
Oggetto: An Object Oriented Database Layered on a Triple
Store

J. A. MARIANI
Computing Department, Lancaster University, Bailrigg, Lancaster LAI 4YR

Interest in object oriented database (OODB) systems continues to grow. This paper describes the implementation of an
OODB by layering over a triple store. The OODB thus implemented allows experimentation with an object-oriented
query language. It is shown how this system, Oggetto, is capable of handling, the four tasks outlined in ref. 2.

Received December 1989, revised May 1990

1. INTRODUCTION
Object-oriented databases (OODBs) are increasingly in
demand in areas such as CAD/CAM, office information
systems, software engineering environments and multi-
media systems. They support the storage, retrieval and
manipulation of flexible, fine-grained and complex
structures. They also support schema evolution. The
schema of a database consists of a description of the
structure of the data held; data about the data, or
metadata. The application areas above require metadata
to be as flexible and changeable as data itself. Contrast
this with conventional database management systems
(DBMS), where schemas tend to be graven in stone; any
restructuring of the schema can be a major task requiring
the database to be unavailable for significant periods.

Several attempts at implementing an OODB have been
layered on existing DBMS including MOKUM25 (a
relational DBMS and Prolog), IRIS9 (based on common
Lisp), GemStone14 (based on Smalltalk), and Postgres24

(based on Ingres). Our work is similar; the substratum
being a binary-relational storage structure. The advant-
ages are no different from any other layered architecture;
we use the functionality of the storage structure to
support the functionality of the OODB. Where the
substratum provides functionality close to that required
by the superstructure, however, this eases the implemen-
tation task. We hope to show that binary-relational
storage structures are particularly apt for the support of
an OODB superstructure. An important view of our
work is that we may consider the OODB as a high-level
interface to the underlying binary-relational storage
structure.

Easing the implementation task allows the rapid
construction of a prototype OODB and therefore
expedites experimentation with its features. An object-
oriented query language, which contains a transitive
closure primitive, has been designed and implemented.
This language and its use are described later.

We now introduce the two database technologies of
concern: object-oriented databases and binary-relational
storage structures.

1.1 Object databases

This section provides a brief overview of the power and
capabilities of an Object Oriented Database (OODB)

system. For further details see ref. 16. Using an OODB,
we set up a schema by declaring new types, such as:

type person {
string name;
int age;
char gender

Example 1: Declaring a type person

Where s t r i n g , i n t and char are basic types supported
by the OODB. We can now introduce instances of the
type, such as:

i n s t person DAVID (
name: = 'David' ;
age: = 32;
gender: = 'm'

Example 2: Declaring an instance of type person

Note that we have given the instance a unique name
DAVID known as an id that can be referenced elsewhere
in the data. An aspect of most object-oriented systems is
inheritance. A type can inherit the attributes of another
type; we can thus build hierarchies or networks if
inheritance is allowed from a single or multiple parent
types. For example:

type marriedPerson (
person spouse;
set of person hasChild
) inherits person;

Example 3: Declaring a type marriedPerson

A married person possesses all the attributes of person
(name, age and gender), but has the additional attributes
of a (single) spouse and (zero to many) children.
Attributes are considered to be single valued by default,
however, set valued attributes are flagged by the reserved
words set of. Notice the use of a user-defined type

108 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

OGGETTO: AN OBJECT-ORIENTED DATABASE SYSTEM

person within this declaration. We can continue the
process of inheritance further:

type wife (
string maidenName
) inherits marriedPerson;

inst wife RUTH (
name: = 'Ruth';
age: = 30;
gender: = 'f';
spouse: = DAVID;
hasChild: = (CLAIRE, PAUL, EMMA);
maidenName: = 'Clarke'

Example 4: Declaring a type wife and a subsequent
instance

In this example, we can see the use of ids to reference
other objects.

OODBs are flexible, it is easy to add a new attribute to
a type (e.g. string r e l i g i o n to type person). Consider
how this would be carried out in a relational system. The
manipulations required to add a new attribute in our
OODB are detailed in Appendix 1.

We can associate methods with types. A method is
analogous to a procedure in that it consists of a body of
'code' which can be executed. Methods are tied to the
declaring type, and can only be used in association with
objects of that type. For example, it is unusual for a
database to have a field ' age' which consists of a stored
value. Instead, it should have a computed field, which
references an algorithm that calculates the person's age
based on their (stored) date of birth and the current date.
In the type declaration for person, we might find:

(
date dateOfBirth;
method int age

[
todaysDate — dateOfBir th

where the type da te has been defined, and the arithmetic
operator minus also defined between two dates. A
person's age attribute can be accessed as before; it makes
no difference if it is stored or computed.

This adds a dynamic aspect to the database. We now
require the ability to

• store methods within the database;
* execute methods whenever data is accessed.

1.2 Binary-relational storage structures

The binary-relational model (BRM) first came to
prominence in 19741 and was further developed by
Senko's work on DIAM (data independent access model)
I and II.19 The BRM consists of entities (which are any
'thing' that can be identified and is of interest) which
have binary relationships between them. Such a re-
lationship can be represented by a triple of the form

(subject, relation, object).

To represent the fact that John kicked the ball, we can
say that John is the subject, the ball is the object, and the
relationship is that of being kicked.

(John, kicked, the ball).

