
A Train Set as a Case Study for the Requirements Analysis of
Safety-Critical Systems

R. DE LEMOS, A. SAEED AND T. ANDERSON
Computing Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU

Requirements analysis plays a vital role in the development of safety-critical systems since any faults in the
requirements specification will corrupt the subsequent stages of system development. Experience in safety-critical
systems has shown that faults in the requirements can and do cause disasters. The analysis of the safety requirements of
a train set system is discussed in terms of a general framework for the requirements analysis of safety-critical systems.
This framework is based on the clear separation of the mission and safety issues, and also on the separation of the
analysis, into two phases, to be performed in terms of the properties of the real world, i.e. physical laws and rules of
operation, and the properties of the system, i.e. the mapping of the real world properties in terms of the system sensors
and actuators. Due to the different expressive needs of the two phases we propose the utilisation of different formal
models, respectively, a logical formalism (Timed History Logic) and a net formalism (Predicate-Transition nets).

Received July 1991, revised September 1991

1. INTRODUCTION
A safety-critical system is a system for which there exists
at least one failure that can be adjudged to cause a
disaster (e.g. loss of life). As the use of computers
increases in critical applications and the level of criticality
of the roles performed by the computers also increases,
new methods for the development of such systems are
urgently needed. One approach to improving the level of
safety is to use formal specification and verification in
conjunction with other methods of software develop-
ment, such as testing and software fault-tolerance. The
potential advantages of using formal methods, apart
from contributing to improving the understanding of the
whole specification, include unambiguity, refinement
consistency, and the opportunity to check for com-
pleteness (with respect to a key set of questions and
inferences based on the information specified).5

A further motivation for the work presented in this
paper is the belief that a substantial improvement in the
dependability of safety-critical systems can be achieved
by performing a formal assessment on the results of the
requirements analysis before proceeding to any sub-
sequent phases. The aim of this approach is to locate and
remove faults introduced during requirements analysis.
(Although 'safety' is an attribute of the system rather
than just software, in this paper the study is restricted to
problems related to 'software safety'.)

The approach to be followed, in a framework for the
software requirements analysis for safety-critical systems,
is based on a clear separation of the mission and the
safety requirements, and moreover, the subdivision of
the analysis of the safety requirements into two distinct
phases. On the one hand, the mission requirements focus
on what the system is supposed to achieve in terms of
function, timeliness and some dependability requirements
- namely the attributes of reliability, availability and
security. On the other hand, the safety requirements
focus on the elimination and control of hazards, and the
limitation of damage in the case of a disaster; in other
words, they are related to the safety attribute of
dependability.8

As far as the analysis of the safety requirements is

concerned, we recognise two phases: the first deals with
the identification of the real world properties, and the
second deals with the mapping of these properties into
the system.1 Or alternatively, we are concerned with the
laws or rules which dictate the behaviour of the system,
and how these laws or rules are perceived and handled by
the system. Because of the differing characteristics of
each phase, instead of seeking a single formalism this
paper discusses the approach of using a different
formalism for each phase.13 This has the advantage of
allowing us to select formalisms in accordance with the
properties that need to be expressed at each phase of
development. The formal specification and verification of
the safety requirements of a train set system presented in
this paper aims to show that different formalisms can be.
integrated, exploiting the most appropriate features of
each formalism.15

The rest of the paper is organised as follows. In the
next section we present some justification for the
separation of the mission from the safety requirements.
Section 3 presents the framework for the formal
specification and verification of the safety requirements,
giving the characteristics and the formalism to be used in
each phase. In Section 4, an example based on a train set
crossing is discussed, in accordance with the framework
of the previous section. Finally, Section 5 presents some
concluding remarks.

2. SEPARATION BETWEEN THE MISSION
AND SAFETY REQUIREMENTS

The adoption of a general structure for a safety-critical
system will be a useful guide to the requirements analysis,
since it allows the analysis to be split into different
phases. For applications referred to as process control
systems, which are the primary focus of this paper, a
commonly accepted structure is to partition the system
into three distinct components: the operator, the con-
troller and the physical process (or plant). The en-
vironment is that part of the rest of the world which may
affect, or be affected by, the system. This structure is
further decomposed, to reflect the decision to separate

30 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

A TRAIN SET AS A CASE STUDY

the mission and safety requirements, into mission and
safety operators, and mission and safety controllers.

By analysing the progression of events that result in a
disaster,11 a justification for the separation between the
mission and the safety requirements can be obtained.
The initiating event is an event that can put the system in
a hazardous state. A hazard is a physical situation,
expressed as a system condition, that can lead to a
disaster. A disaster is an unintended event or sequence of
events that cause death, injury, environmental or material
damage. The boundary between the safe and unsafe
states of a system is related to the initiating events of the
system. Thus, we define an unsafe state as a system state
which follows some initiating event that can lead to a
hazard, unless the safety controller and/or the safety
operator takes corrective action. We apply the mission
requirements to the behaviour of the system while it is in
a safe state, and the safety requirements to the behaviour
of the system when it enters an unsafe state.

There are some safety-critical systems for which the
separation between mission and safety issues is realised
at the level of the physical process, for example, the
identification of shutdown systems of nuclear power
plants. Other systems allow a separation to be made at
the controller level, such as railway systems.2 Whether it
is feasible to separate the mission from the safety
requirements for a particular safety-critical system
depends on the ease with which a distinction can be
drawn between safe and unsafe states. The mission
controller is concerned with system behaviour while the
system is in a safe state, and the safety controller when
the system is in an unsafe state. Furthermore, the aims of
the two controllers are distinct. The mission controller
ensures that the mission is accomplished - this will also
require that the system does not enter into an unsafe
state. The safety controller is concerned with avoiding
hazardous states by dealing with the unsafe states that
precede these states; it is assumed that the system does
not start in a hazardous state.

Some of the benefits of making this distinction during
requirements analysis are: the resolution of potential
conflicts, detection of omissions and inconsistencies
between the mission and safety issues, the ability to focus
on the safety-critical issues, and the simplification of
safety certification.

3. ANALYSIS OF THE SAFETY
REQUIREMENTS OF SAFETY-CRITICAL
SYSTEMS
The basic concern in this paper is with the analysis of
requirements and not with their elicitation (the process
of acquisition of the relevant information from the user).
We deal with techniques that can be used to reduce (or
eliminate) the possibility of the occurrence of hazards
due to faults introduced during the requirements analysis.

In the following, two phases of the analysis of the
safety requirements are presented in terms of their main
characteristics. These two phases are called the Safety
Requirements Analysis and the Safety System Analysis.
The separation of the analysis into these two distinct
phases is intended to simplify the analysis task, permitting
an easier understanding and reasoning about the real
world properties, and how the system perceives and
manipulates them.

