
Unity Doesn't Imply Unification or Overcoming Heterogeneity
Problems in Distributed Software Engineering Environments

M. S. VERRALL
Sema Group pic, Trafalgar House, Richfield Avenue, Reading, Berkshire RG1 8QA, UK

There is much work going on on the separateness of application software in distributed information systems; however, it
commonly assumes that the applications will be programmed to the system, rather than the system having to fit itself to
the applications. Reverse that assumption and the heterogeneity of the application software becomes a significant
problem. This article describes the thesis, mechanisms, and languages for providing solutions to the problem of
heterogeneity in distributed information systems for a particular application domain - software engineering.

Received May 1991, revised July 1991

1. INTRODUCTION
Distribution of Information Systems arises from con-
siderations of autonomy, geography, performance and
robustness. Autonomy exists because the application
software within an Information System may have been
created by suppliers with independent objectives but its
parts must cooperate to achieve the objective of the
Information System. The issues associated with auton-
omy may be divided into two groups: those associated
with heterogeneity, and those associated with separation.

This article is mostly about heterogeneity; it begins
with an exposition of the subject of heterogeneity and
the statement of the a posteriori thesis underlying the
Software Bus® work. It then gives a basic description of
the Software Bus and elaborates the thesis into three
hypotheses. Lastly, it uses these hypotheses to explore a
number of interfaces of concern to the Software Bus
where autonomy can give rise to problems, and describes
the languages and mechanisms in place there.

There is a small glossary of terms at the end.

2. HETEROGENEITY

Heterogeneity of two would-be cooperating pieces of
application software may be due to the fact that they
have been implemented differently - primarily but not
exclusively due to differences in programming language,
compiler, and cpu - or that they have differing conceptual
models. The current focus of work on Distributed
Information Systems, DISs, is the former, but the latter
problem lies in wait.

2.1 Heterogeneity of implementation

The usual solution proposed to coping with hetero-
geneity, i.e. to the problem of getting the differing parts
to interact successfully, is 'canonical': a line is drawn
and laws are made. This line is the interface to a
homogeneous, non-distributed virtual machine. Below
the line lie the real, disjoint platforms - whose hetero-
geneity can be characterised in a simple manner by
describing what they provide for execution, communi-
cation, and persistence of software and information.
Above the line lie the applications in blissful ignorance.
The laws that are made are these: (i) the applications

s Software Bus is a registered trademark of ESF.

must be programmed to the line; (ii) the platforms must
be modified (seemingly by extension) to reach up to the
line.

The difficulty with this approach is that it simply does
not take into account the fact that there exist both
platform and application software whose authors have
not the slightest interest in the particular canonical line
being espoused. This may be (i) because the software
existed before the law, or (ii) the author can see no
commercial advantage in programming to the line, or
(iii) the author has technical reasons for wishing to
program to a different line. Thus the unfortunate would-
be builder of a distributed system from an otherwise
suitable set of applications and platforms is confronted
with the following unpalatable menu of choices: rebuild
the applications, write his own, give up - it's all too
expensive!

There are many different manifestations of the problem
of heterogeneity of implementation and many proposals
for solving it of a canonical nature. Furthermore, it
seems that when first confronted by this problem, the
natural tendency of software engineers is to look to a
canonical solution. It would be an interesting problem
for psychological investigation as to why this solution is
so universally proposed. (Is it that inside every software
engineer there is an autocrat struggling to get out?)

2.2 Heterogeneity of concepts

Even if one did adopt the canonical solution to the
problem of overcoming differences in implementation
amongst application software which wished to cooperate,
this would not solve the difficulties caused by a pair of
applications which 'don't quite' match.

Categories of near misses include these:
(1) Engineering units. This is when the same in-

formation is being measured in different units. For
example, personnel management software may wish to
allocate people to project control software and be told of
people's utilisation. However, people's time may be
measured in days by the personnel software, but in hours
by the project software.

(2) Information structure. This is when the same item
of information is accessed or referred to differently; for
example, a person may be identified by national insurance
number by the personnel software, but by project
name+team number + surname by the project software.

522 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

UNITY DOESN'T IMPLY UNIFICATION

(3) Semantic bridging. This is when a human being
can equate two different ideas. An example of a trite but
wide span would be to link the reporting function of the
project control software - which talks in terms of people
and weeks - with the matrix loading function of a chart
drawing utility - which talks in terms of rows and
columns.

2.3 Coping with heterogeneity

One can arrive at the solution to the system builder's
problem by looking at the principal actors in his drama:
himself, the application software supplier(s), and the
supplier of the integration technology. The supporting
cast, including the platform supplier, can be ignored. By
recognising that we cannot have all three actors giving
orders, and that what the system builder wants from the
third actor is the ability to integrate, we arrive at the
correct deduction that the integration technology sup-
plier is the one who gets given the orders. After all, 'when
you have eliminated the impossible, whatever remains,
however improbable, must be the truth'.1 That is, the
integration technology does not tell the application
software suppliers what they must program to, but the
application software suppliers tell the integration tech-
nology what they have actually programmed to and the
system builder tells the integration technology what the
meaning of cooperation is between two parts of an
application.

Hence we arrive at the thesis that integration must be
'aposteriori', that is it must take place by action after the
fact. The feasibility of this thesis is demonstrated by the
work taking place on the Software Bus, as described in
the following sections.