This falls out naturally as our original fact was a triple.
If we take a diagram (Fig. 1) from Abrial,1 we can see

a semantic network of information showing nodes
(things) and connections between them. Abrial labels the
connections with the access functions which can be
applied. There are two such functions, each being the
inverse of the other, i.e.

personofage(50)={PETER, MARY}
age (JOHN) ={27}

The data can also be intuitively organised into what
Abrial refers to as categories, i.e. JOHN, JANE, PETER
and MARY are persons. Abrial goes on to show how
arbitrary «-ary relations can be reduced to a group of
binary relations. We can represent the schema of this
data in a similar diagram, or choose to model it in the ER
(entity relationship) model,5 this time differentiating
which connections are relationships and which are
attributes (Fig. 2).

We can store the metadata and the data directly in a
BRM storage structure.

(PERSON has_spouse PERSON)
(PERSON has_child PERSON)
(PERSON has_age age)
(PERSON has_sex sex)

FEMALE
personofsex / personofsex

personofage

personofsex \ / personofsex

MALE
personofage

personofage 50

Figure 1. Abrial's diagram.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 109

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

J. A. MARIANI

Figure 2. The ER diagram.

Finally, we can store the data within an OODB.

type PERSON (
PERSON spouse;
set of PERSON child;
int age;
char sex;

Senko19 shows how names are used to stand for things in
the real world, and that 'world things' are divided up
into groups. Within a group, each member is uniquely
identified by a member name. In DIAM, it is possible for
any member to have an infinite number of properties or
associations with other member names; this facility
within the BRM in general assists with the modelling of
objects.

DIAM has a layered architecture, as shown in Fig. 3.

End-user level

Information logical level

String level
encoding level

physical device level
Data logical level(s)

Figure 3. The DIAM layered architecture.

In Senko,20 it is shown how the three levels correspond
to ANSI SPARC schema levels, and how binary
associations at the conceptual schema level can be
mapped to the external schema level of hierarchic records,
and to indexes, lists and hierarchic records at the internal
schema. Senko claims that this flexible mapping means
that binary representations can avoid the inefficiencies of
stored binary file organisations.

In Sharman and Winterbottom,21 the universal triple
machine (UTM) is introduced, which supports six basic
operations to manage a collection of triples. It is
suggested that the UTM's operations are capable of
supporting the data structures and operations found in a
wide range of database and Al systems. The UTM's data
repository consists of two stores: the name store and the

triple store. The name store maintains a mapping between
the internal unique identifiers and the external character
representations of values appearing in the fields of a
triple. The operations are described below:

Name store operations:
INSERT_NAME (name) -> identifier
DELETE_NAME (identifier)
FIND_NAME (identifier) -* name

Triple store operations (all operands are identifiers):
INSERTJTRIPLE (sub, rel, obj)
DELETE_TRIPLE (sub, rel, obj)
FIND_TRIPLE (sub,rel,obj, mask)

->{(sub, rel, obj)}

To find a triple, we set up a query template by providing
the known values for a field, and a three-bit mask to
indicate which fields are known. For example, to find out
what age everything is, we set up the query template

FIND_TRIPLE (, hasAge,, 010)

which then returns a set of triples that match the query
template (i.e. all triples that have 'hasAge' in the
relation field).

This work is relevant as it specifies and provides a
dynamic, active aspect to triple stores as opposed to the
normally static repositories. Some OODBs (for example,
ref. 25) have been layered on Prolog, which possesses the
ability to declare data and algorithms (rules), and to
access stored and computed data in exactly the same
way. These aspects lend Prolog to the support of an
OODB but we argue that the lack of an appropriately
efficient DB storage mechanism renders this approach
invalid in the long term. Van de Riet,25 addresses this by
storing the static aspect of objects in a relational database.
Sharman and Winterbottom,21 show how Prolog
algorithms can be expressed in the terms of their UTM
primitives.

Thus we can implement a triple store capable of
storing both facts and algorithms, and provide a substrate
that can hold both objects and methods.

The rest of the paper is structured as follows. In
section 2, we introduce the process of schema evolution
and indicate how Oggetto meets the requirements. The
Oggetto query language (OQL) is introduced in section
3, with the aid of examples. Section 4 uses the four tasks
presented in ref. 2 to illustrate the power of Oggetto. We
return to triple stores in section 5 and discuss the most
appropriate underlying architecture for the support of
object stores. Section 6 briefly considers some future
work, and our conclusions are presented in section 7.

2. SCHEME EVOLUTION IN OGGETTO

An important requirement for OODBs is the ability for
the schema to evolve. Triple stores are uniquely placed to
meet these requirements as the metadata is stored with
the data itself,1017 and we can thus apply triple store
operations to the metadata. By describing how Oggetto
supports schema evolution, we will also illustrate the
mapping between object and triple stores.

The schema of an OODB is usually viewed as the
structure built up by the inheritance mechanism, which
can be considered as a directed acyclic graph. The nodes
in this graph describe the types and their attributes. The
edges of the graph represent the inheritance relationship.

110 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

OGGETTO: AN OBJECT-ORIENTED DATABASE SYSTEM

Banerjee3 describes the requirements for schema evol-
ution as operations on the graph, and those supported by
Oggetto are detailed in Appendix 1; the action of adding
a new class is described here.

