
Short Notes

Structure Clashes

The following paper comments on the changes
which are needed to the work of Dromey and
Chorvat, this Journal April 1990, to in-
corporate the concepts of Structured Pro-
gramming

Received January 1991

1. Introduction

The article in this Journal1 on Structure
Clashes deserved some response.

Dromey and Chorvat have ignored the
concept of structured programming. That this
should happen 20 years after the theory was
proposed, is lamentable. That this should
happen to members of a 'Programming
Methodology Research Group' is inexcusable.

Structured programming allows only three
operations: process; selection; and a DO-loop.
The DO-loop has to have any check performed
at the start. This ensures that the check is
passed before the loop is entered, and in turn
gives a clean partitioning of code: you can
only get into the loop by passing the check.
Actions are easy to understand, and therefore
change, because the actions are either inside or
outside the loop.

In Dromey and Chorvat's examples, they
should change their DO-UNTILs into DO-
WHILEs. This would eliminate the checks they
have within the loops to see if this is the first
time around the loop.

Next, Dromey and Chorvat confuse physi-
cal and logical requirements. By 'physical' I
refer to the input/output of data, while
' logical' refers to the processing of the input
to generate the output. Keeping the two
separate makes any program a lot simpler to
understand. There is no loss in efficiency either!

Take the example '2.2. A Simple Structure
Clash'. There is no problem once you create a
routine that outputs the print lines.

The routine keeps track of linecounts and
can therefore initiate pagebreaks when necess-
ary. The print line is created at the point in the
program where the program logic dictates the
need to output the line. The print procedure
worries about paging, etc., leaving the program
logic unencumbered by printer logic.

Furthermore, the nesting of DO-loops that
Jackson's program design gives is the ideal
place to initialise headings and sub-headings.

And finally, I am surprised that the article
was published as showing something new.
Programmers have long been in the habit of
using existing code to do something only
'slightly' different from the original purpose
of the code. The results have been poor-
quality systems that eventually become un-
manageable : the process of modification never
stops.

Structured programming was developed to
ensure quality programs.

Jackson developed a technique that allows a
program structure to be designed on the basis
of the input/output data. With Jackson,
program design became more of an engin-
eering exercise than a 'black art'. Program
inversion allowed for the lower processing
power available in the 70s. It was an excep-
tional process then, and should be even more
so now. I would expect a new method to offer
significant advantages in some areas to war-

rant publication. Dromey and Chorvat have
failed to demonstrate this.

However, to illustrate the above comments,
I have reworked the problems used by Dromey
and Chorvat. To demonstrate another fact, I
have reworked the first problem using more
descriptive names. Coding with a mixture of
As, Ps and ms is a shortcut to unmanageable
code.

For amusement I have enclosed the 'Jackson
Rap'. I hope that this will cheer along the
people who take the time and effort to review
program requirements before making changes,
and give pause for thought to those who do
not.

There are also sample program structures in
the Appendix. These have been designed using
Jackson's techniques and serve as examples
for those unfamiliar with the method. This
allows people to create well-structured pro-
grams without having to attend courses and
seminars.

2. Alternative Solutions
2.1 Buffer-Copy

In the problem, GETREC reads a record,
IN_REC, directly into the buffer IN_KEC_
BUILD_UP. In some languages this may be a
two-step process.

The size of IN_REC_BUILD_UP is always
set to be larger than the output record,
0UT_REC, and a multiple of the size of the
records being read.

In essence, the GETEEC command of
Dromey and Chorvat changes from

read a record,
to

read records until you have more data
than the length of the output record, or
end-of-file.