3. THE SOFTWARE BUS
The Eureka Software Factory project, ESF,2 is a large
scale project concerned with creating a class of Software
Engineering Environments which support the indus-
trialised production of software. An ESF Software
Engineering Environment is a DIS, and is distinguished
from traditional data-centric Software Engineering En-
vironments3'4 by being communications-oriented; it is
called a Factory Support Environment, FSE. The
communication amongst the application software in the
FSE-the software engineering tools and their con-
stituent parts - takes place over a communications
channel called the Software Bus. The objective of the
Software Bus is the integration of these tools and parts
with one another. This objective will be more fully
explained by expanding upon those requirements5 upon
the Software Bus pertaining to heterogeneity, showing
the position of the Software Bus within the structure of
an FSE, and characterising the Software Bus within the
DIS world.

3.1 Heterogeneity requirements

From considerations of building and operating an FSE,
it can be seen that the Software Bus must

• hide distribution and heterogeneity aspects;
• allow application software to be added without being

accounted for a priori to an existing DIS;

• allow binding of application software at different
times;

• allow exchange of data with as little structural and
conceptual loss as possible;

• provide the necessary mechanisms for integration of
application software.
From considerations of the quality of support that

application software may expect, it can be seen that
clients and servers should each

• be able to interact with the other in its own terms;
• not have to know where the other is or that it changes

or moves;
• not have to know of the use of multi-casting;
• be able to assume multiple concurrency of the other.

Of course, particular application software need not
have been written to comply with such high standards. It
is the job of that part of the Software Bus concerned with
the installation of applications to upgrade the software
being installed, by fitting it with an adaptor, so that it
provides - or at least presents the appearance of pro-
viding - the requisite quality of support.

As application software may be implemented to
interact in many combinations of ways - e.g. procedure
call, stream i/o, synchronously, polled or interrupted -

• the Software Bus must cope with a wide repertoire of
interaction implementations;

• the arguments of the interactions must allow a wide
repertoire of data types.

3.2 Structural view

ESF has chosen to build on the cornerstones of service-
oriented building blocks, called Components,* and a
communication-oriented architecture.6 The structural
view of an FSE is that of a set of mutually interacting
Components, the application software that does the
software engineering, joined together by a Software Bus
(Fig. 1).

The notion of Component stands at a high level of
generalisation. It generalises over code (i) in execution -
whether it is a heavyweight or lightweight process - and
whether it is taking the role of client, server or both - and
its associated persistent data; (ii) as installed and able to
execute; (iii) as written, but not necessarily with an
executable interface. Components offer each other
Services and request the performance of an element of a
Service by message passing, not by memory sharing.

This Service Element Request notion also stands at a
high level of generalisation. It generalises over all sorts of
primitives, and sets thereof, for exchange of control (and
thereby, data) embedded in programming languages and
operating systems. That is, it generalises over

• data message - the straightforward sending and re-
ceiving of data;

• unsynchronised process execution - start, suspend,
resume and stop;

• asynchronous process execution - polled or inter-
rupted ;

* Throughout this article the term 'Component' is used as ESF
jargon for a piece of application software which is a service-oriented
building block and which can be attached to the Software Bus.

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 523

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

M. S. VERRALL

FSE- FSE

- c 0 m

S o f

- c 0 m

t

P

P

0

w

0

n

a

n

r

e rl

e B

e n

t

u

t

s

s

-

s

-

FSE- -FSE
Figure 1. Structural view of an FSE.

C o m m u n i c a t i o n C h a n n e l

Figure 2. Parts of an FSE.

• synchronous process execution - that is, remote pro-
cedure call;

• multiplicity - broadcast, multi-cast and uni-cast.

A Service Element Request may freely overlap

• within itself- there may be a concurrent contraflow of
input and output arguments;

• at the client - one Service Element Request may be
placed while still placing another (even within one
thread);

• at the server - one Service Element Request may be
accepted while still accepting another (even within one
thread);

• on the Software Bus - with other Service Element
Requests.

524 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

UNITY DOESN'T IMPLY UNIFICATION

Service Element Request argument types generalise
over the data-types in many programming languages and
then abstract further to a repertoire of primitives and
constructors useful for software engineers.

The architecture of the Software Bus is itself recursive
upon the ESF architecture, in that it is made of a set of
Components joined together by a Communication
Channel (Fig. 2); the complete aggregation of these
Components and the Communication Channel is called
the Frame.*

3.3 Characterising the Software Bus

There are a number of ways in which the characteristics
of the Software Bus can be understood. It can be
characterised in terms of multi-machine operating sys-
tems, Open System Interconnection, Open Distributed
Processing, and Software Engineering Environment
standardisation and development.

3.3.1 Multi-machine operating systems

One may discriminate between the terms 'networking'
and ' distributed processing' by saying that networking is
interconnection allowing remote access to independent
information and processing resources, and that dis-
tributed processing combines resources into an integrated
structure; thus the Software Bus is concerned with
distributed processing. One may distinguish a network
operating system from a distributed operating system by
virtue of the fact that the former has a very poor level of
distribution transparency; as each Component will sit in
a virtual machine 'of its own making', it will see exactly
as much distributedness as it expects to see (often none);
thus the Software Bus can be classified as a distributed
operating system, rather than as a network operating
system.

If one says that a distributed operating system is an
extrapolation of a single-machine operating system, in
that it is concerned with the unification of a multiplicity
of cpus and devices, either as a distributed kernel
concerned with the management of processes and storage
(e.g. Mach)7 or as a conjoiner of single-machine operating
systems, then the Software Bus cannot be classified as a
distributed operating system. Indeed, it refers elsewhere
for intra-system optimisation.

If, however, one regards an operating system as a
manager of the resources of a particular (physical or
virtual) machine, then the Software Bus - by virtue of
the fact that it manages the virtual machine whose
resources are Components - can be classified as a
distributed operating system. The Software Bus is not an
operating system utility such as a distributed file store.8

The Software Bus is also concerned with security and
reliability: to overcome lack of faith in the truthfulness
or robustness of platform (node or connection), client or
server. These issues revolve around the interchanges
between Components (Service Element Requests), not
the items of information managed by Components.

