
A New Access Control Method Using Prime Factorisation

J.-J. HWANG1, B.-M. SHAO2 AND P. C. WANG3*
'•Department of Management Science and Institute of Information Management, National Chiao-Tung University, Hsinchu, Taiwan 30050, R.O.C.
2 Institute of Information Management, National Chiao-Tung University.
3 Institute of Statistics, National Central University, Chungli, Taiwan 32054, R.O.C.

Based on prime factorisation in number theory, a new but simple and efficient protection method for access control is
proposed. This method has several advantages on performance over previous methods in the literature. Especially, a
file I user can be added to or removed from the system without much effort. Excellence of this method is more
pronounced for those systems where files are accessible to only a few users.

Received May 1991; revised August 1991

1. INTRODUCTION
Access control protects privacy, integrity and availability
of information in computer systems. It determines the
accesses to information resources stored in a system by
verifying the access rights of accessors. Accessors could
be users, processors or processes. Resources could be
files, proprietary programs, memory segments or devices.
Access rights could be read, write, execute, own, or
various privileges of changing the access rights. For
discussion, the terms user and file are chosen here to
represent accessor and resource respectively.

An access matrix as given in Fig. 1 is used to specify
access rights of users to files. Particular implementations
of the matrix can be impractical or inefficient depending
on various factors.1'2 Instead, Wu and Hwang2 proposed
an alternative scheme storing just one key for each user
and one lock for each file. To figure out access rights
(at})s of users to files, a function / of key Kt and lock L}
is used. Mathematically, J{K(, Lt) = ai}.

Several relevant methods appeared in the literature
after Wu and Hwang's work. Chang proposed two of
them based, respectively, on the Chinese remainder
theorem and Euler's theorem in number theory.34 Laih
et al. used Newton's interpolating polynomial to design
another method in 1989,8 while Chang and Jiang
presented a binary version of Wu and Hwang's method.6

These were classified as single-key-lock (SKL) schemes.

User Ui

U\

U2

U3

UA

File Fj F\

4

0

1

1

F2

0

2

4

0

F 3

3

4

0

1

F4

0

2

0

4

^ 5

4

0

1

0

3

4

2

0

0: No access
1: Execute
2: Read
3: Write
4: Own

Figure 1. An access matrix |as]4x6.

• To whom correspondence should be addressed.

In order to evaluate the effectiveness and efficiency of
an SKL scheme, the following six criteria are considered.

(1) Effort for initialising keys and locks.
(2) Effort for computing an access right from a lock

and key.
(3) Effort for revising keys and locks when an access

right is modified.
(4) Effort for appending and updating keys and locks

when a new user or file is added.
(5) Effort for removing and updating keys and locks

when a user or file is deleted.
(6) Space for storing keys and locks.
A method will satisfy user/file appendability if the

action for adding a new user/file is done by appending a
new key/lock without affecting existing keys and locks.
It is similarly said to satisfy user/file removability if the
action for deleting an existing user/file is done by
removing a key/lock without affecting other keys and
locks.

In this paper we develop a new but simple and efficient
SKL scheme using prime factorisation. Based on the
criteria above, our method has good overall performance.
In the next section, the idea is presented first and then
three algorithms are developed for practical application.
In section 3 our method is compared with previous ones.
The conclusion follows.

2. THE NEW METHOD

2.1 Basic mechanism
The unique factorisation theorem states that the factoring
of any integer n > 1 into primes as n = p^p%*...p"' is
unique, wherepts are distinct primes (p± < p2< ... < pr)
and N(is the number of occurrences of pt in factoring n.
This representation of n as a product of prime powers is
called the canonical factorisation of n. The uniqueness of
this factorisation was proved by Gauss.7 For example,
the unique way to factor 180 is (180 = 22-32-51).