Within the overall framework, we assume that there
exists another phase - Conceptual Analysis - which
should be conducted before the two mentioned above;
this is intended to produce an initial informal statement
of the aim and purpose of the system and to determine
what is meant by safety for the system. As a product of
this phase we obtain the Safety Requirements, enumer-
ating the potential disasters, and the hazards related to
these disasters.

3.1. Safety requirements analysis
In this phase, the real world properties, in terms of
physical laws and rules of operation, are identified. As a
product of this real world analysis, the Safety Require-
ments Specification is produced, containing the safety
constraints and the safety strategies. A safety constraint
is simply the negation of a hazard modified to incorporate
safety margins, whereas a safety strategy is a means,
defined as a set of conditions over the physical process,
of maintaining the safety constraint. The general features
which are required for a formalism to be appropriate for
this phase are the following:13 the specifications should
have a conjunctive character, in the sense that new
requirements can be added to the specification without
the need to reconstruct the full specification, the
behaviour of the system should be defined in terms of all
of its possible runs (i.e. a linear sequence of events
and/or states), and there is no need to explicitly specify
concurrency and non-determinism. In the proposed
framework each safety strategy is verified against the
relevant safety constraint, and the strategies are checked
for inconsistencies. The safety strategies are then vali-
dated against the mission requirements to ensure that
these do not conflict while the system is in a safe state.
The most appropriate formalisms for this phase are
logical formalisms, such as Temporal Logic,4 Real-Time
Logic (RTL),6 Real-Time Temporal Logic (RTTL),12

and Timed History Logic (THL).14

In this paper we propose the use of THL during the
Safety Requirements Analysis, primarily because the
behaviour of systems expressed in THL is defined by
imposing constraints over the set of all sequences of
states that the system can exhibit. This property gives
THL formulae a conjunctive nature. Therefore by using
THL the Safety Requirements Specification can be
constructed by considering each safety constraint and
safety strategy separately.

3.2. Safety system analysis
The activities to be performed during this phase include
the identification of the interface between the safety
controller and the physical process, and the specification
of system behaviour that must be observed at the
identified interface. Also in this phase a top level
organisation of the system is realised in terms of the
properties of the sensors and actuators of the system, and
the effects of possible failures of these sensors and
actuators. This phase leads to the production of the
Safety System Specification, containing the safety con-
troller strategies. A safety controller strategy is a
refinement of a safety strategy incorporating the sensors
and actuators, and their relationship with the real world.
Our aim is to construct a Safety System Specification

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 31

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

R. DE. LEMOS, A. SAEED AND T. ANDERSON

that should be unaffected by failures in the mission
subsystem. The general features which are required for a
formalism to be appropriate for this phase are the
following: the specification should be able to represent
the architectural design of the system, modelling the
interactions between the components that implement the
safety requirements, which implies the need to explicitly
specify concurrency and non-determinism. In the pro-
posed framework, each safety controller strategy is
verified against the relevant safety strategy, and the
controller strategies are checked for inconsistencies. The
type of formalisms most appropriate for this phase are
graphical formalisms9 such as Petri nets, Extended State
Machines (ESM),12 and Modecharts.6 Also, program-
like formalisms that have constructs supporting non-
determinism and concurrency can be employed, such as
CSP and CCS.

In this paper we propose the use of Predicate-
Transition nets (PrT nets),3 a form of high-level Petri net,
during the Safety System Analysis. Petri nets are mainly
used for the modelling and analysis of discrete-event
systems which are concurrent, asynchronous, and non-
deterministic. The use of PrT nets, instead of (Timed)
Petri nets,9 adds to the modelling power of the latter the
formal treatment of individuals (i.e. the notion of token
identity) and their changing properties and relations.

3.3. The overall framework and comparison with other
approaches

The basic aim behind our framework for the requirements
analysis of safety-critical systems is to subdivide the
whole problem into smaller domains where the analysis
of the requirements can be simplified, thereby leading to
more accurate specifications. This is achieved by, first,
splitting the requirements into mission and safety
requirements, and second, subdividing the analysis of the
safety requirements into the Safety Requirements Analy-
sis and Safety System Analysis. The analysis of the safety
requirements in terms of the system may highlight some
shortcomings in the safety strategy; these shortcomings
have to be addressed by modifying the safety strategy
and subsequently the safety controller strategy.

If we adopt the approach of performing the analysis of
the safety requirements in two phases, and representing
the specifications produced at each phase in a different
formalism, we must provide some means to relate the
different specifications. At the end of the first phase the
safety requirements are expressed as a set of safety
strategies, which are predicates within the THL model of
the system. In the second phase, a PrT net model
specifying a safety controller strategy is constructed for
each safety strategy. To verify a safety controller strategy
against its safety strategy, an essential step is to express
the predicates that describe the safety strategy in terms of
the predicates of the PrT net model. These predicates are
the logical invariants of the net which will be used to
verify that the PrT net model accurately captures the
safety strategy.

As far as the combining of the specifications of the
mission and safety requirements are concerned, once the
safe and unsafe states of the system are identified, we
need only verify that they are consistent. Hence, the
notation used to express the mission and safety require-
ments specifications need not be the same, provided

some means to check whether the specifications are
consistent is available. Furthermore, this consistency
check can be restricted to those mission requirements
which affect the safety requirements.

The basic approach suggested in this paper, of dividing
the requirements analysis into distinct phases, and
performing the analysis at each phase in the most
appropriate formalism, has not previously been investi-
gated. What has usually been presented is the utilisation
of a single formalism such as Invariants,1 Temporal
Logic,4 Petri nets,9 and THL.14 However, there are two
approaches in the literature which use different formal-
isms for requirements analysis.6'12 These papers are
primarily concerned with the analysis of timeliness
requirements; it is not their concern to establish a
framework for the analysis of the safety requirements of
safety-critical systems - the issue which is central to this
paper. In Ref. 12, ESMs are used to model 'plant-
controller processes'; from the paths of these ESMs,
trajectories are obtained which can be used to provide a
formal operational semantics. The specification of plant
behaviour is then given by RTTL formulae over these
trajectories, and verified by demonstrating that the
trajectories defined by the ESMs do indeed comply with
RTTL formulae. In Ref. 6, the specification of the system
is realised in terms of RTL and Modecharts; Modecharts
produce a decision procedure for classes of properties
expressed as RTL formulae. The system properties are
verified using Computation Graphs, obtained from the
Modecharts, to check if the corresponding RTL formulae
comply with the Modecharts.

4. THE TRAIN SET CROSSING
With the aim of exemplifying the proposed framework,
an example of a train set crossing was selected. An
obvious advantage of using a train set instead of a real
railway system is that safety strategies can be studied and
implemented without endangering the travelling public.
The train set crossing described below raises safety-
critical issues that are similar to those found at the
traditional level crossing (i.e. road-rail).

