
SHORT NOTES

Ord-Smith's pseudo-lexicographical permuta-
tion procedure is the Tompkins-Paige algorithm

Two of the classical permutation algorithms
that produce the sequence in pseudo-lexico-
graphical order are those of Tompkins and
Paige, on the one hand, and Ord-Smith, on the
other. The first uses only rotation, the second
only reversing. This paper shows that they are
closely related, in that a variant of the
Tompkins-Paige algorithm which uses right-
rotation, rather than the usual left-rotation, can
be simply transformed into the Ord-Smith
algorithm.

Received January 1990

1. Introduction

All of the permutation generation methods
currently in use are quite efficient - they take,
on average, a fixed (and small) time to generate
each permutation of the sequence. Further-
more, they belong to one of two groups, all
members of which can be speeded up by the
application of the same techniques. Therefore,
as Ord-Smith (1970) has observed, interest
now concentrates on the properties of the
sequences generated. Such properties include
the reflection-free property, the lexicographi-
cal property, the adaptability to back-tracking,
and the nature of the transformation from
one permutation of a sequence to the next.
Consequently the relationships between
methods of permutation generation form an
important area of study. In this paper we
show that the pseudo-lexicographical algor-
ithm of Ord-Smith is essentially equivalent to
the Tompkins-Paige algorithm.

As is traditional, we assume that the
permutations will take place in situ in an
array, p, of marks. P is of type perm which,
assuming the appropriate definition of
maxrange, is defined:

range = 1.. .maxrange;
mark = unspecified;
perm = array [range] of mark;

Considering only the operations on the
marks, as distinct from the operations needed
for control purposes, all permutation methods
use either:

% The swapping of two elements of p.
• The rotation of a contiguous part of p.
0 The reversing of a contiguous part of p.
0 Some combination of these.

The Tompkins-Paige algorithm uses rota-
tion exclusively, while Ord-Smith's algorithm
uses only reversing. It seems strange, at first
sight, that these two should be intimately
related. Indeed, from the output given in
Table 1 from the ACM algorithms imple-
menting these methods it is very difficult
indeed to see any similarity, and it is easy to
forgive the reviewers of permutation algo-
rithms, Sedgewick6 and Ord-Smith2-3 himself
for not discovering it. (The other reviewer,
Roy,5 discussed neither method.) The table
contains also the rank of each permutation
(i.e. its position in the sequence) and its
signature, a notion we will discuss presently. It
is the purpose of this paper to show the
relationship, and then to prove the equivalence
of the methods. We take the view that the
phrase 'the X permutation algorithm' applies
not just to the text of the procedure which first

Table 1. The permutation sequences for n = 4

ACM 68

Pi

1
2
2
3
3
1
2
3
3
4
4
2
3
4
4
1
1
3
4
1
1
2
2
4

Pi

2
1
3
2
1
3
3
2
4
3
2
4
4
3
1
4
3
1
1
4
2
I
4
2

Pa

3
3
1
1
2
2
4
4
2
2
3
3
1
1
3
3
4
4
2
2
4
4
1
1

Pi

4
4
4
4
4
4
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3

ACM 308b

Pi

1
2
3
1
2
3
4
1
2
4
1
2
3
4
1
3
4
1
2
3
4
2
3
4

Pi

2
1
1
3
3
2
1
4
4
2
2
1
4
3
3
1
1
4
3
2
2
4
4
3

p3 pt Rank

3 4 0
3 4 1
2 4 2
2 4 3
1 4 4
1 i

2 .
2 .
1 .
i :
4 :
4 .
l ;
l .
4 :
4
3 :
3 :
4
4
3
3
2
2

t 5
5 6
3 7
5 8
! 9
J 10
J 11
2 12
2 13
2 14
2 15
2 16
2 17

18
19
20
21
22
23

Signature

0
0
0
0
0
0
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3

?3

0
0
1
1
2
2
0
0
1
1
2
2
0
0
1
1
2
2
0
0
1
1
2
2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

" The Tompkins-Paige algorithm, given by Peck and Schrank (ACM 86).
" The Ord-Smith algorithm (ACM 308).

presented the algorithm X, but to a whole
class of procedures which use the same basic
strategy. Within a given class, there are
procedures which produce the marks in each
permutation in reverse order; procedures
which produce the sequence of permutations
in reverse order; procedures which produce a
sequence of inverse permutations; and those
which combine a selection of these, and other
variants. Our claim, then, is that the Tomp-
kins-Paige and the Ord-Smith algorithms
are in the same class, the Ord-Smith algorithm
being essentially a transformation of one
variant of the Tompkins—Paige algorithm.