* The difference between the Software Bus and the Frame is the part
of the Software Bus which support Components or the FSE at earlier
stages of their life cycles, before the FSE is up and running.

3.3.2 Open Systems Interconnection

The part of the Software Bus responsible for the transport
of Service Element Requests is the Communication
Channel. As a Service Element Request is an abstract
thing the Communication Channel could be described as
an 'abstract transport layer' in an uneasy attempt to
align it with the Open Systems Interconnection reference
model.9 As the Communication Channel can be made of
distinct and different physical communication sections
joined together, and thereby present the Service Element
Request with different representations at different lo-
cations, it must in an actual sense cover the Presentation,
Session, and Application layers of the Open Systems
Interconnection reference model.

3.3.3 Open Distributed Processing

The five Advanced Networked Systems Architecture10

views of a DIS and the concerns of the Software Bus
therein are as follows.

(1) The enterprise view of a DIS explains its place
within an organisation. An FSE lies within an or-
ganisation for producing software called a Software
Factory. The Factory Process Engine1112 is that part of
an FSE which enacts a model of the software engineering
process linking up the people, activities, software
engineering tools and items of information. It is
concerned with the enterprise projection; however, the
Software Bus is aware of concepts from this view such as
person, role, and society for the purpose of identification.

(2) The information view of a DIS is concerned with
information and its processing. Within this projection
the concerns of the Software Bus are the location and
access of the software managing the item of information
which is the object of the Service Element Request, it is
not itself concerned with the management of items of
information.

(3) The computational view of a DIS shows the
organisation of the DIS as a set of linked application
programs. The concerns of this view - data rep-
resentations, programming languages, operating system
functions, modularity, parallelism, distribution trans-
parency - are the reason for existence of the Software
Bus.

(4) The engineering view of a DIS describes the
processing, memory and communications functions that
support the application programs of the computational
projection.

(5) The technology view of a DIS describes the
physical hardware and software parts that make up a
DIS.

The important fact here is that the Software Bus exists
within and extends into other people's engineering and
technology views. The Software Bus is not built on top of
other people's systems, but projected into their systems'
universes of discourse - which is a different way of
thinking about integrating a DIS.

3.3.4 Software Engineering Environment standardisation
and development

The ECMA13 reference model for Software Engineering
Environments divides the facilities that a Software
Engineering Environment framework should provide for

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 525

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

M. S. VERRALL

the software engineering tools into a number of services*
including data repository, data integration, task man-
agement, and messages. The message service should
provide a standard communication service which can be
used by a tool or service to communicate with another
tool or service. The Software Bus can be placed here in
the ECMA reference model. The key architectural
features currently being worked on in Software En-
gineering Environments include process modelling, ob-
ject frameworks, and message passing; these all con-
tribute to the integration of a Software Engineering
Environment.14 Sometimes messages are passed directly
from tool to tool, but more prevalent is the use of
dispatchers and routers to pass the messages; the
Software Bus is an example of message passing by
dispatcher and router.

The Software Bus is not an object management system:
it neither unifies Components into one global object
management system nor supplies object management
systems as platforms for Components nor concerns itself
with the objects inside Components.

The nature of the interacting pieces of software that
the Software Bus is concerned with is large scale.
Typically they are computing engines, object manage-
ment systems, user interaction management systems, not
the small-scale items of information — though, of course,
the Software Bus is aware of the existence of these items.
The things that the Software Bus sets out to locate,
associate, bind, compose and configuration-manage are
Components, not items.

4. HYPOTHESES
To see how the thesis that integration must be a
posteriori manifests itself at the interfaces of the ESF
architecture and in the mechanism of the Software Bus,
it is first necessary to elaborate it into a number of
hypotheses.

In order to integrate after the fact it is necessary to be
able to say what the fact is. That is, we must have
languages to describe what actually holds in all zones of
integration, rather than rules which prescribe what ought
to hold. Thus we have our first hypothesis:

Be descriptive, not prescriptive.

As we do not have a uniform situation with respect to
conformance to a set of rules, we must decompose what
we talk about in the actual situation into different realms
- such that what holds in each realm can be described by
a uniform language for that realm. By considering the
structural view we see that we can properly and naturally
separate the realms of Component and Service. A Service
is not just an interface to a particular Component, but
has an independent conceptual existence. Indeed, it is
possible to have dual perspectives on a DIS, either as a
set of Components joined by their requiring and offering
of Services or as a set of Services joined by their
realisation by Components. Thus we have our second
hypothesis:

Separate the concepts of Component and Service.

Reviewing the discussion of the aspects of hetero-

* The ECMA reference model's usage of the word 'service' differs
from that of the Software Bus.

geneity earlier we can see that a Service can be partitioned
into the realms of concept and implementation. In the
conceptual realm lie the independently existing Services
abstracting over all and any implementations thereof; in
the implementation realm lie the representations of the
Services which link to the realm of the Components.
Thus we have our third hypothesis:

Distinguish between Service abstractions and
representations.

Compared with existing Interface Definition No-
tations,1516 this makes explicit the separation of ab-
straction and representation.

5. LANGUAGES AND MECHANISMS

The linkage of the FSE, both in a conceptual and
operational sense, to the real world in which it is
embedded - the Software Factory - is performed by the
Factory Process Engine. Within the FSE the Factory
Process Engine seeks to activate software tools; it is to
this activation that the Software Bus must link. To see
what the mechanisms are that the Software Bus puts in
place to enable Components to be created, joined together
and linked to the Factory Process Engine, it is necessary
to develop the following vocabulary.