The physical process consists of two track circuits Cp
and Cs, and two types of trains - primary {Trp) and
secondary {Trs). The circuits are divided into sections
(numbered in a clockwise direction) and there are two
separate crossing sections CCa and CCb at which they
intersect. Trains of type Trp travel around circuit Cp and
trains of type Trs travel around circuit Cs. Both types of
train travel in one direction (clockwise) only, hence trains
cannot reverse around the circuits. The longest train is
shorter than the smallest section. A crossing section is
that part of the track which consists of the sections (one
from each circuit) at which the two circuits intersect. The
circuits Cp, Cs and the crossing sections CCa and CCb
are illustrated in figure 1.

The mission of the train set is to ensure that all trains
complete their journeys, while allowing all concurrent
movements of the trains. This mission is in fact a special
case of the Merlin-Randell problem,10 which is concerned
with train journeys on arbitrary tracks. This problem has
been heavily studied, and involves a complex analysis of
synchronisation strategies.7 A special case of synchron-
isation is that the primary trains must always take
priority over the secondary trains at the crossing sections

32 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

A TRAIN SET AS A CASE S T U D Y

CCb I — 1 Cs a \)
CCa

Figure 1. The train set circuits and the crossing section.

- that is, a primary train must not be made to wait for a
secondary train (c.f. priority of trains over road vehicles
at a level crossing). For the train set, one of the main
advantages in separating the mission from the safety
requirements is that synchronisation issues can be ignored
in the analysis of the safety controller. As a result issues
involving problems of optimal use of the sections of the
tracks, routes of the trains, and moving stopped trains
can be ignored during the analysis of the safety
requirements. By focusing on the safety issues only, a
thorough verification of the safety controller specification
becomes practical. However, as will be shown later, the
mission requirements must be considered to ensure that
any proposed safety strategy does not lead to the
implementation of a safety controller strategy that is
inconsistent with the mission requirements.

Conceptual analysis. Several disasters are possible with
this system, but we only consider the following disasters:

(a) trains of the same type collide;
(b) trains of different type collide.

The hazardous states for the collision of trains of the
same type are identified by considering the relative
position of the trains on a circuit; a collision can occur
only if some part of two trains are in the same section.
Hence, since the longest train is smaller than the smallest
section, a state is deemed to be hazardous if the front of
one train is in the same, or adjacent, section as the front
of another train.

The hazardous states for the collision of trains of
different type are identified by considering the relative
positions of the primary and secondary trains to a
crossing section. A collision involving a primary train
and a secondary train can occur only when both trains
are in the same crossing section. Since the length of a
train is less than a section, a train is in a crossing section
only if the front of that train is in the crossing section or
the section that follows the crossing section. To express
the hazard associated with a crossing section, for each
circuit we introduce the notion of danger zones (one for
each crossing section) as the set of sections in which the
front of a train can be while that train is in a crossing

section. We conclude that the hazardous states for the
collision of trains of different type are those in which the
front of a primary train and the front of a secondary
train are in the danger zones of the same crossing section.
The danger zones DZp and DZs of a crossing section CC
are illustrated in figure 1.

4 .1 . Safety requirements analysis

The safety requirements analysis is concerned with the
identification of safety constraints and the definition of
safety strategies. We consider each potential disaster
separately.

General model. The type of circuit is denoted by c e L,
L = {p, s}, the crossing section by reR,R = {a, b}, the
trains which run on Cc are denoted by x, y e Trc = { 1 , . . . ,
Ntc} and the sections of Cc are denoted by k,m,ne
Sc, Sc = {0 , . . . , Nsc}. The lifetime of the system is denoted
by the set T. Addition © and subtraction © on circuit
section numbers are performed modulo the number of
sections in the circuit. The behaviour of trains is captured
by the state variable Ptrain, described below in Table 1.
Ptrain(c, x) denotes the state variable for the position of
train x on circuit Cc.

In the general model of the train set it is assumed that
the position of the front of the trains is known at any
time point during the system lifetime (captured by
Ptrain) . Hence, at the start of the system lifetime the
fronts of the trains are positioned in specified known
sections.

4.1.1. Collision of trains of same type

Circuit safety constraint. The hazardous states for a
circuit Cc can be expressed, in the general model, by the
system predicate: 3x, y e Trc: x + y A Ptrain(c, x) e
{Ptrain(c, y) Q 1, / > t rain(c, y)}.

Thus we deduce that a safety constraint of the form
'for any two trains there must be at least one section
between the sections containing the fronts of the t ra ins '
will, if maintained on circuit Cc, prevent the occurrence

Table 1

No. Name Range Comments

pt /"train Sp"» x Ssm> The position of each train expressed as a section number, that is, the section containing the
front of a train.

3

T H E C O M P U T E R J O U R N A L , VOL. 35, N O . 1, 1992 33
CPS 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

R. DE. LEMOS, A. SAEED AND T. ANDERSON

Table

No.

2.

Name

Strain

Range

RpNi" x RsN"

Comments

The reservation sets of the trains, where Re = 0>(Sc) forceL.

of any hazardous state on Cc. This safety constraint
SCx{c) is expressed in terms of a system predicate:
Vx, y e Trc: x #= y => | Ptrain(c, x) — Ptrain(c, y) \ > 1. As a
consequence of the safety constraint we can deduce a
limit on the number of trains in terms of the sections:
Nsc > 2Trc (for each circuit).

Circuit safety strategy. The safety strategy for a circuit
Cc is based on a reservation scheme; the basic rules of
this scheme are:

(a) for any train, the current section (i.e. the position
of the front of the train) and the section behind the
current section must always be reserved;

(b) no section can be reserved by more than one train.
The notion of sections reserved by a train is captured by
the state variable Strain, described above in Table 2.
i?train(c, x) denotes the reservation set of train x on
circuit Cc.

The circuit safety strategy SS^c) can be formalised as
two system predicates:

(a) MxeTrc:
{Ptrain(c, x) © 1, />train(c, x)} £ i?train(c, x);

(b) Vx, j> e 7>c: x * j> =>/?train(c,x) n i?train(c,y) = 0.
We define FH as the set of all functions of the form
H: T^ Spmp x Ssms x Rpmp x Rsms. We say that a
history H from TH satisfies safety strategy 55x(c) if and
only if rules a and b are invariant relations (i.e., they are
satisfied at all time points in T) for that history.

Lemma 4.1. A history that satisfies the safety strategy
SS1(c) must satisfy safety constraint SC^c).