In response to a schema command triples are generated
and/or deleted. In the text, we refer to schema and data
triples, solely to aid in description; there are no such
distinctions in the system.

syntax: type typeName (attributes) [i n h e r i t s
typeList];

semantics: There are several base types such as integers
and strings, out of which more complex types can be
built. These complex types can, in turn, be referenced by
other new types. Consider example one, the introduction
of a new type, person. This is converted into the
following set of schema triples:

(person hasAttribute name) /*
associates the name of an attribute
with the type */

(person name string) /* associates the
type of an attribute with the type,
attribute pair */

(person hasAttribute age)
(person age int)
(person hasAttribute gender)
(person gender char)

To create an instance of a type, we provide an id and
as many of the expected attributes as we can. The
declaration of example two is converted into the following
set of data triples:

(DAVID hasType person)
(DAVID name 'David')
(DAVID age 32)
(DAVID gender 'm')

Inheritance is supported with the use of supertypes,
and is specified at type creation, as shown in example
three. This type declaration is converted into the
following set of schema triples:

(MarriedPerson hasAttribute marriedTo)
/* name of attribute */

(MarriedPerson marriedTo MarriedPerson)
/* type of attribute */

(MarriedPerson hasAttribute hasChild)
(MarriedPerson hasChild Person)
(MarriedPerson inherits Person)
(MarriedPerson-^-Person inOrder 1)

The last two triples refer to the inheritance information.
The penultimate states that MarriedPerson inherits
the attributes of Person. The last codifies that in-
formation within the subject field of the triple as
MarriedPerson ^-Person, and states that Person is
the first type that MarriedPerson inherits from. The
order of inheritance is important in multiple inheritance
schemes, and Oggetto supports that concept.

Instantiation of an attribute can be deferred. As an

example, here are the declarations of two object instances,
DAVID and RUTH.

Inst MarriedPerson DAVID (
name: = 'David' ; /* no references to
marriedTo */

);
inst wife RUTH (

name:= 'Ruth';
marriedTo: = DAVID;
);

/• now we can fill in DAVID's missing
attributes */

DAVID^marriedTo: = RUTH;
Attributes can be multivalued, thus there is a distinction
between this model and relations. However, like the
relational model, we insist that any complex item of data
is given its own type; this means we can form queries that
relate to these items.

3. THE OGGETTO QUERY LANGUAGE

3.1 Introduction
Research with Oggetto has led to the development of a
query language that owes much of its power to the set-
based functional model of relational query languages.
Much of the literature features adaptations of SQL,6

which has become a de facto standard. However, we have
departed from this to arrive at a query language with an
object flavour.

As in most modern QLs, the Oggetto query language
(OQL) combines both the declaration of types and
instances [the data declaration language (DDL)] with the
data manipulation language. The DDL has been de-
scribed in Section 2 and Appendix 1.

An important addition to OODBs is that of active
components (methods). We begin by considering the
architecture of the Oggetto system.

3.2 The Oggetto architecture

Oggetto
language

TTY window/menu
based browser

Compiler

Figure 4. The Oggetto architecture.

A 'compiler' takes the Oggetto language and produces a
sequence of low level 'assembly language' instructions.
These are a mixture of instructions that could be
considered as triple store 'machine code' instructions,
such as 'insert triple CLAIRE has.type person', and
some that could be considered as object store ' machine
code' instructions, such as' set attribute age of CLAIRE
to 5'. These instructions are then interpreted.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 111

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

J. A. MARIANI

3.2 The query language

The query language has a message passing syntax. To
find out something about people, we direct a query
message to that type name. For example:

[person query name = 'David'];

returns a list of ids of objects of type person that have the
name attribute set to 'David ' . Oggetto has several
built-in messages that all objects respond to (this is
conceptually similar to a base object type possessing
several methods); query is one of them. Another is the
p r i n t message, which is followed by a list of attributes.

[DAVID print: name, age, marriedTo];

which will result in the printing of 'David' , 30,
RUTH. Embedded messages are supported, so we can
combine the above messages as:

[[person query name = 'David'] print:
name, age, marriedTo];

This set-based approach — in that we allow messages to
return multiple ids which can then in turn be sent
messages - removes the need for the unwieldy ' for' loop
constructs features in some QLs.

For example, in the Iris QL, where we have a
' Personnel' type (much like a relation) as follows:

Create Personnel (name, birthplace,
rank) instances
Kirk ('J.T. Kirk', Earth,

'Commander'),
Spock ('Spock', Vulcan, 'Lt.
Commander'),

McCoy ('L.H. McCoy', Ear th , 'Lt .
Commander');

to find the names of personnel born on Vulcan requires
the following query:

S e l e c t name(p)
for each Person p
where Vulcan = birthplace(p);

The same query in SQL with the appropriate relation
would be:

s e l e c t name
from personnel
where birthplace = Vulcan

The SQL query is set-based as opposed to the Iris 'for'
construct. In OQL, the query would be:

[[personnel query birthplace =Vulcan]
print: name];

As well as the usual dyadic relational operators (= , >,
etc.), Oggetto supports a monadic operator, e x i s t . This
is used to tell if an instance possesses a named attribute.
For example, we can use the e x i s t operator to obtain
the ids of married people who are also parents as follows:

[MarriedPerson exist hasChild];

Programmers can explicitly build a list of ids using the
l i s t directive. For example,

l i s t (DAVID, RUTH)

builds a list of the ids DAVID and RUTH. Wherever an id
may appear in a list directive, so too may a message i.e.

list ([DAVID age], [RUTH age])

builds a list of David and Ruth's ages.
OQL supports arithmetic operations such as sum and

mult as conventional messages. Arithmetic messages
appear as follows:

[[[person query gender = female] age]
sum]

would sum up the ages of all female persons.