IN_REC = n u l l s
IN_REC_BUILD_UP = nulls
IN_REC_BUILD_UP_LAST_POS = 0
0UT_REC = nulls
0UT_REC_SIZE = size of ' '0UT_REC '

GETREC(IN_REC_BUILD_UP,
IN_REC_BUILD_UP_LAST_POS,
OUT_REC_SIZE)

DOWHILE IN_REC_LAST_POS > 0
0UT_REC(1^0UT_REC_SIZE)

= IN_REC_BUILD_UP(
1-*OUT_REC_SIZE)

PUTREC (0UT_REC)
RESETIN (IN_REC_BUILD_UP,

IN_REC_BUILD_UP_LAST_POS,
OUT_REC_SIZE)

GETREC (IN_REC_BUILD_UP,
IN_REC_BUILD_UP_LAST_POS,
OUT_REC_SIZE)

END DOWHILE IN_REC_LAST_POS > 0
RESETIN: parm(IN_REC_BUILD_UP,

IN_REC_BUILD_UP_LAST_POS,
OUT_REC_SIZE)

/* reset input to allow for */
/* records, written out. •/
/• This involves moving the •/
/• unwritten portion of the */
/* 'in' record to the start of */
/• the area 'in'. The next read */
/• will then start adding data •/
/* into 'in' after the data •/
/• just moved. •/

J = IN_REC_BUILD_UP_LAST_POS
- OUT_REC_SIZE

IN_REC_BUILD_UP (1 to J)
= IN_REC_BUILD_UP
((OUT_REC_SIZE + 1) to
IN_REC_BUILD_UP_LAST_POS))

IN_REC_BUILD_UP_LAST_POS = J

2.2 Simple Structure Clash

N.B. This is a standard program structure.

linecount_max = 70
linecount_max_for_course_heading

= 65
linecount =linecount_max+l
pagecount = 0
eof_data = NO
getrec(data)
DOWHILE (eof_data = No)
course_old = getrec_data.course
course_stats = 0
CALL COURSE_LINE_PRINT(

course_heading)
DOWHILE (getrec_data.course =

course_old
& eof_data = NO)

course_stats =
course_stats+getrec_data_stats

report_line_data = getrec_data
CALL REPORT_LINE_PRINT(

report_line_data)
getrec(data)

END /*D0WHILE (getrec_data.
course = course_old*/

summary_report_line.count =
course_stats

CALL REPORT_LINE_PRINT(
summary_report_line)

END/*D0WHILE (eof_data = N0) */

COURSE_LINE_PRINT:
parm(course_heading)

IF linecount >
linecount_max_for_course_heading

THEN
linecount =linecount_max+l
CALL REPORT_LINE_PRINT(

course_heading)
END COURSE_LINE_PRINT

REPORT_LINE_PRINT: parm(line)
line_asa = char(l) of line

SELECT(line_asa)
WHEN(new_page)
linecount =linecount_max+l

WHEN(doublespace)
linecount =linecount+2

WHEN(same_line)
linecount = linecount

OTHERWISE
line_asa = new_line
linecount =linecount+1

END/»SELECT(line_asa) * /
IF linecount > linecount_max
THEN
pagecount =pagecount+ 1
putrec(heading_line_l)
putrec(heading_line_2)
line_asa = double_space

putrec(line)
END REPORT_LINE_PRINT:

2.3 Multiple Input Structure Clash

This is the same solution as in the BUFFER-
COPY problem. We ensure that any data read

566 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/566/344328 by guest on 09 April 2024

S H O R T N O T E S

is sufficient to match (or exceed) the amount
of data needing to be read out.

in_A = nulls
in_B = nulls
m = 0 /* last used position within

'in_A' */
n = 0 /* last used position within

'in_B' •/
out = nulls
P = size of 'out'
GETREC(in_A, m, P)
GETREC(in-B, n, P)
DOWHILE m > 0|n > 0
out(l^P) = in_A(1->P)

+ in_B(l^P)
/• write out length 'N' from 'out'

*/
PUTRBC(out, P)
RESETIN(in_A, m, P)
RESETIN(in_B, n, P)
GETREC(in_A, m, P)
GETREC(in_B, n, P)

END DOWHILE

N.B. There will be some extra calls to in_A
or in_B, depending upon while file is read to
end-of-file first. However, the overhead is small,
and the program kept simple.

Even if you wanted to add one record o/in_A
to every one record of in_B, until you had
sufficient data for 'out', this program is simple
to modify.