Proof. (By contradiction.) Assume
37/er/f://sat551(c) A
3teT:Hsat(3x,yeTrc:x*y A

|Ptrain(c,x)-i>train(c,j)| < l)@t.
Then from rule a of 55x(c):
tfsat({i>train(c,x)© 1, />train(c, x)} £ Rtrain(c,x) A

{i'train(c,_y)© 1, Ptrain(c, y)} £ /?train(c, y)) @ t,
hence //sat(/?train(c, x) n Rtrain(c,y) + 0)@t. But this
contradicts rule b of 55x(c). Therefore, VHeYH.Hs&t
55t(c)=>//sat SC^c).

Corollary 4.2. A history that satisfies the safety
strategies SS^p) and SSJs) must satisfy safety con-
straints SC1(p) and SC1(s).

Proof. Immediately from lemma 4.1.

Circuit safety strategy and mission requirements. The
aim of the framework presented in this paper is to restrict
the requirements analysis of safety-critical software to
the safety issues of the system. However, it is usually
impossible to maintain a complete dichotomy between
the mission and safety requirements, because it would be
futile to impose safety requirements which were so
stringent that the system could not satisfy its mission.
Here we consider the impact of safety strategy 55t(c) on
the mission requirements of the train set. More speci-
fically, our aim is to ensure that 552(c) does not lead to
the definition of an over restrictive safety controller

strategy; the safety controller must not impose restric-
tions on the movement of trains in addition to those
imposed by the mission controller (except when the
system enters an unsafe state). The restrictions imposed
on the movement of trains can be stated in terms of the
reserved sections; the upper bound of the reservation set
of the safety controller for a train should be less than the
lower bound of the reservation set of the mission
controller.

To determine the upper bound of the reservation set of
the safety controller we consider how the reservation set
of a train x is modified as the train travels around the
circuit Cc. Firstly, we make the observation that before
train x enters a new section it must reserve that section,
i.e. the sections Ptrain(c, x) © 1, Ptrain(c, x) and />train(c,
x) © 1 must be reserved. Secondly, immediately after the
front of train x enters a new section the position of a
train is updated, hence sections /'train(c, x) © 2, /"train(c,
x) © 1 and Ptrain(c, x) are reserved. Thirdly, while a train
is travelling in a section, the current section and the
previous section are reserved. Therefore an upper bound
for the reservation set is: {.Ptrain(c, x) © 2, /train(c, x) ©
1, />train(c, x), Ptrain^, x) © 1}.

From the above analysis we can conclude that the
safety strategy is not too restrictive on the movement of
trains if the lower bound of the reservation set of the
mission controller is at least {/>train(c, x) © 2, Ptrain(c,
x)©l , Ptrain(c,x), />train(c, JC) © 1}. If this condition
could not be satisfied then the mission requirements
would have to be modified or a new safety strategy
devised.

Here we construct a modified version of SS^c),
denoted by 551(c)*, that includes the upper bound on the
size of the reservation set; the two rules for 55t(c)* are
given below:

(a) VceL:
Vx e Trc: {/)train(c, x) © 1, />train(c, x)} £
7?train(c, x) A i?train(c, x) £ {i>train(c, x) © 2,
Ptrain(c, x) © 1, Ptrain^, x), /)train(c, x) © 1};

(b) Vx,ye Trc:
x 4= y => .Ktrain(c, x) D i?train(c, y) = 0.

Lemma 4.3. A history that satisfies the safety strategy
SSl(c)* must satisfy safety constraint SC1(c).

Proof. Follows directly from lemma 4.1, and the fact
that SS^c) is a consequent of SS^c)*.

Corollary 4.4. A history that satisfies the safety
strategies SS^p)* and SSx(s)* must satisfy safety
constraints SCjp) and SCl(s).

Proof. Immediately from lemma 4.3.

4.1.2. Collision of trains of different type

The following analysis can be applied to both crossing
sections provided they are sufficiently far apart. That is,
on both circuits there must be at least one section

34 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

A TRAIN SET AS A CASE STUDY

between the two crossing sections (which will ensure that
the danger zones do not overlap).

Crossing section safety constraint. Let CCp(f) (resp.
CCs{r)) denote the number of the section of Cp (resp. Cs)
that is part of CC(r). The danger zone of Cc for CC(f) is
defined as: DZc{r) = {CCc(r), CCc(r)®\}. The haz-
ardous states for the crossing section CC(r) can be
expressed by the system predicate: Vc e L: 3x e Trc:
Ptrain(c,x) e DZc(r).

Thus we deduce that a safety constraint of the form
' either the front of no primary train is in the danger zone
DZp(f) or the front of no secondary train is in the danger
zone DZs(f)' will, if maintained, prevent the occurrence
of any hazardous state. This safety constraint (SC2(r))
can be expressed in terms of a system predicate: 3c e L:
VxeTrc: /train(c, JC) £DZc{r). Assuming that we wish to
have at least one train on each circuit we can deduce that
Nsp ^ 3 A Nss gz 3.

Crossing Section Safety Strategy. The crossing safety
strategy is based on a modification of the reservation
scheme. The two basic rules are:

(a) if any train x on circuit c is in a danger zone then
the crossing section contained within that danger
zone is reserved for circuit c;

(b) section CCpif) and section CCs(r) cannot both be
reserved.

The crossing section safety strategy (SS2(r)) is formalised
as two system predicates:

(a) VceL: ixeTrc:
/)train(c, x) e DZc(r) => CCc(r) e i?train(c, x);

(b) 3ceL: Q/xeTrc: CCc(r)$RtTa\n(c,x)).
We will say that a history H from TH satisfies this safety
strategy if and only if system predicates a and b are
invariant relations for that history.

Lemma 4.5. A history that satisfies the crossing safety
strategy SS2(r) must satisfy safety constraint SC2(r).

Proof. (By contradiction.) Assume
3HeTH:HsatSS2(r) A
3te T: Hsat(3xe Trp:Ptrain(p,x)eDZp(r) A

3y e Trs: Ptrain(s, y) e DZs(rj) @ t.
Then from rule a of SS2(r):
Hsat(CCp{r)sRtrain(p,x) A CCs(r)eRtrain(s,y))@t.
But this contradicts rule b of SS2. Therefore V//e TH: H
sat SS2{r) => //sat SC2(r).

Corollary 4.6. A history that satisfies the safety
strategies SS2(a) and SS2(b) must satisfy safety con-
straints SCx(a) and SC^b).

Proof. Immediately from lemma 4.5.

Crossing section safety strategy and mission require-
ments. At this stage, the safety requirements for the
crossing sections take no account of the conflict with the
mission requirement that trains on the primary circuit
have priority; there is no mechanism which establishes
that primary trains should pass first. To resolve this, we
should not modify the safety controller specification,
since this contradicts the philosophy of our framework,
i.e. to keep the safety controller specification as simple as
possible. A solution is to adapt the mission requirements
to allow a secondary train to take the decision to stop
before the crossing sections, in order to avoid a
conflict.15

Combination of safety strategies. In terms of the two

circuits and the two crossing sections the safety controller
must implement the safety strategies for circuits Cp and
Cs and for the crossing sections CCc(a) and CCc(b).
Here we analyse the relationship between these safety
strategies and the restrictions imposed on the size of the
circuits and the number of trains.

