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The problem of mapping parallel programs on to multiprocessor systems is a fundamental problem of great significance
in parallel processing. In this paper we propose a fast heuristic algorithm to solve this problem on transputer networks.
Our mapping algorithm mainly contains three modules: grouping, placement and routeing, where grouping puts
processes in the program into tasks which can be one-to-one placed on to processors in the transputer network,
placement sets the grouped tasks on to the processors and routeing produces edge-disjoint physical communication paths
for logical communication requirements. The algorithm works by combining three modules under a self-adjusting
scheme towards a successful mapping result. For mapping n processes in an arbitrary parallel program on to m
processors in a transputer network of grid structure, our algorithm has a worst-case time complexity O(max {n1, m5})
under full adjusting, O(max {n2, m4}) under semi-adjusting and O(max {n2, m2}) under no adjusting, where the last holds
only for the transputer networks providing message routeing and multiplexing. The algorithm has been implemented in
Occam on the Hathi-2 transputer system.
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1. INTRODUCTION
A fundamental problem of great significance in parallel
processing is mapping parallel programs on to parallel
computers. When the parallel programs are written in
Occam9 and the parallel computers are transputer-based
networks,8 this mapping problem becomes extremely
important because of some properties of the Occam
language which require that the programmer should
have knowledge of the detailed network configuration
before he can run an Occam program on a transputer
networks. A mapping algorithm for transputer networks
can take the duty of mapping parallel programs on to the
transputer networks automatically, thereby hiding the
network hardware configuration from the programmer.

Although a variety of approaches to solving the
mapping problem have been made in the litera-
ture,3"7' ll~16 no fast deterministic solution has been found
yet because this problem has been shown to be NP-hard
in general.7 In order to have a fast but sub-optimal
solution to this problem, we must take into account
necessary heuristic strategies when we develop a mapping
algorithm. Literally, heuristic solutions are mainly based
on the techniques of local (neighbourhood) search1 and
simulated annealing10 that require carrying out a series
of batched data-swapping (enormous data migration),
and therefore usually cannot be realised efficiently in
practice. Moreover, without the requirement of edge-
disjointness of the physical paths to be routed, most of
the literature approaches, unlike ours, care mainly for
the quality of task scheduling (grouping and placement)
but not the realisation of the final routeing.7111415

Some of them are only available for task graphs and
processor graphs with specific topologies.47

In this paper we will propose a novel heuristic
approach, self-adjusting mapping, for solving the mapping
problem on transputer networks. Our mapping algor-
ithm, which has been successfully implemented in Occam

* This work was supported by the FINSOFT III Research
Programme.

on the Hathi-2 transputer system,20 can be easily and
efficiently realised in practice. We shall begin by
introducing the mathematical models for the mapping
problem and different strategies to approach the solution
to this problem, then describe our self-adjusting mapping
algorithm to solve this problem on transputer networks,
and finally show the time complexity, implementation
result and performance evaluation of the algorithm. The
work reported here is a part of the MILLIPEDE project,
aimed at developing a programming environment for the
transputer system. An earlier version of this paper
appeared in Shen.17

2. THE MAPPING PROBLEM AND
MAPPING STRATEGIES
The problem of mapping a parallel program on to a
parallel computer is that of allocating processes and
communication channels in the program on to processors
and physical communication links in the machine such
that the execution time of the program is minimised. This
problem is also called the process-to-processor mapping
problem.

2.1 Mathematical models for the mapping problem

A parallel program and parallel computer can be
described as a task graph Gt(T, Et) and processor graph
GP(P,EP) respectively,710 where a 'task' is a set of
processes of the program and originally is a single
process. For simplicity and without loss of generality, we
assume that both Gt and Gv are undirected and without
self-loops. In Gt, node set T and edge set Et respectively
represent tasks and communication channels between
the tasks, while node weight at node tt, denoted by w(,
and edge weight between adjacent nodes /, and tp
denoted by e(j, respectively represent known or estimated
computation amount of /, and communication amount
between /, and tr We can form different tasks and change
the structure of G, by grouping processes under different
strategies. In Gp, node set P and edge set Ep respectively
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Figure 1. Task graph (a) and processor graph (A).

represent processors and physical communication links
between the processors (we assume that all processors
have the same computational power). Figure 1 gives an
example of a Gt and Gp.