Like other SKL schemes, our method assigns a key
to each user and a lock to each file. Distinct primes
in a given list are used as keys, say {Kt}. Let [atf]mxn
be an access matrix. Locks (L}) are then computed by

Let the maximum of access rights be amax. Algorithm
A below is used as f[Kf, L}) to figure out access rights (atj)
from keys and locks.

16 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/16/398209 by guest on 09 April 2024

A NEW ACCESS CONTROL METHOD USING PRIME FACTORISATION

Algorithm A
Input. Key Kt of user U(and lock L} of file Fr

Output. Access right a(j of U, to F}.
Step 1. Input Kt and L}.
Step 2. Set «„ = 0, Temp = Ly

Step 3. Repeat
Compute Q = Temp/Kt.
If 2 is an integer Then Set a(j = atj + 1, 7em/> = Q.
Until g is not an integer Or atj = amax.

4. Output a i r

Performance of the proposed method will now be
discussed based on six criteria set in Section 1. First,
primes used as keys are available in many books on
number theory (e.g. Ref. 7) when the number of users is
moderate. As many as we need can be generated from a
computer. Lock Lt = II™ j Kf'i is not difficult to compute.
Since a(j = 0 represents ' no access', computations of L}

are relatively simple for the case in which most files are
only accessible to a few users, resulting in a sparse access
matrix whose entries are mostly zeros. More important,
such cases are common in the general time-sharing and
multi-user systems.

Second, Algorithm A uses several divisions to find ai}.
The number of divisions is clearly bounded by amax,
which is usually a small positive integer. Computation of
ai} is efficient.

Third, when an access right is changed from ai} into a'tj,
lock L} is changed into L] = L, K<a<r™f h». All keys
and other locks are retained. Such a revising effort is
small.

Fourth, the case of adding a new file Fn+1 is considered.
Our method needs to compute Ln+1 = Tl^K"'"^ only.
This is done without modifying existing keys and locks.
File appendability is hence satisfied. To delete an existing
file, it is enough to discard the corresponding lock. File
removability is also satisfied.

Fifth, to add a new user t/m+] with access rights am+14

fory = 1,2,...,«, an unused prime Km+1 is assigned as his
key. The locks of existing files accessible to Um+1 are then
recomputed by L'} = Lj(Km+l)"'»+'i. It is emphasised that
only the locks of existing files which Um+l can access need
to be altered, since L}(Km+1)

a<»+i-i = L} if am+l t = 0. It is
common that most users cannot access files of others.
Thus in most cases appending a new user only requires
changing a few locks. To delete user Ur, L\ = LiK~m'-Li>

is recomputed for any F} of the files accessible to Ur (i.e.
J{Kr, Lt) > 0). Kr is then reserved for future users.

Finally, storage of keys should not be difficult. Locks
here, however, are apt to overflow beyond the largest
integer allowed in a system. The next subsection offers a
solution to this problem.

Example 1
Application of the proposed method will now be
illustrated using the access matrix [ay]4x6 in Fig. 1.

(1) Initialisation. Let K^ = 2, K2 = 3, K3 = 5 and
Kt = 7. Then Lv = 24-51-71 = 560, L2 = 32-54 = 5625,
L3 = 23-34-7l = 4536, L4 = 32-74 = 21609, L5 =
24-51 = 80, and L6 = 23-34-52 = 16200.

(2) Verifying access request. Suppose the system
receives access request (f/^i^, 3). The scheme fetches
Kt = 2 and L3 = 4536 to compute^, 4536) = 3. Request
is then accepted. Access request (U3,FS, 2) would be
rejected, since J{K3, Lb) =/(5,80) = 1 4= 2.

(3) Changing access right. Assume a22 is changed into

3. Lock L2 is recomputed as L'2 = L2 K£-fiKt L2>> =
5625-3(3"2) = 16875.

(4) Addition and deletion of files. If U2 creates a new
file F1 that U1 can read, U3 can execute and Ut cannot
access, then L7 = 22-34-51 = 1620. Deleting F7 is ac-
complished by simply dropping L7.