By inspecting the rules of the safety strategies we can
deduce that the following three rules are equivalent to
S 5 » * A SS^s)* A SS2(a) A SS2(b):

(a) VceL: VxeTrc:
{/>train(c, x) Q 1, Ptrain(c, x)} £ i?train(c, x) A
Rlrain(c, JC) £ {/)train(c, JC) © 2, />train(c, JC) © 1,
Ptrain(c,JC), />train(c,x) © 1};

(b) VceL: Vx,yeTrc:
x 4= y => Rtrain(c, x) n /?train(c, y) = 0;

(c) VreR: 3ceL: (VxeTrc: CCc(r)$Rlram(c,x)).
Rule a is concerned with the reservation of sections (i.e.
maintaining the reservation sets) and rules b and c
impose mutual exclusion conditions over the reservation
sets. We must confirm that the above three rules are not
in conflict. The set of states which satisfy the three rules
are characterised by the following conditions over the
relative position of the trains: VceL: Vx,yeTrc:
|Ptrain(c,x)-Ptrain(c,^)| > 1 A Vre/?: 3ceL: Vxe
Trc: Ptrain(c,x)$DZc(r). These states are those that
satisfy the circuit and crossing section safety constraints,
hence the restrictions on the circuit size are obtained by
examining the restrictions for the safety constraints:
Aty? 2s max(27>p,3) A Nss > max(2rr.s, 3).

The above restrictions are minimal constraints on the
circuit size. For practical purposes, issues other than the
satisfaction of the safety strategies must be considered,
such as the ability of the safety controller to implement
the safety strategies in the identified states and properties
of the physical process. For example, the conditions
given above do not preclude the possibility of a deadlock
in the physical process. To prevent this situation, the
conditions on the circuit sizes should be strengthened to
strict inequalities.

Inspection of the three rules above also gives insight
into the implementation of the safety strategies. More
specifically, the reservation sets must be maintained for
each circuit, and mutual exclusion must be achieved for
reserved sections for the sections of each circuit and the
sections CCp(r) and CCs(f) (i.e. the sections that make
CC(r)).

4.2. Safety system analysis

After establishing the safety strategies during the Safety
Requirements Analysis, the Safety System Analysis phase
investigates how these strategies are to be implemented
by the safety controller as safety controller strategies; or
alternatively; the safety strategies must be mapped onto
a set of sensors and actuators. In the train set, at the start
of every section there is a sensor which detects the
presence of a train, and an actuator which allows the
safety controller to stop the train within a section. To
simplify the analysis we assume that neither the sensors
nor the actuators fail.

The analysis to be performed entails modelling the
relationship between the components of the safety
controller (including sensors and actuators), the physical
process, and the interface between them. The general
approach followed in modelling the system is to maintain

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 35
3-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

R. DE. LEMOS, A. SAEED AND T. ANDERSON

a clear separation between models of the physical process
and the safety controller, even though they must
cooperate whenever an action is to be performed. The
advantage of adopting this approach is that both models
can be independently developed and modified, and the
state of the physical process can be seen to correspond to
the sequence of control commands issued by the safety
controller.

The analysis will be divided into two parts, cor-
responding to the safety strategies established during the
Safety Requirements Analysis. First, we model the safety
strategy which prevents the collision of trains of the same
type, and second, we model the safety strategy which
prevents the collision of trains of different types.

4.2.1. Collision of trains of the same type

To illustrate modelling the behaviour of trains in a
circuit, we assume that each circuit contains seven
sections {Ns = 6) and two trains {Nt = 2). For simplicity,
the modelling and analysis is performed for just one
circuit. The PrT model is shown in figure 2 (because of

the flexibility of the model it is possible to modify the
number of sections and trains without affecting the
structure of the model of the safety controller). An
outline definition of PrT nets is presented in the
Appendix.

The predicates of the PrT net model of a train set
circuit are the following:
SOx to S6x - train x occupies a section of the circuit;
ICPxj - train x is allowed to enter section j ;
IPCxj- train x has entered section j ;
FSn - section n is not reserved by the safety controller;
RS\xm - train x has reserved section m;
RS2xk + xj - train x has (temporarily) reserved sections
k and/

To obtain the structural properties of the PrT net
model of the circuit, we derive the ^-invariants of the
net; these are integer equation invariants which are
obtained from the projection of the predicates.3 In order
to simplify the calculation of the ^-invariants of the
PrT net model of figure 2, the predicates representing the
circuit sections of the model of the physical process were
folded into one predicate (Sxj - train x occupies section
J).

<*>

j = (m © 2) A j = n A k — m

Physical process model Safety controller model

Figure 2. The PrT net model of the train set circuit.

36 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

A TRAIN SET AS A CASE STUDY

The S-invariants of the PrT net model of the safety
controller strategies of the circuit are:

(sil)
3; (si2)

\RSl\-\FS\ = \; (si3)
(si4)

(Vx) (Vy) (V/) [x * y (~>RSlxi A ^RS2xi) V
A -RS2yij\.

Lemma 4.7. The PrT net model of the train set circuit
shown in figure 2 is contact-free and deadlock-free.
To confirm that a PrT net is contact-free, we must show
that there is no marking that puts the same tuple at the
same predicate more than once. For the PrT net of figure
2, this follows immediately from equations (sil) and
(si2).

To confirm that a PrT net is deadlock-free, we must
show that there is no forward reachable marking at
which all transitions are disabled. By inspecting the PrT
net of figure 2, we show that if t2 and t3 are disabled then
tl must be enabled. Firstly, we consider the case when t2
is disabled, and secondly when t3 is disabled.

(a) If t2 is disabled, this implies that the tuples <JC, m}
in RS\ and <«> in FS are not sufficient to satisfy the
transition selector of t2. This condition can be confirmed
from (si3) from which we obtain that \RS\\ = 2 and \FS\
= 1. Hence from (sil) we have \RS2\2 = 4 and from (si2)
we have \IPC\ + \1CP\ = 2, which leads to two possible
cases: if \IPC\ 4= 0 then t3 would be enabled, however
\IPC\ = 0 implies that tl is enabled.