The term Component must be specialised to:
Body. The code and persistent data within a Component

Executant which actually does the work of the
application.

Composite. A Component whose internal structure
conforms to the ESF paradigms, i.e. it is made up of
Components.

Executant. An executing piece of software, including its
persistent data, which is supplying and using Services
within the FSE.

Installant. A piece of software within the FSE capable of
giving birth to a Component Executant.

Skeleton. That part of the Component Body which
corresponds to the interface descriptions of the Services
provided and required by this Component.

Tool. A Composite Component identified with a software
engineering tool of the Factory Process Engine.

There are three types of Description associated with
Service:

Abstraction Description. A description of a Service
independent of the software form of its provision or
request.

Interaction Description. A description of how a set of
Services described by different near miss (§2.2) Ab-
straction Descriptions can interact.

Representation Description. A description of how a
Service described by an Abstraction Description is
provided or required in software.

There are two parts of the Software Bus of particular
interest:

Abstraction Converter. A piece of software which converts
Service Element Requests from those of one Ab-
straction Description to those of another, according to
an Interaction Description.

Representation Converter. A piece of software which
converts Service Element Requests, from the rep-

526 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

UNITY DOESN'T IMPLY UNIFICATION

resentation given by one Representation Description
to that given by another Representation Description.

These are explained and exemplified in the following
sections:

§5.1 Abstraction Description;
§5.2 Representation Description, and its relationship

to Component Skeleton and Representation Converter;
§5.3 Interaction Description, and its relationship to

Abstraction Converter;
§5.4 Component Type, and the relationships between

Component Body, Installant and Executant;
§5.5 Composite Component;
§5.6 Tool.

5.1 Service Abstraction Description

A Service Abstraction is described in a fashion that
generalises over all the ways in which a Service could be
requested in programming languages, as discussed in
§3.2.

At the abstract level the Services are described within
the Abstract Data Type paradigm and thus each is
encapsulated in a set of operations - the Service Elements
- through which they are accessed by the Service Element
Requests. They are expressed in the most abstract
representation as a tuple of < name, reciprocating
control exchange, arguments given out, arguments given
back > and thus appear like an ordinary local procedure
call. The arguments can be values, but they cannot be
items of information (i.e. the actual data entities holding
the values) or Components. The values are of data types
defined or constructed in the language for describing
Services in the abstract; if a value is interpreted by one or
more Components as a reference, this is the business of
the Components and their platforms, not of the Software
Bus.

As there is inheritance in the Service Abstraction
Description Language, Services can be built upon each
other, rather than from the ground up, by allowing the
Abstractions to inherit one from another. However, the
verification of subtyping between Services is more
complex than that for data-type definitions in third
generation languages; amongst other things the veri-
fication rules consider argument direction, type and
default value existence; thus they are similar to, but more
extensive than, the rules for type conformance in the
Emerald language.17

5.1.1 Example Service Abstraction Description

The following example (Fig. 3) shows selected fragments
of a Service Abstraction Description, which has been
chosen from the domain of project and team man-
agement. The example is given in one particular concrete
syntax for a Service Abstraction Description Language
in which keywords are in upper case.

In the example domain, a project has a name and is
made up of a number of teams, and a team has a name
and a number of staff members who are identified by
their surnames.

The fragments show these descriptions:

• the declarations of data types for the name of a
person, project and team. The name of a team can be
seen to be built upon the name of a project.

• a Class called 'Teaml' which expresses a team and
has only one method, which is a query. A Class is two
things: it is a data type of the Service Abstraction
Description Language (it is an encapsulated data
type), and it is a Service. As it is an encapsulated data
type, each method contains an argument of type of
that Class; in this case the argument On. As it is a
Service it may be offered and required by Components.
The method WhatStaf f returns the staff on the team
as a bag - as a surname can occur more than once, this
is the correct level of abstraction.

• a Class called 'Team'. This inherits from 'Teaml', as
shown by the braces, and adds methods to create a
team and manipulate its staffing.

• two Services for TeamLeading. These Services
express the operations of some functionality, rather
than the encapsulation of data. The duplication of
Services and difference in return arguments are used in
the development of this example in §5.3. The return
argument in the 'B' Service express the fact that the
data structure being passed in the argument is a tree
- a level of abstraction that a software engineer often
wants to express, but which cannot be expressed in
common programming languages.

• similarly, a Class, ' P r o j e c t ' and a Service
' Pro jectManagement'.

• a Service which expresses the functionality which can
take charge of managing a project. As the example
develops in §5.5, the actor ultimately behind this will
be seen to be a human being rather than software.

The sub-division of Services into those which express
encapsulated data and those which express functionality
can be compared to the data type and functional modules
of some principles of software architecture,18 and more
generally to the classification of a vast number of
software engineering methods according to whether they
place greater emphasis on information or process.

5.2 Service Representation Description

A Service Representation is a set of rules for mapping the
requests associated with one or more Service Abstractions
onto the virtual machine that the Component Body
operates on, this consists of some or all of the following
parts
• the programming language's paradigm;
• the language's interpreter or run-time system;
• intra-process schedulers;
• operating system process execution control;
• levels built on top of these.

Also, the programming language in which the Com-
ponent Body is written may have representation control
primitives in it, e.g. the representation clause in Ada,19 or
may be subject to some manually enforced coding rules,
e.g. 'even in Fortran always encapsulate'; the descriptive
power of Service Representations is being developed to
cope with these.