Now the mapping of the parallel program on to the
parallel computer becomes the problem of task-to-
processor mapping from Gt to Gv. This can be expressed
as a function n: T-> P. The mapping n is said to be
optimal if it minimises the completion (total execution)
time of the parallel program. The mapping problem is
therefore concluded to find such an optimal mapping n.

Mathematically, the parallel program completion time
can be characterized by a cost function. Thus the
mapping problem is to find a mapping n which minimises
the cost function.11 Normally there are two different
approaches to defining the cost function, as follows.14

2.1.1 Maximum cost approach

There are two kinds of load carried by all processors in
Gp under mapping n: computation load and com-
munication load. During the execution of the program,
each processor at any time is in one of the following
states: computation, communication and idle waiting
(due to the communication delay). Let the number of
processors be m, the time for processor pi spent in
computation, communication and idle waiting be
rcomP(A)> rcomm(/;j) and rMIe(/>,) respectively, 1 < i < m.
The completion time for processor pt is

r(pd = rcomp(/>()+rcomm(A)+rldle(A) i^i^m.
(i)

Fcomp(/><) can be measured accurately by pre-
calculating the computation load for/?,. The computation
load forpt, denoted by Lcomv(p^, is the total computation
amount of all tasks mapped on to p(:

Lcomv{pt) = S {w, I (*(/,) = Pt) A (1 < j < «)}, 1 < i < TO.

(2)

Assume that the time for unit computation is <5comp, then
we have

rcomp(/>() = <*comp * Lcomp(pt), 1 W. (3)

rcomm(/>() can be measured approximately by pre-
calculating the communication load for pt. The com-

munication load for p(> denoted by Lcomm(pl), is the total
weighted communication amount of all communication
channels (edge weights) that go through/^ under mapping
n. Let dtj be the distance between pt and pp i.e. the
shortest length of the physical path between pi and p},
under mapping n. Each edge with an edge weight eu in
Gt is re-weighted by the physical path length it traverses
in G under mapping n. Therefore we have

i-l k,l
; {ekl * di} | (n(tt) = p()

t k > 1 ^ m»> l^i<m. (4)

Assume that the time for unit communication is <5comm,
then

r c O mm(A) = <5c 1 (5)

Formulation (5) is approximate since it does not consider
the communication cost for intermediate processors to
transmit messages.

Fldle(/?4) is determined by synchronisation delay during
program execution, therefore it can only be measured by
simulating the execution of the program under mapping
n, which seems too difficult to be done in practice. A
simple but inaccurate way is to substitute Fldle(/?() with
some fixed value, for instance the maximum possible idle
time.

The maximum cost approach takes the maximum
completion time of all processors as the program
completion time. In this approach, the cost function is
expressed as follows:

Cost = max {T(pf)}

(6)

2.1.2 Summed cost approach

Another alternative approach to defining the cost
function is summed cost approach. Let the ideally average
load state be such an ideal state that each processor has
the same computation load as all others, no com-
munication load and no idle waiting. The summed cost
approach takes the cost for all processors at the ideally
average load state as the 'zero cost', therefore the cost

= max
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for all processors at the actually allocated load state
under mapping n can be measured in the sum of the cost
deviation among all processors from the ideal state.

The sum of the cost deviation includes three parts:
computation load deviation DComP> communication de-
viation I>Comm ana" 'die waiting deviation Dme. Assume
that the computation load for each processor at the ideal
state is L, then

(7)
m

Since the communication load and idle waiting are zero
for each processor at the ideal state, the formulation of
the cost function here becomes

Cost = <5comp * £>comp + <5comm * Aomm + Adi,, (8)

where

(9)

(or

( -1

-*2
m (_,

" c

Adi. = 2 T^eC/?,).

(10)

(11)

2.2 Strategies to solve the mapping problem

Strategies suggested in the literature to solve the mapping
problem can be roughly classified into three categories:
topological mapping, cost optimisation mapping and
heuristic mapping.

2.2.1 Topological mapping

Mapping from task graph Gt(T,Et) on to processor
graph GP(P, Ep) is called topological mapping, if neigh-
bouring tasks in Gt get assigned to neighbouring
processors in Gp under the mapping. Clearly, the mapping
problem can be solved optimally by using topological
mapping, if such a mapping exists. The topological
mapping problem is known to be equivalent to the graph
isomorphism problem,7 that is, NP-hard in the general
case.

Topological mapping can be used in the specific case
that both G, and Gp are very regular graphs,7 but it
cannot be expected to be applied to the general case that
Gt and Gp are arbitrary graphs.