(5) Addition and deletion of users. Suppose a new user
Ub with a51 = 1, ab2 = 0, aM = 1, aM = 0, abb = 2, and
a56 = 0 is added to the system. A key Kb = 11 is assigned
to him. Locks Lr, L3, and Lb of the files accessible
to Ub need to be revised: L[= 560- I I 1 = 6160, L'3 =
4536-II1 = 49896, and L'b = 80- I I 2 = 9680. Deleting
Ub is done by recomputing LJ = L'} • Ki1{K^ ^ = L} for

7 = 1 , 3 , 5 .

2.2 Decomposition of locks

In the new method, user keys (K() are prime numbers and
file locks (Lj) are computed by Lt = U^ K"l>. Since a
lock is the product of some prime powers, it may easily
exceed the largest integer allowed in a computer with b-
bit integer wordlength. To solve this overflow problem,
lock decomposition is necessary. A base X is chosen to
divide lock Lt recursively as follows until the last quotient
Qj, is zero.

where remainders (Rh k) satisfy 0 ^ R} k < X for k =
1,...,/. To avoid overflow computations in the algorithms
given later, X has to be chosen no larger than the square
root of 2". Also, keys have to be set less than X (i.e.,
X< 2* and K(< X for / = \,2,...,m).

In notation,

which is called Lt in A'-based form. For example, if
L,= 165 and X= 8, 165 = 2-82 + 4-81 + 5 = (2,4,5) and
Lj is represented by (2,4,5). Using this representation of
locks, locks can be stored without problem. Algorithm
B, however, needs to be repeated several times to
generate each of the locks in Jf-based form.

Algorithm B
Input. Multiplicand Mpd'xn J -based form (,R]t, -fy,j_i, •••,
Rj j) and multiplier Kt.
Output. Product P in A'-based form (Pp,...,Pl).
Step 1. Input Mpd in A'-based form (R}A, Rj t_x,..., R}A)
and K,.
Step 2. Set carry = 0.
Step 3. Begin For k = 1 To / Do

Compute
N= Rj k-K, +carry,
carry = l£j,
pk = N - carry-X.

End.
Step 4. If carry > 0 Then Set p = /+ 1, Pp = carry Else
Set p = I.
Step 5. Output {PV,...,PX).

On the other hand, a special type of A'-based division
is also needed to compute at]. Algorithm C below is
devised to perform the A'-based division ' Q — Temp/Kt'
in Algorithm A when lock decomposition is incorporated.

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 17
CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/16/398209 by guest on 09 April 2024

J.-J. HWANG, B.-M. SHAO AND P. C. WANG

Algorithm C
Input. Dividend Dvd in A'-based form (Rul,R}(_j,...,
Rjtl) and divisor Kt.
Output. Quotient Q in A'-based form {Qq, ...QJ with
remainder r.
Step 1. Input Dvd in A'-based form (Rhi,Ritl_x,...Rh^)
and K(.
Step 2. Set r = 0.
Step 3. Begin For k = I Down To 1 Do

Compute

end.

Jfc — iKih

r = N-QkKt.

Step 4. If 8, > 0 Then Set q = / Else Set q = / - 1 .
Step 5. Output (QQ,-Qi) and r.

Note that computations of 'N = Rlk-K(+carry' in
Algorithm B and ' N = R} k + r • A" in Algorithm C do not
overflow due to our appropriate choice of X < 2'*J in a
system with 6-bit integer wordlength.

2.3 Exploration of storage requirement

We first count how many users the method can
accommodate. If the integer wordlength has b = 32 bits,
X = 21 '̂ = 216 = 65 536. Primes less than 65536 are
candidate keys for users and the number of such primes
is 7r(65 536) = 6542. The method can hence accommodate
6542 users. It would be enough for practical use, and key
decomposition would be unnecessary. With the increase
of b, user accommodation is exponentially enlarged. If
b = 64 bits, X = 2'^' = 232 and from the prime number
theorem,7 user accommodation would be increased to

193635000. Therefore, the storage of

keys is not a problem in the new scheme.
Next assume / is the greatest length of all locks in A'-

based form. L} = Uf_ 1 K^> < Ft™, KJ"-« < Uf_l X"™* =
r"™1" and then / < amax-m. Storage for files with lock
decomposition is hence O(mri).

