
Algorithms for De Bruijn Sequences - A Case Study in the
Empirical Analysis of Algorithms

M. VASSALLO1 AND A. RALSTON2

1 Suny College at Fredonia, N.Y., USA
2 Department of Computer Science, SUNY, University at Buffalo, 226 Bell Hall, Buffalo, New York 14260, USA

The following paper presents an analysis of algorithms for De Bruijn sequences. It is unusual in that the analysis is
carried out empirically rather than analytically.

Received June 1990, revised March 1991

1. THE ANALYSIS OF ALGORITHMS
Most published work about the analysis of algorithms is
analytic because, when analytic results can be obtained,
they are usually decisive, often elegant and sometimes
beautiful. However, such analyses are not always
available either because they are mathematically in-
tractable or because the analysis is indecisive. In such
cases, empirical analysis may be used to distinguish the
effectiveness of one algorithm from another. Indeed, this
situation is more common than the computer science
literature might lead you to believe. This note is an
example of such an empirical analysis.

2. DE BRUIJN SEQUENCES
Definition. Let S = {0,1, ...,m} be an alphabet of m+ 1
symbols and consider all words of length n from S. Let
L = (m+\)n. An (m,n) de Bruijn sequence Bmn is a
sequence

aia2a3,...,aL

with each at eS such that every word w of length n from
S is realized as

atat .,al+n_x (0 «S i ^ L) (1)

for exactly one /, where each subscript in (1) is to be
interpreted in modulo L.

For example, with m = 1 and n = 3 so that L = 8, the
sequence 00010111 contains all binary sequences of
length 3 with 110 and 100 being obtained by wraparound
from the end of the sequence to the beginning.

The existence of de Bruijn sequences for any m and n
can be proved using graph theory or finite field theory [3]
but the algorithms suggested by these proofs are clearly
very inefficient from both time and space perspectives.
The known good algorithms for generating de Bruijn
sequences all depend on a strictly combinatorial ap-
proach.

3. THREE COMBINATORIAL
ALGORITHMS FOR DE BRUIJN
SEQUENCES

An early combinatorial algorithm due to Martin [2] was
inefficient because it required L units of memory. By
contrast, the three algorithms to be considered here are
all essentially memoryless since each requires O(n) units
of storage. Improving the space attributes also improves

the timing properties by requiring much less memory
referencing. The three algorithms to be considered here
all require O(L) time, clearly the minimum possible.

Two of the three algorithms depend upon the following
two definitions:

Definition. Let S = s1,s2,...,sn and let T=s1s2,...,
spj < n. Denote by Tk the subsequence of k consecutive
repetitions of T. If S — 7* when k > 1, we say that S is
periodic with repetition (or periodicity) k and T is its
periodic reduction. If there is no T with k > 1 for which
S = Tk, we say that S is aperiodic.

Definition. The lexically largest permutation, nx, n2,...,
nn, of an «-set ava2, ...,an, is such that n1 ^ n2 > ... >
nn. (Thus, the lexically largest permutation is the
numerically largest). If S = sxs2, ...,sn and T = txt2, ...,tn

are two strings of length n, then S > Tiffs, = *„ / = 1,...,
j , and sj+1 > tj+1. Equality holds only when j = n. A
necklace S of length n is an n-sequence with the property
that S > = T for every n-sequence T which is a cyclic
permutation of S. Thus, if S = sx,s2, . . . ,sn is a necklace,
then

O •> SiSt+1,...,SnS1, . . . , S j _ j

for 2^i^n.
The first algorithm, due to Fredricksen and Maiorana

[1], outputs the lexically largest (m, n) de Bruijn sequence
by generating successive necklaces of length n.

Algorithm FM

Input: two positive integers m, n
Step 1.

Start with the empty string.
Step 2. (Iterative Step)

Generate the necklaces of length n whose first
symbol is m, in decreasing lexicographic order.
Append each necklace to the string already
generated if it is aperiodic or its periodic reduction
otherwise.