2.2.2 Cost optimisation mapping

Since the mapping problem can be formulated mathe-
matically as a cost optimisation problem to minimise a
cost function as discussed in Section 2, this problem can
be solved also by applying mathematical programming
techniques, a process called cost optimisation mapping.
Like topological mapping, cost optimisation mapping
can reach an optimal solution, but usually it is NP-hard.

There are two keys that decide the quality of the result
for cost optimisation mapping, one is a group of cost

function formulae which gives a measurement for the
quality of the result and the other is a group of
optimisation criteria which describes the search space
and decides the search speed for the optimisation. The
cost function formulae, as we discussed before, should be
chosen to be able to approach the theoretical measure-
ment for the mapping quality as accurately as possible
and to be expressed in a form as simple as possible. The
optimisation criteria should be chosen to be able to
reduce the search space and increase the search speed as
much as possible without loss of correctness in the
searching.

2.2.3 Heuristic mapping

Since topological mapping and cost optimisation are
usually NP-hard, though they can lead to an optimal
solution, they are therefore not practically applicable in
most cases. In order to obtain a fast but sub-optimal
solution, we have to turn to heuristics. Mapping under
heuristic strategies works much faster but less accurately
than the previous two approaches. In practice, heuristic
mapping is often based on one or both of the previous
two. For instance, one can apply the cost optimisation
mapping with some heuristic optimisation criteria, which
may produce a satisfactory result.

Mapping can be performed either statically before a
program is executed if the processes and communication
channels of the program are static, i.e. they are known
before the program run-time and never changed during
the run-time, or dynamically in an adaptive manner
during the program run-time if the processes and
communication channels are dynamic, i.e. they can be
changed during the run-time. In the second case, the
mapping is called adaptive mapping, which can be
realised in many ways with different strategies.11 This
paper only considers the first case, under the assumption
that both the task graph and processor graph are static.

3. A MAPPING ALGORITHM FOR
TRANSPUTER NETWORKS
We now turn to seeking a practical solution for the
process-to-processor mapping problem in the case that
the parallel computer is a transputer-based network such
as the Hathi-2 parallel computer. We propose here a fast
heuristic mapping algorithm which can be easily applied
to transputer networks.

3.1 The Hathi-2 transputer system

Hathi-2 is a general-purpose transputer-based MIMD
multiprocessor system built by the Department of
Computer Science at Abo Akademi University and the
Technical Research Centre of Finland at Oulu
(VTT/TKO).2 The system consists of 25 identical boards,
each with four 32-bit Inmos T800 transputers, one 16-bit
Inmos T212 control transputer and one Inmos C004
crossbar switch.8 The connection network of Hathi-2 is a
combination of a fixed, two-dimensional torus con-
figuration and a distributed switching network formed
by C004 switches. The intra-board connection of the
system is shown in Fig. 2, which leads the C004 switches
to form a distributed switching network connecting the
communication links of the T800 transputers. This
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Figure 2. The intra-board connection in Haithi-2.

allows the system topology to be changeable (recon-
figurable) by software. The inter-board connection of the
system is shown in Fig. 3: 24 boards are statically
connected in a configuration of 4 x 6 torus (another
board is used as a separate partition of the system),
where each board is connected to its four neighbours via
the C004 switch communication links. The T212 control
processors are connected to each other in a ring, where
each T212 is also connected to one C004 switch, thus
forming a separate control system which controls setting
of the switches. The Hathi-2 system provides a multi-user
environment by partitioning the system into several
independent subsystems each of which can be used by
one user via a host (computer system). The host provides
I/O to the multiprocessor and interaction with the user.
The user's program is edited, compiled, linked on the
host and run on the transputer network. Hathi-2 has a
performance of 150 Mflops or 1000 Mips.

For the problem of mapping parallel programs on to
transputer networks, taking some properties of the
transputer networks into consideration is helpful. One
common property for transputer networks at present is
that a transputer network normally provides a user with
only a single I/O port via the host transputer, thus the
task containing the maximum I/O should be mapped on
to the I/O port in the network in order to reduce the
communication delay caused by transmitting I/O
messages.

Figure 3. The inter-board connection in Haithi-2.

Our mapping algorithm for transputer networks,
namely self-adjusting mapping, involves three modules:
grouping, placement and routeing. They work co-
operatively by a self-adjusting strategy. These modules
and the self-adjusting strategy are described individually
in the following subsections.