There are two uses for Service Representations:
(1) Component Skeleton Generation. To assist build-

ers of new Components, a Service Representation
Description may be combined with a Service Abstraction
Description to generate a Component Skeleton.

(2) Representation Converter Generation. For both
new and existing Components, it will be necessary to

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 527

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

M. S. VERRALL

TYPE Letter_String;
— the definition of Letter_String is not shown

TYPE Surname IS
LIST OF LetterString; — to allow hyphenated names

TYPE ProjectName IS
RECORD (* various fields *) RECORD-END;

TYPE TeamName IS
RECORD {ProjectName}
Team: LetterString; — extends ProjectName by one field
RECORD-END;

CLASS Teaml IS

METHOD WhatStaff [On:Teaml]
RETURNS [Staff: BAG OF Surname] — duplicate surnames possible

CLASS Team IS {Teaml}

METHOD CreateTeam [Called:TeamName]
RETURNS [New: Team]

METHOD AddStaff [Called: Surname; To:T«am]
RETURNS []

METHOD RemoveStaff [Called: Surname; From:T«am]
RETURNS []

SERVICE TeamLeadingA IS

SERVICE-ELEMENT WhatTeams []
RETURNS [Teams: LIST OF Team]

SERVICE TeamLeadingB IS

SERVICE-ELEMENT WhatTeams []
RETURNS [Teams: TREE OF Team]

CLASS Project IS
METHOD AddTeam [Called:TeamName; To: Project]
RETURNS [New: Team]

METHOD ShowTeams [In: Project]
RETURNS [Teams: SET OF Team]

METHOD MoveStaff [Called: Surname; From, To:Team; Within:Project]
RETURNS []

SERVICE ProjectManagement IS

SERVICE-ELEMENT ManageProject
[Called: ProjectName; Whichls: {New, Existing}]

RETURNS []

SERVICE ProjectManager IS

SERVICE-ELEMENT Manipulate [Project: Project; Called: ProjectName]
RETURNS []

Figure 3. Service Abstraction Description.

generate a Representation Converter, which becomes
part of the Component Installant, and thus part of the
Component Executants enlivened from it, so that the
Component Executants can be plugged in to the
Communication Channel. Generation takes a Service

Abstraction Description and makes a difference com-
parison of two Service Representation Descriptions. The
transfer syntax that a particular Representation Con-
verter converts to can be fixed when it is generated or can
be negotiated later on in the Component's life.

528 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

UNITY DOESN'T IMPLY UNIFICATION

5.2.1 Component Skeleton
A Component which offers or requires a Service has to
express the ability to do so in its programming language.
The statements which allow Service Element Requests to
be accepted or placed, together with their supporting
declarations, constitute the Component Skeleton.

To represent a Service, whether it expresses func-
tionality or encapsulated data, it is necessary to represent
the set of Service Element Requests that can be placed or
accepted. The representation of a request is concerned
with representing two things: the act of requesting itself
and the arguments of a request.

The request itself is represented as a (set of) control
exchange primitive(s) within the programming paradigm
of the Component Body; this may be anything from a
simple local procedure call to an operating system
directive for inter-process control or communication.
The point is that the Software Bus is undemanding here
and will allow the programmer the choice of coding.

The argument types are at a higher level of abstraction
than the data types of many programming languages and
thus must be suitably related to them.

An argument type of Class, which means a reference to
an instance of the encapsulated type, can be represented
as an object identifier in object-oriented languages, but in
procedural languages there is no such concept. In this
case such an argument is represented by a 'handle'
variable which is opaque to the programmer. This is
acceptable as the Component Body will only ever pass
this value between Service Elements and not try to access
the instance of the Class itself- this is in accord with the
fact that the Software Bus does not move items of
information around the FSE.

An argument whose type is a data type in the Service
Abstraction Description Language may or may not be
able to be represented directly as a data type of the
programming language. Consider the data types in the
example in §5.1.1 and some common programming
languages; LIST is only in Lisp, SET only in Pascal, BAG
and TREE in none, and Fortran cannot even manage
RECORD. When this arises the representation of such
'non-native' data types within the programming lan-
guage can be

• a collection of data types native to the programming

language, together with a collection of consistency
rules which must hold;

• a set of routines encapsulating some native data types
(which thereby enforce the consistency rules).

The routines allow access to the non-native data types,
usually in a navigational fashion in order to fit with the
programming language's paradigm. The routines can be
provided either by the Software Bus to the programmer
or vice versa. The early prototypes of the Software Bus
are supporting representation of non-native data types
by its own encapsulating routines, subsequently it will
permit the other representations.

Finally, if the Component Skeleton is to be generated,
it must be delivered in a form suitable for use by the
programmer; the files in which it is delivered will be
destined for inclusion in the Component Body or for
separate compilation, and they may contain statements
which look like programming language statements but
which require macro processing. All this varies with the
language and its programming environment.

For example, the Class Team can appear quite
naturally as the Ada package in Fig. 4.

This shows the automatic construction of names from
both named and unnamed entities in the Service
Abstraction Description; however, if the programmer
wished to use different names, it is only necessary to say
so in the Service Representation Description. It also
shows the use of a handle, the type TeamsAnd-
Projects_Team, to identify different instances of the
Class.

In many languages, such as C, there is no concept akin
to packaging, so a Class is represented as a set of external
functions and the handle is a record data type - the
programmer has to be trusted to leave variables of this
type alone.

The next example deals with the problem of non-
native data types and shows how the ability to manipulate
a LIST argument is supplied for and used in a
Component written in C. An include file (Fig. 5) declares
the encapsulating operations on LIST.

Then a fragment of the Component Body to count the
number of teams in a project could look like Fig. 6.