Step 3. (Recursive Step)
If m = 1 then append 0 to the string already
generated, else append B1™^ to the string already
generated.

Output:

Since Algorithm FM requires the generation of
successive necklaces, it requires a subalgorithm for this
purpose which can be found in [3].

88 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/88/398532 by guest on 09 April 2024



ALGORITHMS FOR DE BRUIJN SEQUENCES

As an example of Algorithm FM, let n = 4 and m —
2. We obtain:

= 2 2221 2220 2211 2210 2201 2200 21 2120 2111
2110 2101 2100 20 2011 2010 2001 2000 1 1110
1100 10 1000 0,

where each group shown is a necklace or its periodic
reduction.

A second algorithm, Algorithm R, due to Ralston [4],
is a variation on Algorithm FM which uses a double
recursive approach (see Appendix).

For the third algorithm, due to Xie[5], we need to
introduce two more definitions.

Definition. Let LI = (m+ I)""1. If a sequence

Of !/„...,*„_!

is such that for anyy (1 <y ^ LI), there exists another
sequence jj2, ...Js (s < LI) where

Js = 0, A =1=0 (k<s)
and
A = h A+i = ((m+l) *jk + th) mod LI (1

then 0?! t2,..., tL1_x is called a label (m,n).

Note: 000, ...,0 (LI 0's) is always a label.

As an example, 0001 is a label (3,2) since there are
sequences 10 forj= 1, 20 fo ry= 2, and 310 for j = 3.
However, 0003 is not a label (3,2) since for j = 3, the
sequence generated by (2) is 3333.

Definition. A look-up table is a two-dimensional array
consisting of LI rows. Each row consists of an index /, 0
=% i < LI — 1, and a sequence of symbols iQ, i15..., im in
which each sequence is a permutation of the set {0,1,. . . ,
m).

Let us now consider the special look-up table shown in
Table 1 in which 0t112,..., /L1_j is a label (m,ri) and xx,
...,x in row i is 01 ... (tt-i)(ti+1) ...m.

Table 1

Index Sequence

k < s)

Z.l-1

1
x

2
x

m
x

L\-\

Table 3. Time to generate Bm n on a VAX 11/785 (cpu sees)

Xie proves that Algorithm X, associated with Table 1,
generates a (m, ri) de Bruijn sequence. In particular, if 0^,
f2,..., / t l_! = 00,..., 0 then the sequence generated is the
lexically largest (m, n) de Bruijn sequence.

Algorithm X

Input: positive integers m, n
Step 1.

Generate a label (m, ri) represented by 0^, t2,..., tLl_x
Step 2.

Construct Table 2 as described above
Step 3.

Start with the index / = 0 and set the sequence to be
generated to be empty

Step 4. (Iterative Step)
If the row with index i in the look-up table is empty,
stop; otherwise append the rightmost symbol J in
this row to the sequence already generated, remove
this symbol from the row and evaluate

i^((m+ l)*i+s) mod LI
Output: an (m,ri) de Bruijn sequence

For example, with m = 2, n = 3, LI = 9. If we take the
label in Step 1 to be all zeros, then the look-up table is:

Table 2

Index 0 1 2 3 4 5 6 7 8
Sequence 012 012 012 012 012 012 012 012 012

Applying Step 4, we obtain:

B2
xl = 222122021121020120011101000.

This remarkable but rather unintuitive algorithm is, as
we shall see in the next section, very efficient because of
the extremely simple calculation in Step 4.

4. RESULTS
We implemented Algorithms FM, R and X in Pascal on
a VAX 11/785 and a Burroughs B7900. Since the results
were similar on both computers, we give the results only
for the former. The implementation, so far as possible,
had similar characteristics with respect to modularity
and data structures. The lines of code for the three
algorithms were as follows: FM-155, R-318, X-75. The
table which follows gives the results for the three
algorithms for various values of m and n.