In order to avoid the need for message routeing and
multiplexing, we require that all paths to be routed by
the routeing module are edge-disjoint paths, which

means that each physical link can belong to only one
communication path. This will, however, make our
mapping algorithm more complex than those without
this requirement, because path-disjoint routeing18 is
much more difficult to realise than conventional (shortest)
path routeing.

3.2 The grouping module

Assume that a parallel program is represented in a task
graph by a special analyser, where each task is initially a
static process of the program. A task containing the
maximum I/O is marked as the host task. The number of
links of each processor is d, the number of static
processes is n and the number of processors is m. The job
for the grouping module is to group the initial tasks
(static processes) in the task graph into target tasks, so
that after grouping the tasks in the task graph can be
placed on to the processors in the processor graph one to
one.

Obviously, in order to minimise the program com-
pletion time, the parallelism for program execution
should reach maximum while the inter-processor com-
munication, which is much more expensive than intra-
processor communication, should be kept to the mini-
mum. Note that for transputer networks the com-
munication time includes link setup time and message
transfer time, where message transfer can be executed
concurrently with processor operation.8 Thus we have
the following criteria for grouping.

(1) The number of tasks is not greater than and as
close as possible to the number of processors.

(2) The number of communication channels in the
task graph is as small as possible.

(3) The load for all tasks is well balanced.
The algorithm of the grouping module, load-balanced

grouping, is briefly described as follows.
(1) If the number of tasks in the task graph is greater

than m, do grouping in the task graph such that after
grouping the number of tasks is not greater than and
close to m.

(2) Check all tasks in the task graph. If the number of
edges connecting task tt (1 < i: ^ m) is greater than d, do
grouping within the subgraph including tt itself and all its
neighbours such that after grouping the number of
neighbours of tt is not greater than d. The above
procedure is continued until no task in the task graph has
more edges than d.

(3) For all tasks in the task graph, check the amount
of computation and the amount of communication for
each task, do necessary grouping such that after grouping
the amount of computation and the amount of com-
munication both for each task and for all tasks are well
balanced.

Figure 4 provides an example of grouping when
n = 10, m = 9 and d = 4, where (a) is the task graph and
(b) and (c) are different grouping schemes which depend
on the amount of computation and the amount of
communication of the tasks.

3.3 The placement module

The job of the placement module is to place the tasks in
the task graph on to processors in the processor graph
one-to-one, such that after placement the inter-task
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(a) (b) (c)

Figure 4. An example of grouping, (a) Task graph; (A) first grouping; (c) second grouping.

communication requirements in the task graph can be
efficiently realised by physical communication paths
among processors in the processor graph, where a path
is a chain of communication links.

The criteria for placement are the following.
(1) If there exists an embedding from the task graph

to a subgraph of the processor graph, the placement can
lead to it.

(2) The total length of the physical communication
paths to fulfil the inter-task communication requirements
is minimum.

An intuitive idea for this module is to place tasks in the
task graph on to processors in the processor graph
according to the neighbour-first method, that is, if task t(
is placed on to processor pm, then the neighbours of t( in
the task graph should be placed on to the processors that
are closest to pn(i) in the processor graph.

Our placement algorithm, neighbour-first placement,
is described as follows.

(1) Place the host task on to the I/O port processor
(the host/master transputer).

(2) For each task t( which is placed on to processor
pn{i), do the following neighbour-first placement until all
tasks have been placed:

(a) If the number of neighbours of task «(is one, place
the neighbour on to the processor closest to processor
PnW

(b) If the number of neighbours of task tt is greater
than one, placement should be done in such a way that
the total length of physical paths used for the com-
munication among /, and its neighbours is minimum.

Figure 5 shows an example of placement from Fig.
4 (c) to a 3 x 3 torus.

3.4 The routeing module

The job of the routeing module is to allocate the physical
links and to build the edge-disjoint physical communi-
cation paths for the inter-task communication require-
ments. It produces a layout of the embedded subgroup of
the processor graph from the task graph.

Clearly, in order to achieve the minimum communi-
cation delay, routeing should produce a layout of the
embedded subgraph whose total edge length is minimum.