2. The Ord-Smith algorithm

The Ord-Smith algorithm as given in ACM
308 was coded in Algol, the appropriate
language of the time. In Figure 1 we give a
version in Pascal. Its action is specified by its
pre- and post-conditions. On the first entry
first should be true and x should contain the
initial permutation (whose rank is 0): on
subsequent entries first should be false, x
should contain a permutation and q contain
its signature. (The function count to be defined
shortly returns a natural number which is
equal to the rank of the corresponding
permutation.) On exit either the permutation
provided in x was the last, in which case first
is set true, or e\se first is set false, x is set to the
next permutation and q adjusted accordingly.
Note that q is quite redundant. It is just a
particular representation of the rank, as
described later. Provided that the implemen-
tation of natural numbers is generous enough,
it could be replaced by rank. Note that in

Figure 1 Econoperm has been subject to some
correctness-preserving transformations:
• Structured constructs have been introd-

uced, since Algol was not sympathetic to
their use.

procedure Econoperm (var x: perm;
n: range;
yarfirst: Boolean;
var q: signature);

{Pre: first A rank(x) = 0 V ~first A
0 < count(q) = rank(x) 4 «! — 1}

{Post: first A rank{x) = rank(X) = n\ - 1 V
~first A 0 < counl{q) = rank(x) =
rank(X)+\ < « ! - l }

var
k: range;

begin
if first then

for k: = 2 to n + 1 do
#]:=0;

k:=2;
while q[k] = k— 1 do

begin
#]:=0;
k:=k+\

end;
first : = k = n+\;
if not first then

begin
Reverse(x, l , k) ;
#]:=<#]+1;

end
end; {of procedure ' Econoperm'}

Figure 1. The Ord-Smith algorithm.

THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991 569

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/569/344335 by guest on 10 April 2024

SHORT NOTES

• The sequence for reversal has been abs-
tracted into the procedure Reverse(p,k,ri)
which reverses the elements p[k...«].

• Identifiers have been changed to allow
compatibility with Figure 2.

• The procedure has been fully paramet-
erized, since Pascal does not include the
notion of an own variable.

• The range of c[k] has been transformed
from 1.. .k to 0... k — 1, to enable the post-
condition to be more simply expressed.
Note that this does not imply a change of
computation as c[k] is used purely for
counting. The type of c is:

signature = array [range] of range

These transformations preserve the fun-
damental character of the procedure, and
indeed the procedure of Figure 1 was obtained
by the author from a sequence of trans-
formations from a version transliterated from
the original Algol. As Ord-Smith did in his
review we have extended the procedure to
handle the case of n = 1.

We will not seek to prove the algorithm
here, because it is much easier to do when it is
expressed as a recursive procedure which
generates all permutations in sequence. In-
stead, we content ourself with explaining its
action. We will be considering the change to
produce a permutation from its successor —
and we will concentrate on the second of the
pair. Notice first that every odd-ranked per-
mutation is obtained from its predecessor by
reversing the first two elements: the seventh
permutation (14 2 3) is obtained from the
sixth (4 12 3) by reversing the 4 and the 1.
Now consider the even-ranked permutations.
They are obtained by bigger reversals. To get
the second and the fourth the first three
elements are reversed. For the sixth the first
four. (In this example all four!) Then for the
eighth and tenth the reversal is again of length
three, followed by one of length four for the
twelfth. This continues until the twenty-fourth,
which would require a reversal of length five.
These numbers 1, 2, 6, 24 are the factorials of
1,2,3,4. The signature q holds the information
required to determine the length of shift
required. If q2 = 1 then the shift is of length
two; if q2 = 0 and q3 = 1 or 2, then the shift is
of length three; if q2 = q3 = 0 and q4 = 1, 2 or
3, then the shift is of length four; and so on.
The values attained by qk range from 0 to
k— 1. The adjustment process involves finding
the smallest k such that qk has not reached its
maximum, incrementing it and resetting to 0
all the elements of q whose subscript is less
than k.