The fact that the fragment has not been coded as part
of a distributed application, and thus does not expect a
distribution error status to be returned by TeamLeading-

package TeamsAndProjects_Team_CLASS is

type TeamsAndProjects_Team is limited private;

procedure TeamsAndProjects_Teaml_WhatStaff
(On: in TeamsAndProjects_Team;
Staff : out TeamsAndProjects_I_tO;);

procedure TeamsAndProjects_Team_CreateTeam
(Called: in TeamsAndProjects_TeamName;
New : out TeamsAndProjects_Team;);

— etc.

end TeamsAndProjects Team CLASS ;

Figure 4. A Class as an Ada package.

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 529

34 CPJ 34

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

M. S. VERRALL

typedef
typedef
typedef

extern
extern
extern
extern

struct {unsigned opaque[9]} List;
void *LstIter;
struct

Lstlter

{ /* etc. */ } ListStatus;

Create Cursor ();
void Drop_Cursor();
int End _of_List () ;
void Next in list();

Figure 5. Supply of non-native types in C.

List *teams;
Lstlter cursor;
ListStatus status;

TeamLeadingA_WhatTeams(teams);
cursor = Create_Cursor(teams);
count = 0;
for (; !End_of_List(cursor) ;
Next_in_List (cursor,&status))

{count++;}
Drop Cursor (cursor);

Figure 6. Use of non-native types in C.

A_WhatTeams, means that distribution fault trans-
parency is perforce provided by the Representation
Converter.

At the conclusion of this section the reader may be
led to remark that the programming language fragments
presented are all very typical of the languages in question
and do not present great novelty to the programmer of
the Component Body. This is because that is precisely
the desired effect, which is necessary to permit a posteriori
integration of (non-distributed) application code without
generation of a Component Skeleton or modification of
the Component Body (which already exists).

5.3 Service Interaction Description

A set of Services can be associated together and the role
that each Service plays in such an association, e.g.
' client',' server',' side effect', be given — thus defining the
interacting pairs within the association and the way in
which they interact. It is possible that one Service can
occupy more than one role.

Though there may be a difference between the paired
Services at the abstract level, it may be possible for the
human being to cross-reference the semantics and thus
close the gap by declaring truths that hold in comparing
two Services. The predicates expressing these truths
constitute the Service Interaction Description.

For example, there may be a Component which
requires a Service for team leading and another which
offers it, and the opportunity to couple them together
within an FSE arises. However, closer examination
shows that the client requires the Service described by
TeamLeadingA but the server provides Team-
LeadingB and that these are not the same - the category

of mismatch is that called an information structure near
miss in §2.2. Thus, a Service Interaction Description is
written which states that

• TeamLeadingA is tantamount to Team-
LeadingB

• TeamLeadingA WhatTeams corresponds to
TeamLeadingB WhatTeams

• the app l i ca t i on of spec i f i c l i s t and t r ee
navigat ing opera t ions to the d i f f e r ing
arguments of the d i f f e r en t WhatTeams in a
spec i f ic order wi l l y ie ld the same Team.
(The actual predicates formed from the navigational
operations are derived from the ordering and struc-
turing rules applicable to these arguments).

This Service Interaction Description is used in con-
junction with the Service Abstraction Descriptions of the
two Services that it relates, TeamLeadingA and
TeamLeadingB, to generate the Abstraction Converter
that will permit the Component Executants on either side
of the correlated Services to cooperate. The Abstraction
Converter is part of the Frame, in that it is itself a
Component.

5.4 Component Type

Having created a Component Body, either directly or
from a Component Skeleton, and used the Service
Descriptions to generate the Representation Converter,
the Component Builder assembles the Component Body
and Representation Converter to build the Component
Installant. The Component Installant is the manifestation
of the Component which can be installed in an FSE; but,
before doing so, the Component Type Description must

530 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

U N I T Y D O E S N ' T I M P L Y U N I F I C A T I O N

be deposited in the FSE. A Component Type Description
describes the Services provided and required by a
Component and their representation, by reference to
Service Abstraction and Representation Descriptions.

Take as an example a Component which is a project
management engine. It provides the mechanisms to
perform project management, relies on the provision of
team management mechanisms, assumes an interface to
a project manager (human being) to instruct it, and is
written in Ada. Its Component Type Description would
state that it

• provides Service P r o j e c t M a n a g e m e n t
• requires Service P r o j e c t M a n a g e r
• provides Class P r o j e c t
• requires Service TeamLead ingA
• requires Class Team
• represents these according to a Service
Representation Description which de
scribes a straightforward Ada package
representation

Once the Component Installant has been installed,
one or more Component Executants can be enlivened
from it ready for execution, that is the placing and
accepting of Service Element Requests, in the FSE.

5.5 Composite Component

Typically, a Component will not be complete in itself and
will be assembled together with other Componen t s to
make something more useful as a Composite Component .
A Composite Component Executant is made up of
Component Executants (which may themselves be
Composite), rather than programming language entities.
A Composite Component has a type given by its
Description. When a Composite Component Executant
is enlivened the Composite Component Description is
consulted and the appropriate (Composite) Component
Executants enlivened and bound together. A Composi te
Component Description is written, not by a Componen t
Builder, but by an FSE Builder, thus the j o b of

ProjectManagement

ProjectManager

Project
m a n a g e r ' s

user interface

Pro j ectManagement

Project
m a n a g e m e n t

eng ine

Project

TeamI*eacLingA
Abs t rac t ion
Conve r t e r

T e a m lead ing
eng ine 1

T e a m l

TeamX.ead.ingB
T e a m lead ing

e n g i n e 2

=1 Filestore Filestore

Filestore
Figure 7. Composite Component for Project Management.