The routeing algorithm we apply here is a fast heuristic
algorithm for path-disjoint routeing in a grid structure
which can produce a routeing layout with minimum total
path length and fewest total path bends, where a bend on
a path is a 90° angle on the path in the grid structure.18-19

Our routeing algorithm is based on two heuristic
criteria, routeing order criterion and route selection
criterion, which are motivated by the observation that
for path-disjoint routeing the routeing order for all paths
and the route selection for each path are two key issues
to the routeing result, and they should therefore meet
certain criteria. For a given problem, routeing paths in a
wrong order may result in routeing failure, as may
choosing a route for a path in a wrong way.18

Figures 6 and 7 show the importance of the routeing
criteria. For the routeing requirements in Fig. 6 (a),
routeing order (r15 r2, r3, r4) affects the routeing result as
described in (b) and (c), where touteing is assumed to
proceed in the shortest way.

For the routeing requirements in Fig. 7 (a) under the
routeing order rx, r2, the route selection for each r(, r = 1,
2 also affects the routeing results, as described in (b) and
(c).

Figure 5. Placement from Fig. 4(c) to a 3 x 3 torus.

5 6

8 9

r\ n

(a) Routeing requirements (b) Routeing succeeds

ri

r\

(c) Routeing fails (d) Routeing fails

Figure 6. The importance of the routeing order criterion.
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Figure 7. The importance of the route selection criterion.

Assume that we want to build k communication paths
rx, r2,...,rk in the processor graph. The basic idea of our
routeing algorithm, path-disjoint routeing, is described
as follows.

(1) Give the local heuristic information for each path,
for instance the weight assignments to different routes
and different bends in the route for each path.

(2) Give the global heuristic information for all paths,
namely the routeing order for all paths that is assumed to
be <j){i) for r(, i.e. rvW is routed before r9ii+1), 1 < i < k.

(3) Find the possible route for path rf(1),r9m,...,r9ik)
based on the local heuristic information such that the
final layout has minimum length and fewest bends.

The sketch of the algorithm, path-disjoint routeing, is
briefly described as follows.

(1) Initialisation.
(2) Routeing order calculation

(a) Calculate heuristic information.
(b) Calculate the rcuteing order according to the

routeing order criterion.
(3) Do route finding and route collection for each of

the paths in the routeing order.
(a) Route finding: find a physical route for the

path according to the route selection criterion
by using the minimum cost and fewest bends
search.

(b) Route collection: take the built route away
from the processor graph, update heuristic
information.

3.5 Self-adjusting mapping

A possible mapping algorithm consists of three modules,
grouping, placement and routeing, as described above.
However, even if grouping and placement are very
powerful in function, it is still difficult to guarantee that
they can lead to a successful embedding on the processor
graph. Therefore, a self-adjusting idea is proposed such
that if the routeing module cannot find a successful
embedding, the placement module should be able to
adjust itself and give a new adjusted scheme according to
the heuristic information provided by the routeing
module. Further, if all the necessary adjusted schemes of
placement can still not lead to a successful embedding,
the grouping module should also be able to adjust itself
according to the heuristic information and produce a
new adjusted scheme. One obvious criterion for self-
adjusting is that the new schemes after each self-adjusting
step both for placement and for grouping should increase
the possibilities for a successful embedding to be
produced by the routeing module.

A failure path is one that fails to be routed by the
routeing module. A failure node is a node in Gv that has
to be reached or passed by more paths embedded from Gt

than the edges physically connected to the node. Here a
node is said to be either reached by a path if it is an end-
node of the path, or passed by a path if it is an
intermediate node on the path. Routeing therefore fails
on each failure node. Let Pf and Nf stand for failure path
set and failure node set, whose elements are all failure
paths and failure nodes produced by the routeing module,
respectively. Assume that Pt is the path set including all
paths that have to reach or pass failure node fteF,
1 </<(!;. We call a node in Gv occupied node (un-
occupied node) if a (no) task has been placed on it after
placement. No and Nu stand for occupied node set and
unoccupied node set, which contain all occupied nodes
and unoccupied nodes in Gp after placement, respectively.

A path p is said to be terminal exchangeable if
exchanging its terminals (end-nodes) with unoccupied
nodes and/or terminals of another path, q, where p and
q belong to the same Pt w.r.t. failure node/,, will reduce
the number of failure paths in Pf.

Our self-adjusting strategy for placement and grouping
is a strategy to reduce \Pf\, and finally to remove all paths
from Pf and thus to make the routeing succeed. Self-
adjusting for placement is realised by path-terminal
exchanging and for grouping by path-terminal merging.
They are described as follows.