Notice that in Table 1 the elements of q
have been written backwards, because it is
instructive to read them as the digits of a
number, that, rather than having weights of 1,
10, 100 and so on in the usual decimal system,
have weights of 1, 2, 6, 24-i.e. the factorial
numbers. Thus (2 2 1) has the value

2*6 + 2*2+1*1 = 17. Each signature has the
same value as the rank of its associated
permutation. (Thus the signature, as we noted
earlier, is clearly redundant because it can be
obtained from the rank by successive divisions
by the factorial numbers.) This idea of having
different weights for digits permeates the
Imperial system of weights and measures. It
has been called a mixed-radix system by Ord-
Smith and factorial counting by Sedgewick.
This counting is a feature of all pseudo-
lexicographical permutation algorithms.

3. The Tompkins— Paige algorithm

The Tompkins-Paige algorithm is a little more
complicated because the action required to
convert one permutation into the next is not a
single (reversing) operation, as is the case with
Ord-Smith, but a sequence of (rotating)
operations. Every odd-ranked permutation is
obtained from its predecessor by rotating the
first two elements: with two elements, rotating
and reversing are equivalent! To get the second
and the fourth permutations from their pre-
decessors, the first two elements are rotated
left and then the first three. For example,
given that the third perm is (3 2 1 4), the
fourth (3 12 4) is got by rotating the first two
elements giving (2 3 1 4), and then the first
three giving (3 1 2 4). For the sixth permu-
tation, the first two, then the first three and
lastly the first four elements are rotated. And
so on. Within the algorithm this is achieved by
rotating within the loop searching for k, as
well as in the sequence for updating x. A
Pascal procedure, based on the original al-

procedure Permute (var x: perm; n: range;
varfirst: Boolean;
var q: signature);

{Pre: first A rank(x) = 0 V ~first A
0 < count(q) = rank(x) ^ n\ — 1}

{Post: first A rank{x) = rank(X) = n\ - 1 V
~first A 0 < count(q) = rank(x) =
rank{X)+\ < « ! - l }

var k: range;
begin

if first then
for k: = 2 to n + 1 do

?[*]:= 0;
k:=2;
while q[k] = k-\ do

begin
Rotate(x, \,k);
q[k]:=0;
k:=k+\;

end;
first := k = « + 1;
if not first then

begin
Rotate(x, 1,/c);
q[k]:=q[k]+l

end
end: {of procedure ' Permute'}

Figure 2. The Tompkins-Paige algorithm.

gorithm given by Peck and Schrank, and
transformed along the same lines as the Ord-
Smith algorithm appears as Figure 2.

4. The relationship of these procedures

As we noted to start with the sequences
generated by these two procedures are quite
different. But, suppose that the direction of
rotation in the Tompkins-Paige algorithm is
changed to be a right shift. (We are expanding
the class of Tompkins-Paige algorithms to
include those with right-rotation and even
those in which the direction of rotation varies
with the length of rotation!) In this case the
sequence generated is precisely that of the
Ord-Smith procedure!

It is interesting to note that all descriptions
of the Tompkins-Paige algorithms so far
published have used the left shift automati-
cally, as if there were no other way!

As the descriptions of Sections 2 and 3
showed, the only difference between the
algorithms is that Tompkins-Paige requires a
series of progressively longer rotations to take
place on p, while the Ord-Smith requires a
single reversal. Using the symbol ' ; ' in a way
analogous to the traditional use of Z and n, to
represent the concatenation of statements, the
equivalence of the procedures can be expressed
as the identity:

k

; Rotate{p, 1,0 = Reverse(p, \,k)
i-1

which may be easily proved by induction on
the length of the string being reversed (=
k— 1), provided that the Rotate represents a
right rotation.

REFERENCES
1. R. J. Ord-Smith, Generation of permuta-

tions in pseudo-lexicographical order (Al-
gorithm 308), Comm. ACM 10 (7), 452
(1967).

2. R. J. Ord-Smith, Generation of permu-
tation sequences Part I, Computer J. 13
(3), 152-155 (1970).

3. R. J. Ord-Smith, Generation of permu-
tation Sequences Part II, Computer J. 14
(2), 136-139 (1971).

4. J. E. L. Peck and G. F. Schrank, Permute
(Algorithm 86), Comm. ACM 5 (4),
210-211 (1962).

5. M. K. Roy, Evaluation of permutation
algorithms, Computer J. 21 (4), 296-301
(1978).

6. R. Sedgewick, Permutation Generation
Methods, Computer Surveys 9 (2), 136—
164 (1977).

J. S. ROHL1

Department of Computer Science,
The University of Western Australia,
Nedlands, Western Australia, 6009

On sabbatical leave at Cornell Univer-
sity.

570 THE COMPUTER JOURNAL, VOL. 34, NO. 6, 1991

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/34/6/569/344335 by guest on 10 April 2024