(b) If t3 is disabled, this implies that there are no
tuples in the predicates RS2 and IPC, or there is neither
(x,j) in IPC nor (x, A:> + <xj> in RS2. If there are no
tuples in RS2 and IPC then it follows from (sil) and (si3)
that the number of tuples in RS\ and FS are identical to
those in the initial marking, and it can be easily shown
that t2 is enabled. If there are no tuples in RS2 then it
follows from (si2) and (si4) that \IPC\ + \ICP\ = 0
implying that there are also no tuples in IPC, in which
case the number of tuples in RS\ and FS are identical to
the previous case. If there are no tuples in IPC then it
follows from (si2) that \ICP\ + \FS\ = 3 which leads to
two possible cases: if \FS\ = 3 then \ICP\ = \RS2\ = 0 in
which case the number of tuples in RS\ and FS are
identical to the initial marking, but if \FS\ 4= 3 then
\ICP\ 4= 0 implies that tl must be enabled.

Verification of circuit safety controller strategy. The
safety controller strategy defined by the PrT net model of
figure 2 is verified by proving that the safety strategy
55t(c) is a property of the PrT net model. To verify this,
a link must be identified between THL and PrT net
model of the train set system. This link can be established
in terms of system predicates of the THL model and the
predicates of the PrT net model, as follows:

/train(c, JC) = ioSxi;
ieRtrain(c,x)oRS\xi V RS2xi.

The two rules of SSt(c) can be expressed in terms of the
PrT net model as logical formulae (Ifl and Ifl) over the
predicates of the PrT net model, by substituting the
equivalent predicates of the PrT net model for the THL
predicates.

Ifl. If any train x is in section i then sections / and iQ
1 are reserved by train x.
(Vx)Q4i)[Sxi=>(RS\xi V RS2xi) A

(RS\xiQ\ V RS2xiQ\)].
If2. Any section / is reserved by at most one train.

Lemma 4.8. The formulae Ifl and If2 are logical
invariants (i.e. they hold on all reachable markings) of the
PrT net model.

Proof. A sketch of a proof is given below by analysing
the transitions of the PrT net model. In the initial
marking Ifl holds; both trains have reserved the current
and previous sections:
<l,0>e5=>{<l,0>, < 1 , 6 > } C R 5 1 U RS2;
<2,3>e5=>{<2,3>, <2,2>}c/fcSl U RS2.
We show that the firing of the three transitions cannot
violate Ifl.

Transition tl can fire with <JC, /> only when (x,j} is in
ICP (j = i© 1), therefore only after t2 fires producing
<x,y"> in ICP and RS2. Prior to the firing of tl, {<*,/>,
<JC,(01>}c RSI U RS2, after tl, {<.x,j), <x,i}} c RSI
U RS2 (since {x,j} must remain in RS2 until IPC fires
producing <*,./».

Firing t2 adds (xjy to RSI U RS2, therefore t2
cannot violate Ifl.

Firing t3 removes <JC, k} from RS\ U RS2 only when
<x,y> is in S and from the transition selector of t3 (k =
7 0 2) , therefore t3 cannot violate Ifl.

In the initial marking If2 holds; no section is reserved
by more than one train:
RSI U RS2 = {<l,0>, <1,6>, <2,3>, <2,2>}.

Firing tl does not change the markings on RS\ or
RS2.

Firing t2 removes <JC, m} from RSi and adds <x,
£> + (.x,f) to RS2, where k = m andy = m©2. The only
change in RSI U RS2 is the addition of <x,7>. From the
transition selector of t2, j (= n) is a free section, hence
prior to t2 being fired ^(3y) (y,j}e(RSl U RS2).
Therefore t2 cannot violate If2.

Firing t3 removes (JC, k) from RS\ U RS2, therefore
t3 cannot violate If2.

4.2.2. Collision of trains of different type

For simplicity, the modelling and analysis of the
behaviour of trains in a crossing section is performed for
just one crossing section, and we assume that each circuit
contains four sections (Ns = 3) and one train (Nt = 1), as
shown in figure 3. In the PrT net model of the physical
process we have folded the models of the primary and the
secondary circuits into one net; the danger zone of each
circuit is represented by the predicates CC and 50, and
the predicate 52 represents the section which im-
mediately precedes CC.

The predicates of the PrT net model of the crossing
section are the following:
SOcx, S\cx, 52cx-a section of the circuit c is occupied
by train x;
CCcx - the crossing section of circuit c is occupied by
train x;
ICPcxj - train x in circuit c is allowed to enter section j ;
IPCcxj- train x in circuit c has entered section j ;
APcxj- train x in circuit c is in section j = 2, (i.e. x is
about to enter DZ);
ZDcxj - train x in circuit c has access to section j (= 3 ,
the crossing section);
ME - either primary or secondary trains allowed to enter
the crossing section.

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 37

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

R. DE. LEMOS, A. SAEED AND T. ANDERSON

ME

Physical process model I Safety controller model
A = {(p, 1); <s, 1>}

Figure 3. The PrT net model of the crossing section.

To obtain the structural properties of the PrT net
model of the crossing section, we derive the 5-invariants
of the net, which are:
50 + 51+52 + CC = 2;
ME+\ZD\ = \;
51 + 2S2-2\ICP\a-\IPC\3-\AP\3 = 2;

(sil)
(si2)
(si3)

= 0; (si4)
2S0 + 51+ 2CC + 2\ICP\3 + \IPC\3 + \AP\3 - \ZD\3 = 2.

(si5)

Lemma 4.9. The PrT net model of the train set crossing
section shown in figure 3 is contact-free and deadlock-free.

Proof. The contact-freeness of the PrT net model of
the crossing section is shown through inspection of (sil),
(si2), (si4) and (si5). From (sil) we know that the number
of tuples in the net model of the physical process remains
constant and equal to the initial marking. From (sil) we
know that there is no increasing number of tokens in the
predicates ME and ZD. Finally, from (si4) and (si5) we
know that ICP, IPC and AP are contact-free, implying
that the number of tuples in the whole PrT net model
remains constant.

To confirm that the PrT net model of the crossing
section, figure 3, is deadlock-free we show that if tl, t2,
t3, t5, t6 and t7 are disabled then t4 must be enabled. The
approach to be followed here is to consider each of the
transitions which we assume to be disabled individually
and show that t4 is enabled implying deadlock-freeness.

If tl is disabled, it means that there are no tuples in
CC. From (sil) it follows that if 50 or 51 have tuples,
then transitions t2 or t3 must be enabled. However, if the
two tuples are in 52 then (si4) is reduced to
2\ICP\3 + \IPC\3 + \AP\3-\ZD\3 = 2. From this equation,
if \ZD\ = 0 then there are no tuples in ICP (reasoning
from the PrT net model) the two tuples can either be in
IPC or AP, implying that at least t5 or t6 are enabled; if
\ZD\ 4= 0 then t6 is disabled, one of the tuples is in either
IPC or AP, implying that t5 or t6, respectively, are

enabled, and the other tuple is in ICP, implying that t4
is enabled.