(i) Path-terminal exchanging
(1) If \NU\ > 0, do exchanging with unoccupied nodes

until no terminal-exchangeable path w.r.t. unoccupied
nodes can be found.

For each failure path in Pf, select a constant number
(cx) of unoccupied nodes in No and check whether the
path is terminal-exchangeable or not w.r.t. the selected
nodes by comparing the routeing results before and after
each exchange. Do the exchange if terminal-exchange-
able.

(2) Do exchanging with occupied nodes until no
terminal-exchangeable path w.r.t. occupied nodes can be
found.

For each failure node, /„ 1 < i < £, in Np take a
constant number (cj) of paths in Pt and check whether
there is any pair of terminal-exchangeable paths by
comparing the routeing results before and after each
exchange. Do the exchange if terminal-exchangeable.

(ii) Path-terminal merging
Assume that the number of target tasks in Gt after

grouping is n0. For 1 < i < «„— 1, do the following until
the number of failure paths in Pf after regrouping does
not increase by a constant (c2).

(1) Regroup the ni_1 tasks in Gt into n((n, < n^x— 1)
tasks by merging some path terminals together.

(2) Place the target tasks in the regrouped Gt on to the
processors in Gv.

(3) Route the paths among the placed tasks and
produce the new Pf.

Obviously if the algorithm works in such a pro-
gressively self-adjusting manner, a successful solution
will certainly be found for the mapping problem
eventually. In the worst case, all processes may for
example be grouped into one task and placed on to one
processor.

By combining the self-adjusting strategy and the three
modules for a mapping, we finally obtain the self-
adjusting mapping algorithm, which can be sketched as
follows.

(1) Do initialisation: routed = FALSE.
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(2) Do load-balanced grouping in Gt to form n0 (ji0 <
m) target tasks, where each task has a degree not greater
than the degree of Gp and all tasks are cost-balancing.

(3) Do neighbour-first placement to place the tasks in
Gt on to processors in Gp, where neighbouring tasks in Gt
are placed on to possibly neighbouring processors in Gp
so as to keep the total length of the shortest physical
communication paths among the placed tasks in Gp as
small as possible.

(4) Do path-disjoint routeing for placed tasks in Gp. If
routeing is successful, routed = TRUE, otherwise output
the failure path set Pf and failure node set Nf.

(5) If routed = FALSE do the following self-adjusting
until routed = TRUE: (a) Do path-terminal exchanging
until there is no terminal exchangeable path any more in
Pf. (b) Do path-terminal merging (task regrouping) until
the number of failure paths in Pf after regrouping does
not increase by a constant.

4. COMPLEXITY AND PERFORMANCE OF
THE ALGORITHM

4.1 Time complexity
Assume that the grouping, placement and routeing
modules need time rgroup, Tplace and rroute respectively.
From Refs 19 and 20 we know that

Tgroup = O(n2) (12)

(13)

(14)

where n = \Gt\, m = \GP\ and k is the number of paths to
be routed among the placed tasks in Gp.

Since both Gt and Gp have a constant degree, the
maximum number of total disjoint paths among the n0
grouped tasks after grouping is O(n0) < 0{m). For /^and
Np clearly \Pf\ s; O(m) and \Nf\ = £, ^ m. Let s be the
number of phases of self-adjusting. Let kt and nt be the
number of paths to be routed and the number of target
tasks after the /th phase adjusting respectively, k{° and k{«
the number of failure paths deleted after exchanging with
unoccupied processors and with occupied processors of
the /th phase adjusting respectively, 0 ^ / < s. Since each
phase of path-terminal merging will reduce at least one
task (one path) and increase at most c2 failure paths, we
have

n0 — 1 (15)

(16)

(17)

Assume that time needed for block 'Exchanging with
unoccupied processor', 'Exchanging with occupied pro-
cessor ' and ' Path-terminal merging' are respectively T%,
7̂  and Tm. The /th phase adjusting needs time, T^just, at
most

n'iust = £ (*„ - 0 ? ? + mk\oTc + Tm. (18)

By equations (15)—(18), and with no^m and k0 = O(n0),
all s phases adjusting need time at most

adjust = S £(ko-i-j)T! + m i k

0 + c2 s) k0) Tt + O(m(k0 + c2

)rm. (19)

Clearly, for each phase adjusting 7^ and T°e are
dominated by rroute, and Tm by 7^roup, Tp]SLCe and rroute.
Noticing that during the ith phase adjusting, 1 < i'^s,
tif^m and k, < 0{m), by equations (12)—<14) we have