3.4 Methods

In terms of methods, the most important assembly
instruction is the message instruction. For example, the
OQL message

[person query name = ' D a v i d '] ;

is compiled to

message (person, query, operand, name,
operand, 'David ' , opera to r , =)

The compiler converts the query expression to reverse
polish and flags the type of each item in the assembly
instruction (to avoid the repetition of identifying the type
in the interpreter).

Embedded messages are dealt with by using an object
store register, i d _ l i s t . This contains the results of the
last message. The message

[[person query name = 'David'] print:
age, gender];

becomes

message (person, query, operand, name,
operand, 'David ' , opera to r , =)

message (i d _ l i s t , p r i n t , age, gender)

A method is any allowable message. To define an
hasGrandChild method for MarriedPerson, we
add the following to the declaration of the type:

method hasGrandChild
[[s e l f hasChild] hasChi ld]

endMethod

An instance of the type (or subtype) can access the
method in the same way it would an attribute:

[[THOMAS hasGrandChild] p r i n t :
name] ;

This will print the names of THOMAS'S grand children.
The Oggetto compiler compiles the message that is a

method's body exactly as it would messages in the DML
part of an Oggetto program, but instead of placing the
assembly instructions in the output file, records them as
schema triples in the following format:

(MarriedPerson, hasMethod,
hasGrandChild)

(MarriedPerson->hasGrandChild,1,
'message (self, hasChild)')

(MarriedPerson->• hasGrandChild, 2,
'message (id_list, hasChild)')

When the interpreter has to execute a method, it retrieves

112 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

OGGETTO: AN OBJECT-ORIENTED DATABASE SYSTEM

the assembly instructions which make up the body of a
method, sorts them in order, and then interprets them as
it would instructions from the assembly file.

4. THE FOUR TASKS OF ATKINSON AND
BUNEMAN
4.1 Introduction
Atkinson and Buneman2 presents a survey of types and
persistence in database programming languages. To
illustrate their comparisons, a database containing the
inventory of a manufacturing company and four tasks
are described. In particular, it contains the representation
of a 'parts explosion'; composite parts are built up from
other parts, which may be base parts or further composite
parts. The structure of a composite part forms a directed
acyclic graph. The four tasks are as follows:

Task 1: Describe the database.
Task 2: Print the names, cost and mass of all imported

parts that cost more than $100.
Task 3: Print the total mass and total cost of a composite

part.
Task 4: Record a new manufacturing step in the data-

base, that is, how a new composite part is
manufactured from sub-parts.

These four tasks were chosen to be characteristic of
database programming and yet some are difficult to
implement. For example, task 3 is impossible in most
relational query languages. We use these tasks here to
illustrate the power of the Oggetto system.

The Oggetto query language schema for this data
(performing task 1) is shown below:

schema alias dollars, int;
schema alias grams, int;
type Part {

string name;

};
type basePart {

dollars cost;
grams mass;
supplier suppliedBy;
} inherits Part;

type compositePart {
dollars assemblyCost;
grams masslncrement;
useType components;
} inherits Part;

type useType {
Part subPart;
int quantity

The schema is based on terminology found in ref. 12. The
OOPs + approach they describe stems from the differen-
tiation between a type declaration, i.e. basePartType -
an intentional type, and a collection of objects of that
type, basePart - an extensional type. Oggetto supports
the concept of an extensional type (i.e. the list of ids
returned as the result of a message), but we see no need
to use them in this task.

Below we give the test data used in this work.

compositePart

I ROOT I
I mass_increment = 1 I

f USEONE j f U S E T W O J f USETHREE ^
I quantity = 1 I I quantity =• 1 I I quantity = 1 I

I USE_TWO_ONE |
I q u a n t i t y - 2 I

[USE_TWO_TWO |
1 quantity = 2 I

TWO_ONE
mass - 21

f basePart

TWO_TWO
mass = 22

Figure 5. Our test data.

Task 2 is as follows:

[basePart query (cost > 100) and
(exist suppliedBy)] print: name, cost,

]; mass

Compare this with the OOPS + query:

expensiveParts =

let parts part;
foreach part in (parts where cost >

100 and suppliedBy! = {}) do
print (part.name, part.cost,

part.mass)

Note that the OOPS + query addresses the set of parts,
which is the union of the set of base parts and composite
parts. However, in the schemas of OOPS + and Oggetto,
composite parts do not possess the attribute cost (as used
in the OOPS + query expression) or mass (as used in the
print expression). Therefore, we have made the des-
tination of the query message basePart rather than Part
although the latter would still function as expected.

Among the major problems reported in Atkinson and
Buneman2 is the lack of a transitive closure operation,
which has to be hand-coded using recursion. This is
highlighted by task 3. The OOPS+ solution involves a
recursive call. Our solution also uses recursion, but

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 113
CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

J. A. MARIANI

through methods; this offers a more elegant solution.
Methods are added to the schema as follows:

type basePart (
method weightOf

[self mass];
endMethod;
) inherits part;

type compositePart (
method weightOf

[list ([self masslncrement],
[[[self components] weightOf]
sum])

sum];
endMethod;
) inherits part;

type useType (
method weightOf

[list ([[self subPart]
weightOf],

[self quantity]) mult];
endMethod;
) ;

Each type involved has a method weightOf. In
b a s e P a r t , it merely returns its own mass. In u s e -
Type, it finds the total weight of all its subparts and
multiplies that by the number of subparts it uses. In
compos i t ePa r t , it finds the weight of all its com-
ponents and adds its incremental weight. Because we
have used the same name throughout, we can apply
weightOf to any part of the data structure and obtain
an appropriate result. These methods will recurse if need
be, i.e. finding the weight of a composite part that
contains composite parts.