If we apply a similar reasoning to the other transitions
that we assume to be disabled, we will be able to show
that t4 will be enabled.

Verification of crossing section safety controller strat-
egy. The safety controller strategy defined by the PrT net
model of figure 3 is verified by proving that the safety
strategy 552(r) is a property of the PrT net model.

The THL predicates and the predicates of the PrT net
model correspond as follows:

Ptra\n(c,x)eDZc(r)oCCcx V SOcx;
CCc(r) e i?train(c, x) o ZDcxj.

The two rules of SS2(r) can be expressed in terms of the
PrT net model as logical formulae (Ifl and IJ2) over the
predicates of the PrT net model, by substituting the
equivalent predicates of the PrT net model for the THL
predicates.

Ifl. If any train is in a danger zone then the crossing
section is reserved by that train.

(Vc)(Vx)[CCcx V SOcx => ZDcxj].
If2. A crossing section cannot be reserved for both the

primary circuit and the secondary circuit.
(3c)Q/x)[->ZDcxj].

Lemma 4.10. The formulae Ifl and 1/2 are logical
invariants (i.e. they hold on all reachable markings) of the
PrT net model.

Proof. A sketch of a proof is given by analysing the
transitions and 5-invariants of the PrT net model.

In the initial marking Ifl holds, since the sections CC
and 50 are empty: (CC U 50) = 0.

Firstly, we make the observation that tuples can be
added to the set CC U 50 only by transition t4 and
removed only by transition t2. In the following we argue
that (c,x,j}eZD before t4 adds <c,*> to CC U 50 and
until t2 removes <c, x> from CC U 50.

38 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

A TRAIN SET AS A CASE STUDY

Transition t4 can fire with <c, x> only if <c, x,j} is in
ICP, therefore after t6 fires with <c, xj). Hence before t4
fires <c,x,y>eZ£>. Now <,c,x,j) can be removed from
ZD only when r7 fires with <c,x,/>; this transition can
fire only when (c,x,j}eICP. Therefore f7 can fire with
<c,x,y> only after t2 has fired with <c,x,y>. Hence
ic,x,j}eZD, at least until r2 fires.

The fact that If2 is a logical invariant for the PrT net
model follows from 5-invariant (si2).

5. CONCLUSIONS
The basic aim of this paper is to present a general
framework for the specification and verification of safety
requirements in the software development of safety-
critical systems. The framework consists of the following
steps. From the system conception, and after the
identification of the system disasters and hazards, the
first phase is the description of the real world properties
in the form of safety constraints and safety strategies;
these notions are specified in terms of a logical formalism.
The interrelationships between the components of the

safety controller are expressed as the safety controller
strategies; these strategies are specified in terms of a net
formalism. The general approach was shown to be
feasible by applying it to the example of the train set
crossing.

In the paper we have identified just two distinct phases
for the analysis of the safety requirements, but a larger
number of phases could be utilised if this was desirable,
depending on the type of application and its level of
criticality. The choice of the type of formalism to be
used, at each phase, is influenced by the issues which are
most significant at that phase, and the potential that
certain formalisms have in representing these issues. This
approach enables a fuller exploitation of the appropriate
features of the different formalisms than can be achieved
with a single-formalism approach.

Acknowledgements

The authors would like to acknowledge the financial
support of BAe (DCSC), CAPES/Brazil and ESPRIT
Basic Research Action PDCS.

REFERENCES
1. P. Bishop, Invariants as an alternative to Petri nets for

safety design. EWICS TC7, WP 498. (1986).
2. V. Chandra and M. R. Verma, A fail safe interlocking

system for railways. IEEE Design & Test of Computers,
8 (1), 58-66 (1991).

3. H. Genrich, Predicate/transition nets. Petri Nets: Central
Models and their Properties. Edited W. Brauer, W. Reisig
and G. Rozemberg. Lectures Notes in Computer Science
254,206-47(1987).

4. J. Gorski, Design for safety using temporal logic.
SAFECOMP'86. Sarlat, France. 149-155 (1986).

5. M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl and B. E.
Melhart, Software requirements analysis for real-time
process-control systems. IEEE Transactions on Software
Engineering, SE-17 (3), 241-258 (1991).

6. F. Jahanian and A. Mok. Safety analysis of timing proper-
ties in real-time systems. IEEE Transactions on Software
Engineering, SE-12 (9), 890-904 (1986).

7. M. Koutny, The Merlin-Randell problem of train journeys.
Ada Informatica, 23 (4), 429-463 (1986).

8. J. C. Laprie, Dependability: basic concepts and associated
terminology. ESPRIT PDCS Report No 31 (1990).

9. N. G. Leveson and J. Stolzy, Safety analysis using Petri
nets. IEEE Transactions on Software Engineering, SE-13
(3), 386-397 (1987).

10. P. Merlin and B. Randell, Notes on deadlock avoidance on
the train set. Report MRM/144. Comp. Lab. University of
Newcastle upon Tyne (1978).

11. Draft Interim Defence Standard 00-56. Hazards Analysis
and Safety Classification of the Computer and Program-
mable Electronic System Elements of Defence Equipment.
UK Ministry of Defence. London (1991).

12. J. S. Ostroff and W. M. Wonham, Modelling, specifying
and verifying real-time embedded computer systems. Proc.
of the Real-Time Systems Symposium 1987. San Jose, CA.
124-132 (1987).

13. A. Pnueli, Specification and development of reactive
systems. Information Processing 86. 845-858 (Edited H. J.
Kugler, 1986).

14. A. Saeed, T. Anderson and M. Koutny, A Formal model
for safety-critical computing systems. SAFECOMP90
London, UK 1-6 (1990).

15. A. Saeed, R. de Lemos and T. Anderson, The role of
formal methods in the requirements analysis of safety-
critical systems: a train set example. Proceedings of the 21st
Symposium on Fault-Tolerant Computing. Montreal,
Canada 478^85 (1991).

APPENDIX

Predicate-transition nets (PrT nets)
In the following we present an informal definition of PrT
nets; a formal definition is given elsewhere.3

Let S, T, F be finite sets. The triple N = (S, T, F) is
called a directed net iff the following conditions hold:
SO T = d,S U r * 0 , F<=(SxT) U (TXS), and
domain (F) U codomain (f) = S u T.

For a given net N = (S, T, F), S is the set of places of
N, T is the set of transitions of N, and F is the flow
relation containing the arcs of N. For xeSU T, I(x) =

{yeS U T\(y,x)eF} is called the preset of x, and O(x) =
{yeS U T\(x,y)eF) is called the postset of x.

