are retrieved by the user's
local user interface, because they are within the current
user's area of interest.

A subsidiary requirement arises from the possibility of
users observing the effects of other users' actions. This is
that when users observe such effects they may want to
know who produced them. Users of databases are
essentially anonymous, but users of shared applications
need not be. When other users are anonymous, they tend
to be regarded as a form of interference (perhaps because
they cause data to be locked), but when they can be
recognized, co-operation is more likely to be possible.

6. PRIVACY AND PROTECTION-
CAPABILITIES
In this section we discuss how we provide privacy and
protection of objects. Privacy allows users to restrict who

is allowed to view the information and protection
prevents unauthorised alteration of information.

We provide both protection and privacy by means of
capabilities. A capability is in effect a message filter; it
forwards the permitted messages to the object it protects
and rejects all other messages. The capability mechanism
is supplied by a class that provides operations for
creating capabilities and for restricting them by removing
the rights to use particular operations. When a user
requests access to a shared object that is protected by a
capability, a new capability with the appropriate message
filter is constructed in the same process as the shared
object and its global identifier is returned. The capability
mechanism is described in detail in Ref. 5.

As an example we discuss the use of capabilities in the
departmental database. The shared objects are protected
by four alternative capabilities allowing gradually more
restrictive access via the root. For example, the first
allows full access to all operations and the last allows
limited viewing of some of the information. These
capabilities are intended for use by administrators,
lecturers, students and others respectively. We have
found it necessary to supply each user with an additional
personal capability allowing access to their own records.

This particular application contains lists of admin-
istrators, lecturers and students and can identify the user
category. Most applications would require an additional
naming service for this purpose.

The capability mechanism can be used only if the
process containing the shared objects is absolutely certain
of the identity of the user requesting capabilities. This
form of authentication can be provided by means of an
authentication system such as Kerberos,17 which provides
the user with a ticket to be used when requesting
capabilities from a particular application process. Once
the capabilities have been obtained the ticket is no longer
needed.

The use of access control affects the operations
available to a particular user. If the user interface
appears to provide all operations irrespective of the
rights of a particular user, the latter may attempt
operations that are not permitted. The result of attempt-
ing an operation that is not permitted is that it is filtered
out by the capability and the user's effort has been
wasted.

A similar remark can be made about objects protected
by some form of concurrency control. The permitted
operations for a particular user are restricted during the
time that the object is protected because another user is
currently updating it.

To be effective in the presence of access control, a user
interface must be configured according to the rights
possessed by a particular user. And in the presence of
concurrency control it must change its configuration
according to the current protection of the object and who
is currently allowed to update it.

7. LONG-TERM STORAGE-PERSISTENT
OBJECTS
In this section we discuss how we provide for long-term
storage of shared objects. We expect that large numbers
of objects will be generated and that users will expect to
be able to have future access to such objects from time to
time. This suggests that some objects should be made
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persistent. A persistent object is one that is saved in its
most recent consistent state and can be restored whenever
it is needed. When they are no longer needed, persistent
objects are garbage-collected.

Smalltalk itself provides a limited form of persistence
in that a snapshot of the current state of all objects in the
Smalltalk system may be saved on user request. The
system can be restored from such a snapshot.

The Smalltalk mechanism does not provide controlled
persistency for selected objects whenever they are in a
consistent state. We have designed and implemented a
prototype of an environment that we call a persistent
object store. The idea was suggested originally by Low12

and is described in detail in Ref. 6. Our persistent object
store has persistent roots, and objects are made persistent
by attaching them directly or indirectly to one of the
persistent roots. In the persistent environment all objects
respond to a checkpoint operation that causes their
current state to be recorded in a log file. Persistent
objects are retrieved from the log on demand whenever
they need to respond to invocations.

The persistent object environment is essentially an
extension of Smalltalk that allows selected objects to be
persistent. Such an environment is suitable for the shared
objects in our example applications.

8. CONCLUDING REMARKS

Our current prototype distributed Smalltalk includes the
facility we have described for remote method invocation
by means of proxies and global object identifiers.
Redesign of the language is making improvements to the
efficiency of our system by reducing the number of
proxies required to communicate between two processes.
Both capabilities and the shared model are available by
means of classes that can be used to enhance the
functionality of the shared objects. To provide a
capability layer in a particular application, the method
for generating capabilities must be extended (for example
by subclassing) to generate capabilities with the ap-
propriate message filters.

Each of the example applications was implemented as
a single Smalltalk program and then divided into the two
sets of objects - the shared objects and the user-interface
objects. Once the objects were divided into the two sets,
all we had to do was to get a global object identifier for
the root of the shared objects and to make it known to
the user-interface objects. This procedure has proved to

be effective and seems a productive way of making
distributed applications. Its use is, however, limited to
self-contained applications.

Some of our current work is concerned with the design
of an extension to our remote invocation scheme to make
use of interface definitions, with a view to allowing
servers to be developed separately or implemented in
another language (C++). Interface definitions will be used
to generate tailored proxies for use in Smalltalk client
environments.