4.2 The expand operator

Oggetto offers a transitive closure operator, expand. As
an example, consider the classic 'hasChild' relation. If
we have the following relationships:

THOMAS hasChild BRIAN hasChild ANTHONY

The expand operator gathers all ids involved in the
relationship.

expand [THOMAS hasChild]

results in the group of ids, BRIAN and ANTHONY.
Similarly, we can gather all the ids of parts involved in a
composite part -

expand [[ROOT components] subPart]

- where ROOT is the root of the tree making up the part
structure. However, owing to the conditions of task 3, we
cannot directly obtain the sum of the weights of the parts
because of the separation of parts (basePar t and
compos i t ePa r t) and the number of parts used
(useType). If we change the conditions of the test and
eliminate the useType level of the hierarchy by storing
n parts where n is the number of parts used in the
structure, then the above expand directive returns the ids
of parts involved in a composite part, and the number of
times they are used will be reflected in their repetition. To
illustrate, we give the revised diagram of our test data,
with the useType's removed.

I compositePart I

I ROOT 1
I mass_increment = 1 I

ONE
mass = 1 I TWO I

I mass_increment = 2 I
THREE
mass = 3

components

TWO_ONE
mass = 2 1

basePart) (basePart) C basePart J

TWO_ONE
mass = 21

TWO_TWO
mass = 22

TWO TWO
mass = 22

Figure 6. Test data with useType eliminated.

Now we can proceed and use OQL's arithmetic
operators to calculate the answers to task 3.

ids: =expand [cPartlnst components]
subPart] ;

totalCost: = [[ids costOf] sum];
totalMass: = [[ids massOf] sum];

While expand will do the transitive closure required, we
are not addressing a further aspect of task 3; that the
totals should be calculated 'on the run'. This could be
partially addressed by an extension to the expand
operator:

weights: = expand [cPartlnst components]
subPart] with weightOf;

This gathers up the weights (integers) as the answer by
applying the we ightOf operator to each set of new_ids
as they are formed. It is a minor alteration to allow
multiple w i th s :

costs, masses: = expand [cPartlnst
components] subPart] with weightOf,
costOf;

totalCost: = [costs sum];
totalMass: = [masses sum];

expand currently does not assist with task 3; we must
fall back on recursion.

Task 4 deals with the introduction of a new composite
part to the database. Below we show the OQL instance
declaration required to compose the composite part,
TWO.

i n s t compositePartType TWO (
name: = two;
masslncrement: = 2;
components: = (

i n s t useType USE_TWO_ONE (
quantity: = 2;
subPart: = inst basePartType

TWO_ONE (
name: = two_one;
mass : = 21

inst useType USE_TWO_TWO (
quantity: = 2;

114 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

OGGETTO: AN OBJECT-ORIENTED DATABASE SYSTEM

subPart: = inst basePartType
TWO_TWO (

name: = two_two;
mass : = 22

The system could generate ids; we could replace line 7 of
the above example with

subPart: = inst basePartType any (

The reserved word any indicates the system should
provide an 'appropriate' id for the part; this alleviates
the need for the user to explicitly name every object they
generate.

5. THE UNDERLYING TRIPLE STORE
We have access to three local triple stores implemented
using different techniques:

(a) A simple heap of triples. This has been used to allow
student projects to build interfaces to triple stores
without the need for the full DBMS software.

(b) Trible: this system uses inverted files to speed up
access to triples. The description of a relational
version of Trible, Beta, can be found in ref. 15.

(c) OSROS:23 this system uses dynamic hashing on one
dimension (subject, relation and object) and two
dimensions (subject & relation, relation & object,
object & subject) where required to achieve fast
access to triples. This system is similar to Asdas10 in
that it uses a dynamic hashing scheme and hashing
on combinations of triple fields. Asdas, however,
used all possible combinations (right up to subject &
relation & object); OSROS tries to be more econ-
omical in space by only using the second dimension
when required.

The interface is static (Appendix 2) and we can
interchange all three versions of the triple store sup-
porting Oggetto. Conversely, if any triple store possesses
this interface we can port Oggetto to that store.

5.1 Comments on storage

Rather than store objects by layering within other
database models, there are more basic possibilities for
the storage of objects. A simple option might be to think
of an object as a page on the backing store; the page is
laid out as might be appropriate for the type of object it
is an instance of; here, we are approaching the idea of a
'frame' stored on backing store. However, this presents
the early binding problem. It is difficult to add a new
attribute to an object. Oggetto 'inherits' the late binding
advantages of the binary relational model; all we do is
add a new triple.

Moreover, OSROS uses multi-dimensional extendible
hashing, supporting set-at-a-time retrieval. The new
triple is guaranteed to be stored in the same bucket as the
other attributes of an object; retrieving all the attributes
of an object will retrieve the new extended set of
attributes with no extra cost (unless bucket overflow has
occurred).