T H E C O M P U T E R J O U R N A L , VOL. 34, N O . 6, 1991 531

34-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

M. S. VERRALL

application programmer can be seen to be split into two
roles fulfilled by two different people.

An example Composite Component Description is
illustrated in Fig. 7 using a graphical concrete syntax for
the Composite Component Description Language. In
this syntax, the Composite Component being described
is shown as a bold rectangle, the Components of which
it is built are shown as plain rectangles, the Services are
shown as bars - filled for offered, hollow for required -
and the bindings are shown as lines. As bound Services
are the same, only offered Services are identified, in
general, to avoid cluttering the diagram.

The example Composite Component provides project
management, has a user interface to a project manager
and needs only a file store. It is made up of

• the project management engine discussed in §5.4;
• two team leading engines:

these offer slightly different team leading Services, and
one of them allows inquiry into the staffing of its
teams by the Teaml Class;

• a project manager's user interface:
through this the project manager can manipulate
projects and look at the staffing of teams (because of
the composition and structure of the Composite
Component this operation is only open to him for
certain teams);

• the Abstraction Converter discussed in §5.3.

It illustrates:
(1) Topology. The Composite Component is a directed

graph.
(2) Identicalness of paired Services, both of the bound

Services within the Composite Component and of the
Services of the Composite Component corresponding to
Services of Components of which it is made.

(3) Multiplicity of bindings. A client may be bound to
multiple servers for the same Service.

5.6 Tool
A Tool is a Composite Component which is made known
to the Factory Process Engine as a Tool in its conceptual
world. When the Factory Process Engine starts a Tool it
commands the Software Bus, which as a result enlivens
a Composite Component and sends it the appropriate
Service Element Request to get it going.

A Tool has a type given by its Tool Type Description,
which relates it to a Composite Component and says
how to transform control between Tool and Composite
Component.

Continuing the example in §5.5, a further Composite
Component could be assembled from the Composite
Component in §5.5 and a file store Component and
could then be equated to a Tool in a Tool Description.
Then the command by the Factory Process Engine to
start this particular tool would ultimately be transformed

to a Service Element Request ManageProject to an
enlivened project management engine Component.

Of course, the Factory Process Engine is itself a
Component within the FSE and so the command to start
a tool is itself a Service Element Request and the Software
Bus paradigm is maintained.

6. CONCLUSION

The above languages and mechanisms describe the
Software Bus, which has been elaborated from the basic
ESF structural view by the application of some hy-
potheses arising from the application of the thesis of a
posteriori integration to this view. In order to validate
this a number of parts have been prototyped, particularly
the Service Abstraction Description language; the vali-
dation is currently being extended by construction of a
long, shallow and narrow Software Bus implementation.

This work helps advance thinking on Distributed
Information Systems from autocratic to democratic. Its
principles should be true for any DIS, as they have been
derived in a general way. The limitations will arise from
the fact that some details of the languages of the
Software Bus are motivated by the need to support
software engineering applications and may not therefore
be sufficiently wide ranging to cover all DIS applications.

There is a rich seam of future work to be exploited; the
Software Bus can be extended in length (coverage of DIS
issues), depth (richness of languages and mechanisms),
and width (of spectrum of DIS applications).

7. GLOSSARY

• Component - a piece of application software which is
a service oriented building block and which can be
attached to the Software Bus.

• DIS, Distributed Information System.
• ESF2, Eureka Software Factory - a project to develop

Software Engineering Environments for industrialised
software production.

• Factory Process Engine11'12 - that part of an FSE
which enacts a model of the software engineering
process.

• FSE, Factory Support Environment - an ESF Soft-
ware Engineering Environment.

• Service - a set of operations within the FSE whose
provision or requirement is discussed as a set.

• Service Element Request - a request for the per-
formance of an element of a Service; it is placed by one

Component and accepted by another.

Acknowledgements

The author gratefully acknowledges the participation of
the other members of the Software Bus team in the
development of the ideas and software of the Software
Bus and the suggestions of the referee for improving the
presentation of this article.

REFERENCES
1. A. Conan Doyle, The Sign of Four. Spencer Blackett,

London (1890).
2. C. Fernstrom and L. Ohlsson, ESF - An approach to

Industrial Software Production. In Software Engineering
Environments: Research and Practice, Proceedings of 4th

Conference on Software Engineering Environments (Dur-
ham, April 1989), edited K. H. Bennet, pp. 17-28. Ellis
Horwood, Chichester (1989).

3. M. S. Verrall, SFINX Project-The Componentry Ap-
proach to SEE Building. In Software Engineering En-

532 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

UNITY DOESN'T IMPLY UNIFICATION

vironments: Research and Practice, Proceedings of 4th
Conference on Software Engineering Environments (Dur-
ham, April 1989), edited K. H. Bennet, pp. 173-183. Ellis
Horwood, Chichester (1989).

4. M. S. Verrall, Tool interaction and integration in a
software engineering environment. In Proceedings of 1st
International Conference on Software Development En-
vironments and Factories (Berlin, May 1989), edited N.
Madhavji el al, pp. 229-239. Pitman, London (1990).

5. M. S. Verrall, The Software Bus - its objective: the mutual
integration of distributed software engineering tools. In
Proceedings of 5th Conference on Software Engineering
Environments (Aberystwyth, March 1991), edited F. Long.
Ellis Horwood, Chichester (1991).