m
n
FM
R
X

m
n

FM
R
X

2
3
2.47
2.62
0.10

3
6

22.13
21.72

6.32

2
4
2.71
2.80
0.16

4
3

2.83
2.86
0.26

2
5
3.41
3.57
0.41

4
4

4.88
4.87
1.05

2
6
5.91
5.93
1.19

5
3
3.23
3.19
0.36

2
7

13.97
13.54
3.54

5
4
7.73
7.29
2.01

2
8

39.87
39.22
10.60

6
3
3.66
3.63
0.58

3
3
2.63
2.74
0.14

6
4

12.01
11.69
3.58

3
4
3.41
3.47
0.44

7
3
4.31
4.26
0.86

3
5
6.93
6.90
1.64

7
4

18.98
17.97
6.12

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 89

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/88/398532 by guest on 09 April 2024



M. VASSALLO AND A. RALSTON

The superiority of Xie's algorithm is clear, particularly so
for increasing values of n for each m. This superiority is
not obvious from the algorithms themselves nor could an
analytic analysis have shown this since all three
algorithms are 0{L) for time. A posteriori we may infer
that the simplicity and elegance of the idea in Xie's
algorithm accounts for its computational efficiency.

Empirical studies of the performance of algorithms
whose analytic orders are the same will not usually result
in quite such definitive results as obtained in this case.
Still computer scientists and mathematicians should be
willing to take an experimental approach to the analysis
of algorithms when analytic approaches are not fruitful.

5. APPENDIX

Definition. An aperiodic block is a string of aperiodic
necklaces of decreasing numerical value with m's in the
same position in each necklace (e.g. with m = 2, n = 4,
we get 2211 2210 2201 2200).

Definition. Let T be the periodic reduction of a
periodic necklace S with repetition k (e.g. S = 2121, T =
21, k = 2). Let / be the number of (m-l)s in T, u =
ml—\ and h0 < hl < h2 < ... < hu be the strings with ms
in the same position as in rand nowhere else (e.g. t = 1, u
= 2 1 - 1 = 1, h0 = 20 < A1 = 21). Let Bf\ be the de
Bruijn sequence generated by Algorithm R below for m
= u,n = k (e.g. for u = \,k = 2, this turns out to be B[R)

2
= 1 10 0). A periodic block is one in which each symbol

j in Buk is replaced by h} (e.g. 21 2120 20).

Definition. A group G} is the sequence of periodic and
aperiodic blocks whose initial j symbols are each m,

ordered by the value of the initial block of length n in
each. For example, with m = 2, n = 4, j = 1, then

G1 = 2121 2020 (periodic block)
2111 2110 2101 2100 2011 2010 2001 2000

(aperiodic block)

Then here is Algorithm R:

Input: two positive integers m, n
Step 1.

Start with the string consisting of the single symbol
m

Step 2. (Iterative Step)
For j = n — \,n—2,..., 1 append G} to the string
already generated. (This will generally involve a
recursive call to the algorithm to compute B^)

Step 3. (Recursive Step)
If m = 1, then append 0 to the string already
generated; else, append 2^ 1 > n to the string already
generated

Output: C 'n

For n = 4, m = 2, the following output is obtained
(Ralston [3]):

: 2 [Step 1]
2221 2220 [G3]
22112210 22012200 [G2]
2121 2020 2111 2110 2101 2100 2011 2010 2001

2000

2,4

1 1110 1100 10 1000
0

[B[R)J

REFERENCES
1. H. Fredricksen and J. Maiorana, Necklaces of beads in k

colors and k-ary de Bruijn sequences, Discrete Math., 23,
207-210 (1978).

2. M. H. Martin, A problem in arrangements, Bull. Amer.
Math. Soc, 40, 859-864 (1934).

3. A. Ralston, De Bruijn Sequences - A Model Example of

the Interaction of Discrete Mathematics and Computer
Science, Mathematics Magazine, 55(3) (May 1982).

4. A. Ralston, A New Memoryless Algorithm for De Bruijn
Sequences, / . Algorithms, 2, 50-62 (1981).

5. S. Xie, Notes on De Bruijn Sequences, / . Disc. App. Math.
16, 157-177 (1987).

90 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/1/88/398532 by guest on 09 April 2024