5.2 Internal storage

For convenience and efficiency, in-store object infor-
mation is held in a data structure which stores the name
and type of every attribute in the type. The same
structure is also used to hold instances of a type by using
an additional field, values. Instances of a type are built
up internally before being converted into a set of triples
for external storage. The internal structure is built up
dynamically when required.

6. FUTURE WORK

6.1 Introduction
Oggetto, as outlined in this paper, is a prototype; it is a
vehicle for investigation into the suitability of triple
stores to support object stores, and for the design of a
novel object-oriented query language. In this section, we
outline some of the areas we feel worthy of further
attention.

6.2 Objects with more than one type

Clearly, an entity may be associated with more than one
type. For example, DAVID can be a person and also a
parent, etc. Oggetto only allows an entity to be of a single
type. The system needs to be extended to allow entities to
be declared independent of type, and then freely
associated and dissociated with several types (as described
in ref. 4).

6.3 Version control
Version control is important in all data repositories. It
becomes more intriguing when combined with the schema
evolution supported by OODBs. Not only do we have to
maintain versions of data, but also of metadata. We have
to consider how previous versions of the data can be
viewed by the current metadata, and how current data is
viewed by previous versions of the metadata.22

The particular interest in our layered approach is to
add versions to the triple store (none of our current
stores support versions) with appropriate interfaces, and
then investigate how this affects the object store. We
hope to show that this emphasises the correctness of our
approach.

7. CONCLUSIONS
In this paper we have described an object store layered on
a triple store, and showed the suitability of triple stores
for this function. Moreover, one particular triple store
used (OSROS) has underlying features that make it
particularly suitable for the support of an object base. It
is possible to view the Oggetto system as a high-level
interface to the triple store.

In Senko19 he recommends that data description
languages should consider forms of binary association as
their primitive elements to achieve a more representation
independent and more stable information level. If we
view the Oggetto model and language as matching the
DIAM end-user level then our binary relations match the
information level, with the various binary relational
storage structures available to Oggetto as matching the
data logical levels.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 115
8-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

J. A. MARIANI

This work, like others, has tackled the implementation
of an OODB through layering over 'conventional'
programming languages and/or databases. We hope we
have shown how our particular layered approach is
powerful in that

* the underlying binary-relational model is capable of
modelling any set of relationships, no matter how
complex;

* the suitability of the model in supporting the kinds of
operations expected in an OODB, i.e. schema evol-
ution. Schema evolution as described in this paper is
static, in that we cannot dynamically form new sets
through some kind of data analysis, i.e. clustering.
These issues are addressed in refs 8, 13 and partially

applied to OODBs in ref. 18. The BRM is well suited
for this form of manipulation, as reported in ref. 7.
This is an area which will be followed up in Oggetto;

* the addition of an active element in the form of UTM
(or equivalent) gives us an expressive power equivalent
to Prolog;

* the use of a suitable (and well known) backing store
access technique (dynamic hashing) lends efficiency to
the retrieval of objects and their attributes.

Acknowledgements

Thanks are due to Dr David Hutchison, Steve Elliott,
Peter Hurley and the referees for their helpful comments
on earlier drafts.

REFERENCES

1. J. R. Abrial, Data semantics. In Data Base Management -
Proceedings IFIP Working Conference on Data Base
Management, edited J. W. Klimbie and K. L. Koffeman,
pp. 1-59. North-Holland Publishing Company (1974).

2. M. P. Atkinson and O. P. Buneman, Types and persistence
in database programming languages. ACM Computing
Surveys 19 (2), 105-190 (1987).

3. J. Banerjee et al., Data model issues for object-oriented
applications. ACM Trans, on Office Information Systems 5
(1), 3-26 (1987).

4. D. Beech, Groundwork for an object database model. In
Research Directions in Object-Oriented Programming,
edited B. Shriver and P. Wegner, pp. 317-354. MIT Press
(1987).

5. P. Chen, The entity-relationship model: towards a unified
view of data. ACM Trans, on Database Systems 1 (1), 9-36
(1976).

6. C. J. Date, A Guide to the SQL Standard. Addison-Wesley
(1987).

7. Beshir E. M. A. Elgalal, Minimally-redundant data struc-
tures and reasonable hypothesis: some general heuristic
methods of knowledge processing. Ph.D. thesis, University
of Strathclyde (1985).

8. D. H. Fisher, Knowledge acquisition via incremental con-
ceptual clustering. Machine Learning 2, 139-172 (1987).

9. D. H. Fishman et al., Iris: an object-oriented database
management system. ACM Trans, on Office Information
System 5 (1), 48-69 (1987).

10. R. A. Frost, Asdas - a simple database system aimed at the
naive user, Proceedings of 6th A CM European Regional
Conference on Systems Architecture, pp. 234—240. IPC
Business Press Ltd, London (1981).

11. R. A. Frost, Binary-relational storage structures. Computer
Journal 25 (3), 358-367 (1982).

12. E. Laenens and D. Vermeir, An Overview of OOPS+, an
Object-Oriented Database Programming Language, pp.
350-373, ECOOP (1988).

13. M. Lebowitz, Experiments with incremental concept form-
ation: UNIMEM. Machine Learning 2, 103-138 (1987).

14. D. Maier et al., Development of an Object-Oriented DBMS,
pp. 472-482. OOPSLA '86 (1986).

15. J. A. Mariani, Implementation of a general purpose data-
base package. In Implementation of Small Computer
Systems, edited D. Whiddett, pp. 39-58. Ellis Horwood
(1989).