2.4 Text Formatting Problem

This is another standard program structure,
and requires a two-step process.

IN-REC = n u l l s
GETREC(IN-REC)
DOWHILE (IN-REC found)
/* write each individual word from

IN-REC */
last_word_found_pos = 0
FIND_WORD(IN_REC,

last_word_found_pos)

DO_WHILE last_word_found_pos <
IN_REC_RECORD_LENGTH

PUTREC(word_length, word)
FIND_WORD(IN_REC,

last_word_found_pos)
END /*DO_WHILE*/1
GETREC(IN_REC)

END DOWHILE (IN_REC found)

The downstream program now has a simple
format.

w = 0 /* 'word' record count */
GETREC(word, w)
DOWHILE w > 0
out_length = 0
DOWHILE (out_length <

out_length_max)
& w > 0

LOAD-WORD(word, out)
GETREC(word, w)
out_length =

out_length +word-length
END
PUTREC(out)

END DOWHILE w > 0

The above format allows a very flexible
approach to the problem. The solution allows
additional features, such as edit checking, to
be added very easily.

Lu LAHODYNSKYJ
103, Martin Grove Road, Islington, Ontario
M9B 4K6, Canada.

Reference

1. R. G. Dromey and T. A. Chorvat, Struc-
ture clashes - an alternative to program
inversion. The Computer Journal, 33 (2),
126-132 (1990).

APPENDIX
A.I The Jackson Rap (or, how to approach
program maintenance)

-I WAS READING A PROGRAM JUST THE
OTHER DAY,

THAT KIND OF BLEW MY MIND AWAY.
IT WAS WRITTEN QUITE SOME TIME AGO
BY SOMEONE ELSE, NOT, A JACKSON BRO.

I READ IT UP AND I READ IT DOWN,
IT WAS GOODBYE SMILE AND HELLO
FROWN.

SO I SAID TO MYSELF, 'OH WHAT THE
HECK'

AND STARTED TO WRITE A PROGRAM SPEC.

WHEN I'D DONE IT ALL, IT WAS PRETTY
GOOD,

IT TOLD YOU ALL THAT A GOOD SPEC
SHOULD.

IT TOLD YOU WHAT WENT IN AND OUT,
TOLD YOU WHAT THE PROGRAM WAS ALL
ABOUT.

SO I ADDED A PLAN ON HOW TO TEST,
I KNEW I WAS DOING MY VERY BEST.
ONE MORE THING, WHILE I WAS DOING SO
WELL,

I HAD TO WRITE SOME PDL.

THEN I SAIDWHOOOO-OOOO-OOOO-OOOO,
I'M FORGETTING I'M A JACKSON BRO.
SOME DIAGRAMS I HAD TO WRITE,
TO MAKE QUITE SURE THE STRUCTURE WAS
RIGHT.

SO_WHEN_THE_CODING CAME, IT WAS ALL
A BREEZE,

CLEAN, STRUCTURED (AND NO DISEASE).
THE WALKTHROUGHS, THE TESTING, PRO-
DUCTION TOO,

CAME AND WENT LIKE ZIPPIDY-DO.

SO YOU'RE GETTING THE MESSAGE, IF
YOU ARE HIP,

THIS PROGRAM CHANGING, CAN BE QUITE
A TRIP.

BUT BEFORE YOU GET TO PL/1
MAKE SURE YOUR THINKING HAS ALL BEEN
DONE!

DOWHILE, DOWHILE, DOWHILE, SELECT
DOWHILE, DOWHILE, DOWHILE, SELECT
DOWHILE, DOWHILE, DOWHILE, SELECT
DOWHILE, DOWHILE, DOWHILE, etc....

A.2 PDL - Program Design Language

The following Program Design Languages
(PDLs) are program structures that were
generated by using Jackson's techniques and
have stood the test of time. They allow you to
set your program structure quickly. You will
only need to create a new PDL if the data
manipulation does not fall into one of the
categories below. In this case you have to
return to the basics of Jackson program design.