We have not yet addressed the issue of concurrency
control, but we expect to be able to make use of a shared
token to protect any set of shared objects that is being
accessed concurrently by several users.

An aspect of the work that seems particularly
interesting at present is the development of the shared
model idea. We have designed the basic mechanism in
which the shared model records its dependent local
models and is able to inform the latter when shared
objects have been updated. The granularity of this
mechanism can be controlled to the extent that the
argument of the messages about changes can indicate
what aspect of the shared model has changed. In some
applications the network of shared objects may become
quite large and we will require a more subtle means of
control of the information about changes.

Lastly, we still have to explore the design of a user
interface in the presence of capabilities and concurrency
control. As different users are given different capabilities,
they should be given user-interface controllers to
correspond to their capabilities. For example, their
menus should contain only the operations they are
permitted to perform. In the case of concurrency control,
the operations available to a user vary from time to time.
For example, the rule might be that only one user at a
time can update a particular value. The user that can
make the changes should have a different controller than
the ones who are forbidden.
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Book Review

VALERIE ILLINGWORTH (Editor), Dictionary of
Computing (third edition), Oxford University
Press. £6.99. ISBN 0-19-286131-X.

Not even a reviewer could be expected to read
a dictionary straight through, so a review has
to be derived from browsing. In my browsing
I concentrated on two areas: (i) terms that are
commonly misused; (ii) terms that I feel unsure
of and would like to understand better. While
looking up such items my eye, inevitably, kept
finding other entries of interest, so I would
look at them on the way (and sometimes
forget what I was originally searching for).
The result of my browsing is remarkably
favourable and I congratulate the general
editor, two consultant editors, 45 contributors
and the publishers on a splendid product at a
reasonable price.

So far I have found only two errors that a
proof-reader should have spotted - a remark-
able degree of accuracy. These are (i) a missing
decimal point in the example of BNF pro-
duction rules; (ii) 11 words missing from the
definition of ' F distribution'.

Many definitions are timeless, but some
entries are necessarily out of date when such a
publication appears. I doubt, for instance,
whether it is still reasonable to say that ICL is
'a wholly British company'.

A few other points are worth mentioning in
hoping for an even better next edition.
(Incidentally, why do the publishers put the
ridiculous words 'New edition' on the front?
Of course it is new when it is new, and of
course it will soon cease to be so.) The
definitions of some of the searching techniques

would not have told me to use a binary search
when wanting to know where a function
crosses zero, but a golden section search (or a
Fibonacci search) when looking for a maxi-
mum or minimum. The impression is given
that these are merely alternatives. The defi-
nition of BNF correctly uses angle-brackets,
not to be confused with less-than and greater-
than signs, in its example, but unfortunately
less-than and greater-than are used where
BNF is employed in some other definitions. In
spite of being a British publication, there are
some Americanisms, the oddest being where
'colored' is used in the definition of'coloured
book', and I strongly dislike 'named for'
instead of 'named after'. The word 'con-
temporary' is misused in the entry for 'IBM
system 360', where 'contemporary IBM main-
frames ' is presumably meant to mean' present-
day' rather than contemporary with the 360.

I was surprised at finding no entry for
'dangling else', and even 'else' on its own is
treated as arising only in connection with
decision tables. To find a description of the
problem you have to look under 'ambiguous
grammar'.

I was disappointed in the definition of K.
Perhaps I am out of date, but I was certainly
taught 30 years ago that Khad been introduced
to computing as a quick simple way of
indicating 1024. Except mnemonically it had
nothing to do with k meaning kilo- which, of
course, remained as 1000. Unfortunately K
has been stolen from us, and misused to mean
1000, by administrators and accountants, but
I regret finding a dictionary of computing that
merely says

k (or K) Symbols for kilo-
and then defines kilo- as indicating 1024 when
the binary system is used. Their advice to
avoid the capital K is not followed elsewhere
by themselves.

I have enjoyed comparing this dictionary
with the glossary at the back of Lord Bowden's
classic Faster than Thought (1953). That
glossary contained only 55 terms, compared
with over 4000 in this dictionary, but 40 % of
them have survived as basically the same term
with the same meaning. One term, micro-
programming, appears in both lists but with
disjoint meanings. I am sorry that 'Hartree
constant' has gone ('The time which is
expected to elapse before a particular elec-
tronic computing machine is finished and
working'); perhaps it does not now apply so
strongly to hardware, but it is surely still a
relevant concept in terms of when computers
will all understand natural language and
accept voice input. This has been 'about 5
years' as long as I can remember. One rather
sad note comes from Lord Bowden's borrow-
ing from Dr Johnson's definition of 'lexi-
cographer' in defining 'programmer' as 'a
harmless drudge' - the present dictionary has
to have an entry for 'hacker' that was absent
then.

My complaints are few indeed. I strongly
recommend this excellent dictionary. There
are, after all, not many dictionaries where one
could find such intriguing entries as:

mother Another name for parent, rarely
used.
worm See virus.

I. D. HILL
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