A PrT net consists of the following constituents:
(1) a directed net (S, T,F) where S is the set of

predicates, and T is the set of transitions;
(2) predicates are variable relations amongst indi-

viduals ('first-order' places);
(3) the transitions are schemes of elementary changes

of markings representing the actions carried out
by the system;

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 39

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

R. DE. LEMOS, A. SAEED AND T. ANDERSON

(4) an arc label specifies a variable extension of a
predicate to which the arc is connected;

(5) a marking is a mapping that assigns to each
predicate formal sums of n-tuples of individual
symbols, also called tuples.

The graphical representation of a PrT net is obtained by
representing a predicate by a circle, a transition by a box,
an element of F n (S x T) by a directed arc from a circle
to a box, and an element of F n (Tx S) by a directed arc
from a box to a circle.

For the analysis of the PrT net model we have
employed the S'-invariant method.3 The S-invariants are
obtained from the projection of the entries of the
incidence matrix C of the net. The projection along the
jth position of the tuple (| |,) introduces a kind of partial
cardinal number, by ignoring information at positionyin
the tuple. As a consequence every solution of |C|T|*| = 0
whose entries do not contain individual variables
determines a family of ^-invariants.

Book Reviews

CHARLES F. GOLDFARB
The SGML Handbook
Oxford University Press, 1990. 664 pp.
ISBN 0 19 853737 9. £50.00.

This book is the result of some twenty years
work by the author and others on the
development of the Standard Generalized
Markup Language, which had led to the
publication of ISO 8879, the SGML standard.
The main elements of the book are: the up-to-
date amended full-text of ISO 8879, a detailed
structured overview of SGML and additional
tutorial and reference material on SGML. The
text of the standard has been extensively
annotated by the author.

Charles Goldfarb is regarded as the inventor
of the SGML language and was also the
technical leader of the team which developed
it into an international standard. He was also
the leader of the initial research project at
IBM which developed GML, on which SGML
is based. He is the leading authority on SGML,
and this book gives the reader some of his
thoughts on the standard.

The book is divided at the highest level into
four parts and four appendices. Part one,
'Tutorials', consists of the three tutorial

annexes from ISO 8879 and a new tutorial
based on the LINK feature. Part two, 'A
Structured Overview of SGML', comprises
the definitions contained in ISO 8879, ex-
plained and ordered to give the reader the key
ideas. Part three,' ISO 8879 Annotated', is the
full ISO text with extensive annotations. Part
four, 'ISO 8879 Annexes', is purely the full
ISO annexes. Appendix A, 'A Brief History of
the Development of SGML', covers mark-up
concepts, GML, and the progression through
to the publication of the standard. Appendix
B,' Recommendations for a Possible Revision
of ISO 8879', is the SGML committee docu-
ment N1035, which details the changes agreed
by the developers, should the standard be
reviewed. Appendix C, 'About the ISO 8879
Text', describes how this document was used
in preparing the book. Appendix D gives
details of relevant contacts where additional
information on SGML and ISO 8879 may be
obtained.

The book has a section at the beginning
entitled ' How to Use This Book', which acts
in the same way as a READ.ME file which is
received with a piece of software. This explains
the typographical conventions and also the
linking system which allows the book to

function as a paper hypertext. This is becoming
commonplace with books on this type of
subject. In this case it is justified due to the
fact that the text of the standard is presented
alongside the annotations. The links are
necessarily complicated, directing the reader
to both page and section number, but moving
between pages soon becomes routine. The two
ribbon page markers are a very welcome
addition.

It is suggested that the book is for those
people who wish to understand, use and
implement the standard. The book is really
too detailed for those people who wish to just
learn about the standard, such as students and
researchers - there are other publications
which are more suitable for this purpose. It
certainly, however, fulfils its role as an essential
aid for practitioners wishing to develop appli-
cations. Its cover price reflects the fact this is
an important book in this field. It is a
substantial volume which is well produced.
Although of some interest to others, prac-
titioners alone will be able to justify its
purchase.

CHRISTOPHER HANKINS
London

TIMOTHY WEGNER AND MARK PETERSON
Fractal Creations
Pitman, London, 1991.
£31.50.

Today, many publishers are seeking authors
who can supply an interesting manuscript,
and also provide some form of add-on value
to convince potential purchasers that the
package is value for money. Fractal Creations
certainly has a useful component of add-on
value in the form of a colour poster, a pair of
anaglyph 3D glasses, and a 5.25" disk of
fractal programs. The poster is a minor feature
and shows 10 examples of fractals rendered
with false colours, together with some ad-
vertising for the Waite Group Press.

But what about the book? Well, this is a
cross between a traditional book and a
reference manual. The first chapter is a primer
on fractals; the second chapter provides advice
on how to control the FRACTINT software
environment; and the third chapter supplies
extra detail on the individual fractal programs.

The literary style of the first chapter is in a
popular vein, with the authors attempting to
convince the reader that fractals are a fun-
damental feature of our universe. Personally,
I found some of their descriptions rather

loose, for according to Wegner and Peterson
virtually everything is a fractal from an atom
to a galaxy. I wish that they had given a
formal description of a fractal set and then
suggested that features of our universe exhibit
fractal-like properties. Perhaps this is the price
that must be paid for popular writing versus a
rigid technical style.

Nevertheless, within the space of 41 pages
the reader is rapidly introduced to fractals,
chaos, dynamic systems, complex numbers,
orbits, the Mandelbrot and Julia sets and
attractors. The second chapter, which is just
over 100 pages, describes the FRACTINT
software environment, and really one should
be seated at a computer when reading this, as
it provides a thorough guided tour of the
software environment. In the last chapter a
further 100 pages or so provide useful back-
ground information on over 70 fractals with
names like Newton's Basin and Popcorn
Fractals.

Unfortunately, I was on holiday in France
when I started reading Fractal Creations and
had to wait for my return to the UK before I
could investigate the software. I must admit
that I was highly sceptical of getting any of the
software to work as it claimed to work with
CGA, EGA, VGA, SVGA and Hercules

graphics adaptors. Turning to the back of the
book I broke the envelope's seal storing the
disk and accepted the printed warning that I
agreed to abide by the accompanying software
licence conditions. I also noted the warning
that 'colour cycling' can induce hypnotic
states.

The entire package was quickly loaded on
to my humble Amstrad computer and within
minutes I was exploring the Mandelbrot and
Julia sets. The book's claim of using high-
speed display algorithms is certainly true;
several minutes is all that is needed to obtain
some excellent pictures, with some in 3D.
Although I have not had time to investigate
every fractal type supplied, those that I have
tested work as claimed, and so far the software
has not failed me.

I am sure that I will return to the
FRACTINT software in the future and ex-
plore other features; in the meantime, I can
recommend the book to anyone who is still
fascinated by fractals and would like to replace
their home-grown algorithms by a well-written
integrated software environment.

JOHN VINCE
Sussex

40 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/30/398331 by guest on 09 April 2024