16. J. A. Mariani, Object oriented database systems. In Object-
Oriented Languages, Systems and Applications, ch. 7, edited
G. S. Blair et al. Pitman (1990).

17. D. R. McGregor and J. R. Malone, The fact database
system. In Research and Development in Information
Retrieval, edited C. J. Von Rijsbergen and P. W. Williams,
pp. 203-217. Butterworth (1981).

18. G.T.Nguyen and D. Rieu, Schema evolution in object-
oriented database systems. Data & Knowledge Engineering
(A), 43-67 (1989).

19. M. E. Senko, The DDL in the context of a multilevel
structured description: DIAM II with FORAL. In Data
Base Description, edited B. C. M. Douque and G. M.
Nijssen, pp. 239-258. North-Holland Publishing Company
(1975).

20. M. E. Senko, Data structures and data accessing in data
base systems past, present, future. IBM System Journal 3,
208-257 (1977).

21. G. C. H. Sharman and N. Winterbottom, The Universal
Triple Machine: a Reduced Instruction Set Repository
Manager, Proceedings of BNCOD 6, 189-214 (1988).

22. A. H. Skarra and S. B. Zdonik, The Management of Chang-
ing Types in an Object-oriented Database, ACM OOPSLA
86 Proceedings, pp. 483-495 (1986).

23. C. Snape, OSROS: a binary relational database system.
B.Sc. Project Internal Report, Computing Dept, Lancaster
University (1986).

24. M. Stonebraker and L. A. Rowe, The Design of Postgres,
Proceedings of ACM SIGMOD International Conference on
the Management of Data, pp. 340-355 (1986).

25. R. van de Riet, MOKUM: an object-oriented active
knowledge base system. Data & Knowledge Engineering 4,
21-42 (1989).

APPENDIX 1: MORE SCHEMA
MANIPULATIONS IN OGGETTO

A 1.1 Change the name of a class
syntax:schema change type name oldTypeName

to newTypeName

semantics: We build up an internal structure, type,
which holds all the information about the type. This

includes the name of the type, attributes, attribute types,
and inheritance. We use the internal structure (passing it
to a procedure des t roy_type) to generate the ap-
propriate sequence of 'delete triple' commands; we
delete all the schema triples associated with the
oldTypeName.

We change the name of the type held within the
internal structure to newTypeName, and pass the

116 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

OGGETTO: AN OBJECT-ORIENTED DATABASE SYSTEM

structure to a procedure s tore_type. This procedure
now generates the appropriate schema triples.

We must also consider the inheritance triples. We
retrieve all triples of the form

(inheritingType, 'inherits', oldTypeName)
(inheritingType->oldTypeName,
'inOrder', order)

and replace them by

(inheritingType, 'inherits', newTypeName)
(inheritingType->newTypeName, 'inOrder',
order)

The last thing we must do is to change the type name
associated with all instances of the oldTypeName. We
retrieve all triples of the form

(ANY_STRING, 'hasType ' , oldTypeName)

and replace them with triples of the form

(id, 'hasType' , newTypeName).

A 1.2 Add a new attribute to a class

Syntax: schema add attribute attributeName
with type attributeType to type

semantics: attribute and attribute type information is
stored in a set of schema triples as follows:

(type, hasAttribute, attributeName)
(type, attributeName, attributeType)

The ordering of attributes within a single type is
unimportant. To add a new attribute, we add two
schema triples of the above format. For example, the
command

add attribute religion with type string
to person

adds the two new schema triples:

(person hasAttribute religion)
(person religion string)

Because of the BRM's capacity for handling' null' values
elegantly, we can leave the addition of new data triples to
some later time (possibly never). When viewing an
instance, Oggetto will only display those recorded values.

A 1.3 Drop an existing attribute from a class

syntax: schema dele t e a t t r i b u t e at tr ibuteName
from type

semantics: we remove the two schema triples of the
format given in A 1.2. Currently, instances of the effected
type remain unaltered, although we could delete all
instances of the attribute within the type and its subtypes.

A 1.4 Change the name of an attribute from a class

syntax: schema change attribute name
oldAttributeName in type to
newAttributeName

semantics: The schema triple

(type, oldAttributeName, attributeType)

is replaced with

(type, newAttributeName, attributeType)

All instances of the type and its subtypes are identified;
attributes of an instance are stored as instance triples in
the form

(ins t ance , at tr ibuteName, v a l u e) .

Every such attribute instance is retrieved and replaced by
triples in the form

(ins t ance , newAttributeName, v a l u e) .

A 1.5 Change the domain of an attribute of a class

syntax: schema change a t t r i b u t e domain
attr ibuteName in type to newDomain

semantics: the schema triple

(type, at tr ibuteName, oldDomain)

is replaced by the new schema triple

(type, at tr ibuteName, newDomain).

All instances of the type and its subtypes are identified;
every attribute instance affected are deleted.

A 1.6 Make a class S a superclass of a class C

syntax: schema add superType to type

semantics: the relation of type to super type is stored
as two triples.

(type inherits superType)

indicates the basic relation and

(type -»• superType inOrder numericOrder)

this secondary triple codifies the i n h e r i t s relation
within a single value using the -> symbol to represent the
relation. This allows us to store information about that
relation; here, the order in which the inheritance occurs.