In order to further explore how lock decomposition
works, a simulation study on a 32-bit Personal System/2
has been conducted (coded in C). Various numbers of
users and files were carried out for explorations. Two
deterministic parameters are picked in the study:
Non-Zero-Rate, which is defined as the ratio of nonzero
entries in the access matrix, ranges from 0.1 to 0.9 with
increment 0.1, and amax is set to 2,3,4,...,9. Then two
uniform distributions are utilised to determine who has
the right to access a file and what access right one has
when offered respectively. Available primes were picked
for keys, and locks in A'-based form were found using our
procedure. The spaces needed for these locks were
counted and divided by mn to give the Storage-Index.

For different m and n, we obtain similar results. Only
the results in the case of m = 5000 users and n = 50 files
are summarised in Fig. 2 with Non-Zero-Rate in the
A'-axis and Storage-Index in the Y-axis. Each solid line
represents a relation of Storage-Index with Non-
Zero-Rate for different amax. The dashed line represents
the constant Storage-Index one. Surely small Storage-
Index is preferred. As in Fig. 2, most cases have
Storage-Index smaller than one. This means most of
time the storage for locks in our procedure is less than

1.2

1.1

1.0

0.9

g0.8

£0.6
to

0.5

0.4

0.3

0.2

0.1

(9X8X7X6) (5) (4)

U 11 l J /
It Ll J / ~/ n
II 1/ 7 / /
II 1 1 / /1/11/ / / ^////// /HI// / / /' Hi// / /

- 1 /// / ():flnm

- W///
-Iff///
p , 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Non_zero_rate

Figure 2. Simulation result of storages in the case of m = 5000
and n = 50.

mn. Some cases such as amax = 9 and Non-Zero-Rate =
0.1 save even more (60% of spaces). Some cases without
sparse access matrix, say, Non-Zero-Rate > 0.3, would
have Storage-Index greater than one. However, this does
not need to be emphasised, since the access matrix is
usually sparse in a time-sharing and multi-user computer
system.

3. COMPARISONS
In this section, our method is compared with SKL
schemes in the literature based on six criteria set in
Section 1. Previous methods are briefly reviewed.

Wu and Hwang2 used vectors Kt and Lt as keys and
locks to find al} through j{Kt, Lj) = AT,*L, = atj, where the
operator * denotes the inner product in Galois field GF(t)
and / is the smallest prime larger than amax. Key vectors
(K() must be linearly independent, and lock vectors (L})
are constructed by solving sets of linear equations.

Chang's method,3 referred to as Chang's 86, is based
on the Chinese remainder theorem. Access right is
computed by J[Kt, Lt) = K(mod Lt = a(j. File locks (£,)
are coprime numbers and user keys (Kt) are computed by

i-i

Xj a(j mod L, (i = 1,..., m),

where L = Y\l_xLk, and x} satisfies (L/L,) x} mod L} = 1.
Note that the extended Euclid's algorithm is needed to
find x /

Chang's method,4 referred to as Chang's 87, utilises
Euler's theorem. Access right is obtained by J{K(,L^) =
[K(/L}\ mod n = ai}. Locks (Ly) are coprime numbers and
keys are computed by

n

Kt = 2 \aiS • Lt/n] nMp (i = 1,..., m),
i-i

where M, = (L/Ll)*
tLf\L = n't

l_1Lk and ^ is Euler's
totient function. Note: Af, need extra computations and
are very large numbers for a general n.