N.B. Should you have become used to the
use of ' I F ' statements to control your logic,
these will seem somewhat cumbersome, at
first. However, there are three things to
remembers.

(1) They work - guaranteed.
(2) The code is easy to read.
(3) Changes are easy to implement.

A.2.2 Report from One File

This is a sample PDL for a simple read/print
program. It uses an extract file with Buyer*,
Expeditor* and Vendor* in the fields: records
are sorted by Buyer/Expeditor/Vendor.

The report gives a new page for each change
in Buyer* or Expeditor* and produces a
summary of vendor information, for each
expeditor.

OPEN a l l f i l e s
Set a l l record counts t o zero
READ EXTRACT record
DOWHILE (EXTRACT_EOF = NO)

BUYER#_0LD = EXTRACT_REC .BUYER*
EXPED#_0LD = EXTRACT_REC .EXPED*
CALL NEW_PAGE_PRINT
DOWHILE (EXTRACT_REC .BUYER* =

BUYER#_0LD
& EXTRACT-REC.EXPED*
= EXPED#_0LD

& EXTRACT-EOF = NO)
VENDOR#_OLD =

EXTRACT-REC.VENDOR*
DOWHILE (EXTRACT_REC.VENDOR* =

VEND0R#_0LD
& EXTRACT. REC .BUYER*
= BUYER#_0LD
& EXTRACT_REC .EXPED* =
EXPED#_0LD
& EXTRACT-EOF = NO)

CALL REPORT-LINE_PRINT
READ EXTRACT r e c o r d

END /*D0WHILE (EXTRACT-REC
.VENDOR* = VEND0R#_0LDV

CALL VENDOR_SUMMARY_PRINT
END /*D0WHILE (EXTRACT-REC.

BUYER* = BUYER#_0LD*/
END /'DOWHILE (EXTRACT-EOF = NO*/
WRITE r e c o r d c o u n t s
CLOSE a l l f i l e s

A.2.3 Two-file Match

This is a sample PDL for a simple two-file
match program. It uses a master file that needs
to be revised by data from an update file. Keys
are unique for both the master and update
files. The resulting records are written to a new
master file.
N.B. The end-of-file situation is used to set the
record keys to high values. This ensures that
both inputs will be read to the end.

OPEN a l l f i l e s
Set a l l record counts to zero
READ MASTER-OLD record
READ UPDATE record
DOWHILE (MASTER-OLD.KEY .LT. HIGH

.OR. UPDATE.KEY .LT. HIGH)
SELECT

/ • no update for old master * /
WHEN (UPDATE.KEY .GT.

MASTER_OLD.KEY)
WRITE MASTER-OLD to new

master file
Increment record copied

count
READ MASTER-OLD record

/* record not on old master •/
WHEN (UPDATE.KEY .LT.

MASTER_OLD.KEY)
Create new Master record

from UPDATE
WRITE MASTER-NEW to new

master file
Increment record created

count
READ UPDATE record

/* records match */

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 567

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/566/344328 by guest on 09 April 2024

SHORT NOTES

OTHERWISE
Update MASTER_OLD from

UPDATE
WRITE MASTER_OLD to new

master file
Increment record updated

count
READ UPDATE record
READ MASTER_OLD record

END /*DOWHILE (MASTER_OLD.KEY .LT.
HIGH*/

WRITE record counts
CLOSE all files

A.2.4 Two-file match, one with batches

This is a sample PDL for a two-file match
program with one file in batches. It uses a
master file that needs to be revised by data
from an update file. Unique keys exist in the
master file. The update file can have more than
one occurrence of a key, all of which have to
be applied to the one master file record. The
resulting record is written to the new master
file.
N.B. The end-of-file situation is used to set the
record keys to high values. This ensures that
both inputs are processed correctly when one
end of file is encountered before another. This
logic uses a switch to indicate when a file is
empty; this will be more efficient and still give
readable code, rather than checking each key.

OPEN all files
Set all record counts to zero
READ MASTER_OLD_record
READ UPDATE record
DOWHILE (MASTER_OLD_EOF = NO .OR.