Hence

+ O(m
^ O(m2

roup + rp

«2) + O(m2) + O(k2
( + kt m

2))
3) + O(m) O(m3) = O(m5) (20)

pIace
st ^ 0(max {n2, m5})

Note that here the time complexity of our algorithm is
for that under' full adjusting' as described in the previous
section. It can be reduced by degrading the adjusting
heuristic. Instead of full adjusting we can also take 'semi-
adjusting' by replacing the strategy in the above path-
terminal exchanging with one such that during each
phase adjusting only a constant number of end-nodes of
failure paths in Pf and a constant number of failure nodes
in Nf can be used to check with unoccupied and occupied
nodes in Gp for exchangeability respectively. Thus we
can reduce the worst-case time complexity of the program
to O(max{«2,w4}).

Furthermore, if we take away the restriction of edge-
disjointness of the paths to be routed, the whole self-
adjusting part in our algorithm is not needed any more,
since path routeing will certainly succeed on any
placement scheme provided by the placement module
then. By using a usual algorithm of shortest path
routeing for all pairs of processors that take time Ofm2),1

our algorithm thus has a worst-case time complexity
0(max{H2,m2}) for the transputer networks that can
provide message routeing and multiplexing.

4.2 Implementation result
Our algorithm has been implemented in Occam on the
Haithi-2 transputer system.20 We have tested the al-
gorithm with various problem instances. For any (regular
or irregular) input user-defined task graph and a
processor graph of torus of any size, the algorithm will
produce a satisfactory process-to-processor mapping. It
seems that in many cases the algorithm can find an
embedded layout that is even difficult to be achieved by
hand drawing. We show two examples of the imple-
mentation result of the algorithm in Fig. 8 (a) and (b),
where for task graph in (a), all tasks have the same
computation weight and communication weight, for task
graph in (b) the underlined numbers are communication
weights and computation weights are implicated by node
indices: node / has computation weight /+10; for
routeing layout both in (a) and (b) bold lines indicate the
occupied links by physical paths and plain lines the
unoccupied links.

4.3 Performance evaluation
The performance of our algorithm has been measured on
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Figure 8. Two examples of implementation result: (a) mapping 4 x 4 mesh on to 4 x 4 torus; (A) mapping an arbitrary task graph on
to 3 x 3 torus.

the Hathi-2 system. For mapping arbitrary task graphs
on to a processor torus of arbitrary size, we measure the
time elapsed during the whole mapping procedure as well
as its different subprocedures of grouping, placement,
routeing and adjusting individually. Measuring the time
elapsed for mapping a series of arbitrary task graphs of
different sizes on to a processor torus of fixed size, we
know how the elapsed time varies when the number of
tasks of an arbitrary task graph varies, thus get a figure
of the algorithm performance w.r.t. the number of tasks.
Likewise, measuring the time elapsed when the number
of tasks is fixed but the size of the processor torus is
varying, we obtain a figure of the algorithm performance
w.r.t. the number of processors. The combination of
these two measurements will generate an overall evalu-
ation to the performance of our algorithm.

The measured performances of the algorithm under
full adjusting are described as in Fig. 9(a)-(e), where
(a)-(d) respectively show the individual performances of
the procedures of grouping, placement, routeing and
adjusting in the algorithm, and (e) presents the overall
performance of the algorithm. In each of these figures,
curve t(n, 100) represents the relation between time and
n, the number of tasks, when the size of the processor
torus is fixed to 100 (10 x 10), while curve /(100, m) shows
the relation between time and m, the size of the processor
torus, when the number of tasks of an arbitrary task
graph is fixed at 100 (the topology of the task graph is
not fixed). The column axis with a scaling unit of 10 s is
the axis of time. The row axis with a scaling unit of 10 is
the axis of task number («) for curve t(n, 100) and of
processor number {m) for curve f(100, m), respectively.
All task graphs are generated over a set of random data,
therefore their topologies are random. From Fig. 9 it is
obvious that the execution time of the algorithm is
mainly dominated by the time elapsed in the procedure

of adjusting. Therefore to a given processor torus,
mapping often takes more time for task graphs with a
complex topology than with a simple one, since the
former normally requires more work of adjusting.

As samples, in Table 1 we illustrate the performances
of the algorithm for some typical categories of task
graphs.