18 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/16/398209 by guest on 09 April 2024

A NEW ACCESS CONTROL METHOD USING PRIME FACTORISATION

Aiming at user/file appendability, Laih et a/.20 designed
an SKL system using Newton's interpolating polynomial.
Keys (Kt) are arbitrarily selected. Prime P is then chosen
to satisfy P > amax and K(=j= K} mod P for Kt # Kr Lock
vectors (Lt) are computed based on the coefficients of
Newton's interpolating polynomial. There are m co-
efficients Gi

i in the polynomial corresponding to each
lock, L,(x) = G^ix-K^Hx-K^J- • • (* -* ,)+ • • • +
G{(x - KJ + Gj

1(J =!, . . . ,«) , where

Table 2. Computation of access rights

n (*,-*.)
s-l

is computed recursively with starting value G{ = al}.
Access right is obtained by computing

Note: G3
i involve complex computations.

Chang and Jiang6 offered a binary version of Wu and
Hwang's SKL scheme. Keys are linearly independent
vectors with 0 and 1 components. Lock L} is expanded to
a binary dxm matrix, where 2d ̂ amax- The 5th bit of
a(j = Kt*Lsj, where * is the inner product in GF(2) and
Lsj means the 5th row of lock Lj (1 ^ s < d, 1 < / < w,
1 <7<n) .

Each method introduced above has its own ways of
dealing with the six criteria for evaluating an SKL
scheme. They are summarised in the following six tables.

Table 1 deals with initialisation of m keys and n locks.
Note: the underlined items xp Mp and Gj

t are barriers to
computations of keys or locks in corresponding methods.
Solving sets of linear equations is also time-consuming.
This may suggest that our method demands the least
effort for initialisation among all six methods. Chang's
two methods have to resolve the same overflow issue as
ours and may apply the same decomposition technique.

Numbers of operations to find access rights are given
in Table 2. Chang's 86, 87, and our method need only a

Table 1. Initialisation of keys and locks

SKL schemes
Effort for initialising m keys and n
locks

Wu and Hwang's

Chang's 86

Chang's 87

Laih et al.'s

Chang and Jiang's

Our method

Give m keys, solve n sets of m linear
equations for n lock vectors

Give n locks, compute
n

Kt — S (.L/LJXjdy mod L for m
i-i

keys
Give n locks, compute

n

K, = S \atj Lt/n\nM^ for m keys
i-i

Give m keys, obtain

L,(x) =llG^n(x-Kl) for n lock
i-i «-i

vectors
Give m keys, solve n sets of dm 0-1
linear equations for n lock matrices

m

Give m keys, compute L} = IT K?" for
("i

n locks in A"-based form

Operations needed to compute access
SKL schemes right a(j

Wu and Hwang's

Chang's 86
Chang's 87
Laih et al.'s

Chang and Jiang's

Our method

m multiplications, (m— 1) additions
and one division

One division
Two divisions and one subtraction
(i— 1) multiplications, (i— 1) additions
and one division

dm ANDs and d(m- 1) XORs (very
fast in GF(2))

< amax (A'-based) divisions

Table 3. Modification for changing access rights

SKL schemes
Effort for changing access right afj
into a'.,

Wu and Hwang's

Chang's 86

Chang's 87

Laih et al.'s

Chang and Jiang's

Our method

Solve a new set of m linear equations
forZ,;

Recompute

Recompute

Recompute the (m — i+ 1) coefficients
G>t{t = /,...,m) for L't

Solve a new set of dm 0-1 linear
equations for L'f

Recompute L] = LtK\a'v-'<Ki)-Li»

Table 4. Appendability

SKL schemes User appendability File appendability

Wu and Recompute all lock Yes
Hwang's vectors

Chang's 86 Yes Recompute all keys
Chang's 87 Yes Recompute all keys
Laih et al.'s Yes (add a coefficient Yes

to each lock vector)
Chang and Recompute all lock Yes
Jiang's matrices

Our method Recompute the locks Yes
of accessible files
only

constant number of operations to compute access rights,
while others require a number of operations proportional
to m (i.e. the number of users).