UPDATE_EOF = NO)
SELECT

/• no updates for old master */
WHEN (UPDATE.KEY .GT.

MASTER_OLD.KEY)
WRITE MASTER_OLD to new

master file
Increment record copied

count
READ MASTER_OLD record

/* record not on old master */
WHEN (UPDATE.KEY .LT.

MASTER_OLD_KEY)
KEY. SAVE = UPDATE. KEY
STORE_UPDATE = null
DO WHILE (KEY_SAVE =

UPDATE. KEY)

STORE_UPDATE = STORE_
UPDATE + UPDATE, byname

READ UPDATE record
END /»D0 WHILE (KEY_SAVE =

UPDATE.KEY) */
MASTER_NEW =

MASTER_NEW + STORE_UPDATE,
by name

WRITE MASTER_NEW to new master
file

Increment record created
count

/* records match •/
OTHERWISE

key_save = update.key
STORE_UPDATE = null
DO WHILE (KEY_SAVE =

UPDATE.KEY)
STORE_UPDATE =

STORE_UPDATE
+UPDATE, by name

READ UPDATE record
END /*D0 WHILE (KEY_SAVE =

UPDATE.KEY) */
MASTER_NEW = MASTER_OID +

STORE_UPDATE, by name
WRITE MASTER_NEW to new master

file
Increment record updated count
READ MASTER_OLD record

END /*DOWHILE (MASTER_0LD_EOP =
NO*/

WRITE record counts
CLOSE all files

A.2.5 Three-file Match

This is a sample PDL for a simple three-file
match program. It uses three input files to
produce a report. There is a unique KEY value,
on each file, though each KEY value may exist
on all files.

OPEN all files
Set all record counts to zero
READ FILE_01 record
READ FILE_02 record
READ FILE_03 record
DOWHILE (End-of-file(FILE_01) =

NO .
OR. End-of-file(FILE_02) = NO .
OR. End-of-file(FILE_03) = NO)

SELECT on key matches
WHEN (REC_01. KEY = REC_02. KEY &

REC01. KEY = REC_O3. KEY)

WRITE Message for all keys
matching

READ FILE_O1 record
READ FILE_02 record
READ FILE_03 record
Increment CNT_MATCH_ALL

WHEN(RECOl.KEY = REC_O2.KEY &
REC.Ol.KEY .LT.REC_03.KEY)
WRITE Message for not

matched on #3
READ FILE_O1 record
READ FILE_O2 record
Increment CNT_MATCH_1_2

WHEN(REC_01.KEY = REC_03.KEY &
REC_01.KEY .LT. REC_O2.KEY)
WRITE Message for not

matched on #2
READ FILE_01 record
READ FILE_O3 record
Increment CNT_MATCH_1_3

WHEN(REC_01.KEY .GT. REC_02.KEY
& REC_02.KEY = REC_03.KEY)
WRITE Message for not

matched on #1
READ FILE_02 record
READ FILE_03 record
Increment CNT_MATCH_2_3

WHEN(RECOl.KEY .LT. REC_02.KEY
&REC_O1.KEY.LT. REC_O3.KEY)
WRITE Message for REC-01.KEY

only on #1
READ FILE_01 record
Increment CNT_SCALE_123

WHEN(REC_02.KEY .LT. REC-01.KEY
&REC-02.KEY .LT. REC_03.KEY
)
WRITE Message for REC-01.KEY

only on #2
READ FILE_02 record
Increment CNT_SCALE_213

OTHERWISE
WRITE Messages for REC_01.

KEY only on #3
READ FILE_O3 record
Increment CNT_SCALE_312

END /*DOWHILE (KEY'S .LT.HIGH)*/
WRITE record counts
CLOSE all files

N.B. The end-of-file situation sets the record
keys to high values. This ensures that both
inputs are processed correctly when one end of
file is encountered before another. This logic
uses a switch to indicate when a file is empty this
is more efficient and still gives readable code,
rather than checking each key. Record counts
are assumed to be kept on each file READ.

568 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/566/344328 by guest on 09 April 2024