6. ESF Technical Reference Guide, Version 1.1. EUREKA
Software Factory, Berlin (1989).

7. R. F. Rashid, Threads of a New System. UNIX Review 4
(1986).

8. M. Satyanarayanan, Scalable, Secure, and Highly Avail-
able Distributed File Access. Computer 23 (5), (1990).

9. ISO 7498-1984 Information processing system - Open Sys-
tems Interconnection - Basic Reference Model. Inter-
national Organization for Standardization, Geneva (1984).

10. ANSA Reference manual, Release 01.00. Architecture
Projects Management Ltd, Cambridge (1989).

ILL . Hubert and G. Perdreau, Software Factory: Using
Process Modelling for Integration Purposes. In Systems
Integration '90, Proceedings of 1st International Conference
on Systems Integration (Morristown, April 1990), edited
P. A. Ng el al, pp. 14-25. IEEE Computer Society Press,
Los Alamitos (1990).

12. V. Gruhn, Analysis of Software Process Models in the

Software Process Management MELMAC. In Proceedings
of 5th Conference on Software Engineering Environments
(Aberystwyth, March 1991), edited F. Long. Ellis Hor-
wood, Chichester (1991).

13. A Reference Model for Frameworks of Computer-Assisted
Software Engineering Environments, ECMA TR/55. Euro-
pean Computer Manufacturers Association, Geneva
(1990).

14. L. Osterweil, Software Development Environment Re-
search Projects in the United States. In Proceedings of 5th
Conference on Software Engineering Environments (Aber-
ystwyth, March 1991), edited F. Long. Ellis Horwood,
Chichester (1991).

15. Network Programming. Sun Microsystems, Mountain View
(1987).

16. Computational model. ANSA Reference Manual, Release
01.00, section X.7. Architecture Projects Management Ltd,
Cambridge (1989).

17. R. K. Raj et al, Emerald: A General-Purpose Program-
ming Language. Software - Practice & Experience 21 (1)
(1991).

18. M. Nagel, Modelling of Software Architectures: Import-
ance, Notions, Experiences. In Software Development
Environments and CASE Technology, Proceedings of the
European Symposium on Software Development Environ-
ments and CASE Technology (Konigswinter June 1991),
edited A. Endres and H.Weber, pp. 211-232. Springer
Verlag, Berlin (1991).

19. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD 1815A. Ada Joint Program Office, Wash-
ington (1983).

Book Review

T. J. MAYES (editor)
Abstracts in Human Computer Interaction,
vol. I, issues 1 and 2.
Ergosytes Associates. ISSN 1042-0193. Price
USS316 in the UK.

This is a quarterly, international journal
providing abstracts of selected English-
language literature on the human factors of
computer systems. Each issue promises to
present between 500 and 600 abstracts of
relevant material selected according to two
criteria: serving the needs of the entire HCI
community (a motley crew of disciplines from
engineering design to academic psychology)
and satisfying the standards of the editorial
board, i.e. the cited article should beofrefereed
journal quality. That there is a need for such
an abstracting journal cannot be doubted,
given the editor's remarks in issue 1 to the
effect that 75 % of the HCI literature will have
to be rejected if each issue is to be kept to its
intended size.

Issues are divided into three sections. The
first, a subject guide, groups material ac-
cording to content area, for example formal
methods, adaptive interfaces, etc., thus en-
abling readers to ignore material of no interest
and search through only relevant themes. The
details here are of the form: article title,
author, publication type (e.g. book, conference
paper) and abstract number, all organised
alphabetically within sections according to
first author's name.

The second section contains the abstract
records. These are organised alphabetically
with respect to author(s) and are of the form:
'i.d.' number, author(s), affiliation, publica-
tion type (right-justified in a left-hand
column), with title, source and abstract to the
left. Good typography provides a neat pres-
entation style throughout. Readers are advised
at the start that some of the abstracts were
provided by the editors not the authors.
Naturally, this section forms the bulk of the
issue. The third (and shortest) section is a
straight alphabetical listing of all authors in
the issue.

The real test of a publication such as this is
the extent to which you use it. It has sat on my
desk for four weeks now and strikes me as the
sort of tool to which I would gladly give
increasing shelf space. Not only does it provide
instant access to this rapidly expanding litera-
ture but it lets you know what sort of material
is increasingly appearing and gives me, at
least, a lazy way of storing precise references
to material.

Only minor criticisms apply. One is that it
takes a few minutes to get used to the layout
and organisation of the text. However, once
understood this should not be a problem, but
I witnessed two colleagues having difficulties
locating material with the review issues I
showed them. Another is that referencing and
then tracing material according to a three-
digit code is no match for page numbers. I
understand the production difficulties of page

numbering, but user preference is an important
human factor!

Certain references appear to be incorrect
(or at least non-standardised) with respect to
publication type. Thus we get details of some
papers from the first UK Hypertext Con-
ference in 1988 referred to as book chapters
from 1989 (the published proceedings), while
another paper at the same conference is
described as being a conference paper from
1988. Also the subject classification system is
bound to confuse people. Would you expect
to find books and papers on 'computer
addiction' and the so-called 'scenario meth-
odology' together in a section titled 'User
characteristics and Models'? Does hypertext
warrant a section of its own or not? Un-
fortunately no classification will satisfy every-
one. Finally, why start at 1988? I know the
field changes rapidly, but access to details of
material as far back as 1980 is not uncommon
in my work, and reading these issues made me
wish this journal had existed 10 years ago.

In conclusion, this is a timely and useful
journal for the HCI worker and the editors are
to be congratulated on their efforts. I'd love it
on my desk but at USS300 or so to subscribe
1 will not be purchasing it myself, and if I have
to go to a library every time I want to check
something, I fear it will lose much of its value

ANDREW DILLON

Loughborough

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 533

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/522/344276 by guest on 10 April 2024