Table 3 shows that only Chang's 86, 87, and our
method can modify the original key or lock value to gain
a new one, so the recomputation efforts are smaller than
those of other methods. Modifications in Chang's two
methods are, however, more complex due to compu-
tations of xp Mf and L.

Properties of appendability and removability listed in
Tables 4 and 5 might be critical for practical application.
For appendability, Laih et al.'s is best because it satisfies
both user and file appendability. Our method satisfies

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 19
2-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/16/398209 by guest on 09 April 2024

J.-J. HWANG, B.-M. SHAO AND P. C. WANG

Table 5. Removability

SKL schemes

Wu and
Hwang's

Chang's 86
Chang's 87
Laih et al.'s

Chang and
Jiang's

Our method

User removability

Recompute all lock
vectors

Yes
Yes
To delete Ut,
recompute (rn — i)
coefficients GJ(/+ 1 <
t ^ mi) of all L}s for
deleting G>t

Recompute all lock
matrices

Recompute the locks
of accessible files
only

Table 6. Storage of keys and locks

SKL schemes
Required storage
locks

Wu and Hwang's O(m2 + mri)
Chang's 86
Chang's 87
Laih et al.'s

O(m + n)*
O(m + n)*
Oimn)

Chang and Jiang's (/n2 + dmri) bits
Our method O(mn)

File removability

Yes

Recompute all keys
Recompute all keys
Yes

Yes

Yes

of m keys and n

Chang ignored the overflow issue and obtained O(m + n).

file appendability, and when a new user is added it
recomputes only the locks of accessible files instead of all
locks. Our method would be the second and not far away
from best. For removability, our method satisfies file
removability, and when a user is deleted it recomputes
only the locks of accessible files instead of all locks. Our
method is hence best among all six methods for
removability. In summary, the recomputation effort of
our method is relatively small when a user is added to or
removed from the system, especially for the case of a
sparse access matrix.

Storages of keys and locks are as shown in Table 6.
Note that the O(m + n) for Chang's methods were
obtained by ignoring the overflow issue. According to
the formula for computations of keys, the key de-
composition would require no less than 0{mn) storage
for both Chang's methods. The storage requirement
analysis in Section 2.3 indicates that our method would
have more space saving for the cases with sparse access
matrices.

4. CONCLUSION

Based on six criteria, our SKL scheme is a considerably
better method for access control than most of the other
comparable schemes. The merit lies in its simplicity in
terms of both the underlying idea and the algorithm for
computing access rights. The convenient way to modify
keys and locks while adding or removing files/users is
also impressive, especially for the case of a sparse access
matrix. Before any better scheme appears, our method is
a good alternative to the ones in the literature.

REFERENCES
1. D. E. R. Denning, Cryptography and Data Security. Addi-

son-Wesley, Reading, MA (1982).
2. M. L. Wu and T. Y. Hwang, Access control with single-

key-lock. IEEE Transactions on Software Engineering 10
(2), 185-191 (1984).

3. C. C. Chang, On the design of a key-lock-pair mechanism
in information protection systems. BIT 26 (4), 410-417
(1986).

4. C. C. Chang, An information protection scheme based
upon number theory. The Computer Journal 30 (3), 249-253
(1987).

5. C. S. Laih, L. Harn and J. Y. Lee, On the design of a

7.

single-key-lock mechanism based on Newton's inter-
polating polynomial. IEEE Transactions on Software
Engineering 15 (9), 1135-1137 (1989).
C. K.. Chang and T. M. Jiang, A binary single-key-lock
system for access control. IEEE Transactions on Computers
38(10), 1462-1466(1989).
I. Niven and H. S. Zuckerman, An Introduction to the
Theory of Numbers. Wiley, New York (1980).
D. E. Knuth, The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, MA
(1980).

20 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/16/398209 by guest on 09 April 2024