When we add a new supertype it is automatically
placed at the end of the ordering. However, we can
change this ordering later (see A 1.8).

A 1.7 Remove a class S from the superclass list of a
class C

syntax: schema remove superType from type

semantics: we have to alter the two triples as stored for
A 1.6 but must also update the ordering information. We
retrieve the appropriate

(type-»• superType inOrder numericOrder)

triple, retrieve the subsequent triples in the sequence and
delete them, restore the subsequent triples with a modified
numeric order and lastly delete the base relation triple.

A 1.8 Change the order of superclasses of a class C

syntax: schema change superType in type
order numeric

semantics: This is not currently handled in an optimum
fashion. The ordering information is brought into a main

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 117

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

J. A. MARIANI

store list, deleted from the triple store, the main store list
is manipulated as appropriate, and lastly the altered
main store information is returned to the triple store as
a set of order information triples.

APPENDIX 2: THE SUBROUTINE
INTERFACE TO THE TRIPLE STORE

void i n s e r t _ t r i p l e (char s [] , char r [] ,
char o [])

Takes three strings as parameters; treats them as the
subject, relation and object of a triple, and adds them to
the triple store.

(char s[], char r[],int query_triple
char o[])

Takes three strings as parameters; treats them as the
subject, relation and object of a triple template.
Templates have three fields; they can contain any string
value or a special wildcard value. query_tr ip le
compares the template with all stored triples and
remembers the location of any triples that matched the
template. It returns a 'Boolean' which is TRUE if any
triples matched and FALSE otherwise.

int query_triple_num (char s[], char r[],
char o[])

Similar to the above, but it returns the number of triples
matched.

i n t r e t r i e v e _ t r i p l e
char o [])

(char s [] , char r [] ,

After a query_tr iple has been issued,
r e t r i e v e _ t r i p l e is used to sequentially return the
matched triples. It returns them in the three string
parameters. It also returns the ' Boolean' result TRUE if
there are still triples left to be returned, FALSE if the list
of hit triples is exhausted. Query_triple and
r e t r i e v e _ t r i p l e are normally used in tandem as
follows:

query_tr iple(a , b, c)
while (r e t r i e v e _ t r i p l e (d , e, f) = = TRUE)

{
/* process triple*/
};

int open_db (char dbname[])

This takes as parameter the name of a triple store and
attempts to open it. It returns TRUE if successful, FALSE
otherwise.

void create_db (char dbname[])

This takes as parameter the name of a triple store and
attempts to create it.

void close_dt> ()

This closes the current triple store.

void delete_triples (char s[], char r[],
char o[])

Like query_triple, this takes a triple template as
parameter, and locates all triples that match the template.
Then, however, it goes on to delete all the matching
triples.

Book Review

K. DEVLIN
Logic and Information
Cambridge University Press. £17.95
ISBN 0 521 41030 4.

This book starts well, with a clear statement
that there is a need for a science of information.
Moreover, the author in his acknowledge-
ments makes the valid point that efforts to
satisfy this need must initially be driven by
scientific curiosity without necessarily an ex-
plicit utilitarian objective. These are pro-
positions that need to be published widely to
stimulate academic workers in the information
engineering field to recognise that the con-
ceptual foundations of systems engineering
are conspicuous by their absence, essentially
because there is no science of information but
there ought to be and there needs to be such a
science.

However, the author then assumes that
mathematics is the master science so that he
devotes the rest of his book to a determined
attempt to formulate concepts such as 'In-
fons', 'Situations' and 'Constraints', and
symbols to represent them, as a first step in the
foundation of a mathematics of information.

Perhaps in a future book the author will use
his symbols to derive propositions whose
validity can be checked by experiment, but if
there are such propositions in the present
book they are well hidden. Curiously there is a
clear statement that the concepts proposed are
recursively defined, but no mention of ob-
served hyperbolic statistical distribution of
symbols in meaningful text that could be
interpreted as offering experimental support
for the recursive definitions. Indeed, this
reviewer could find no reference at all to
repeatable observations, which surely should
appear in the foundations of a proposed new
branch of science.

To force information into a mathematical
mould the author had endeavoured to extend
the scope of mathematics and logic to include
intuition and judgement. Certainly these sub-
jective techniques play an important role in
the use of information by all people including
mathematicians, but it is generally understood
that they are consciously excluded from
published mathematical work, indeed it is the
objectivity of mathematical techniques derived
from the conscious exclusion of intuitive
judgements that accounts for the utility of

mathematics in so many branches of estab-
lished science. It is therefore far from obvious
that the author's declared interpretation of a
'science of information' as a 'mathematics of
information' is valid with the generally ac-
cepted interpretation of the words.

Many readers for whom mathematics is a
useful tool but not a way of life will find this
book difficult to follow, so that it will probably
have less impact than it deserves. This is
unfortunate, since the book breaks new
ground in a field that is likely to become of
increasing importance. The book can be
recommended to anyone who has recognised
the need for a better understanding of the
nature of information and who is prepared to
put effort into understanding Devlin's pres-
entation. Perhaps there is gold in this book
but it is not clear to this reviewer. Devlin
promises more volumes - certainly he should
be encouraged to do more work on the
problem that he has recognised so clearly, but
his objective should be to formulate some
novel and checkable conclusions and to distil
the essence of his work into a smaller volume.

G. SCARROTT
Welwyn

118 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/108/360203 by guest on 09 April 2024