5. CONCLUDING REMARKS

The problem of mapping parallel programs on to parallel
computers is a well-known fundamental problem in
parallel processing and it is of great significance both
theoretically and practically. This problem has been
known to be NP-hard in general. Therefore it seems
impossible to have a fast deterministic algorithm to solve
the mapping problem in the general case. In this paper
we have presented a fast heuristic algorithm, the self-
adjusting mapping algorithm, to solve this problem on
transputer networks. The algorithm mainly contains
grouping, placement and routeing modules, and they
work co-operatively under a series of progressive self-
adjustments until a successful solution to the mapping
problem is produced. For mapping n tasks in an arbitrary
task graph on to m processors in a processor graph of
torus, the algorithm has a worst-case time complexity
O(max{«2,w5}) under full adjusting, O(max{n2,m4})
under semi-adjusting and 0(max {n2, m2}) under no
adjusting, where the last holds only for the transputer
networks providing message routeing and multiplexing.
Our algorithm has been implemented on the Hathi-2
transputer network. The implementation result and
demonstrated performances show that the algorithm
works well for both regular and irregular task graphs.
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Figure 9. The measured performances of the algorithm.

Table 1. Samples of performances for different categories of task graphs

Task graph

Topology

Mesh

Binary tree

Hypercube

Random

n

12x12
5x30

31
127

16
128

100
100

Proc. torus
m

12x12
5x6
5x6
5x10
4x4

10x13
10x10
5x10

Measured

Initial

0.62
0.68
0.03
0.48
0.01
0.52
0.30
0.31

performance 1

Grouping

1.25
24.68

0.27
21.84
0.02

24.87
6.74

19.09

[time in seconds)

Placement

0.90
0.16
0.17
0.10
0.10
0.10
0.41
0.06

Routeing

5.22
0.32
0.20
0.31
0.12
0.53
1.27
0.19

Adjusting

0
0
2.43
2.06
0
0

356.35
0.57

Total

7.99
25.84

3.10
24.79
0.25

26.02
365.07
20.22
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Book Review

BERNARD DE NEUMANN, DAN SIMPSON AND
GIL SLATER (Eds)
Mathematical Structures for Software Engin-
eering
Oxford University Press, 1991
£45.00. ISBN 0-19-853627-5

Software engineering is becoming increasingly
mathematical, and at a research level it
presents many interesting mathematical chal-
lenges. Nevertheless, the software engineering
field is viewed apathetically by many pro-
fessional mathematicians. In response to such
concerns, the Institute of Mathematics and its
Applications formed its Systems and Software
Engineering Specialist Group. The present
book presents the proceedings of the first
three-day conference of this specialist group at
Manchester Polytechnic in 1988.

The papers illustrate the very wide range of
different techniques of discrete mathematics
that have been found to be valuable in various
areas of software engineering. The overall
tone is well set by the leading paper by Tim
Denvir, who addresses the role of mathematics

in software engineering. A natural starting-
point is the notion that programming is itself
a mathematical activity subject to rigorous
mathematical rules, which has fired the
thriving formal methods community. How-
ever, almost every branch of discrete math-
ematics has found some kind of software
engineering application. This application of
mathematics to the field may be interpreted in
the very widest sense, for example the math-
ematical theory of computability provides a
'reductionist' basis for the entire computing
discipline, standing in much the same re-
lationship to software engineering as elec-
tromagnetic theory does to practical electrical
engineering.

Taken as a whole, the remaining papers in
the volume bear out the astonishingly wide
range of different ways in which mathematics
has found application to software engineering
problems. Individual papers naturally tend to
reflect the application of mathematical tech-
niques in one particular software engineering
context. Examples of topics treated include
the modelling of software testing, maintenance

and reliability; consideration of notations and
standards; algebraic approaches to program
development; practical problems of safety-
critical software and the use of special nota-
tions for the study of parallel systems. Rel-
evant mathematical techniques include topics
as diverse as statistics, category theory and
modal logic.

Overall, this is a remarkably heterogeneous
collection of stimulating papers. The diversity
of topics, both from a software engineering
and from a mathematical point of view, leaves
little room for doubt that almost any area of
discrete mathematics can illuminate some area
of software engineering interst. It is somewhat
harder to deduce either that software en-
gineering forms a distinctive discipline worthy
of study from a mathematician's point of
view, or that the field has the potential ability
to stimulate significant new mathematics.
Perhaps future conferences of this worthwhile
kind will clarify such issues.

PETER WALLIS
Bath
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