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We describe the implementation of the functional database language FDL. FDL improves upon previous languages with
a functional data model by allowing any computable function to be defined and stored and by supporting arbitrarily
nested data types which are all persistent. All functions are updated incrementally by the insertion and deletion of
equations, and an integrity sub-system verifies updates against the declared semantic integrity constraints. We show
how a binary relational storage structure is used to support all of FDL's persistent data. We also show how the
technique of graph reduction from functional programming languages is modified for the evaluation of FDL queries.
Finally, we compare our implementation with that of related languages.
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1. INTRODUCTION

The functional data model represents the universe of
discourse by means of entities and functions between
them. Entities can be scalar, for example strings, integers
and booleans, or abstract, for example students, teachers
and enrolments. Sibley and Kershberg29 demonstrated
that the functional data model can provide a unifying
formalism for the network and relational data models,
and Hammer and McLeod13 showed that intentionally
defined functions can be used as derivation rules.
Shipman integrated these ideas in the database language
DAPLEX.28 In parallel, Buneman et al. developed the
functional query language FQL.5 More recently, it has
been shown that the functional data model is well suited
to modelling complex objects.28 It has also been shown
that functions can provide an underlying formalism for
object-oriented data models.414

Despite these advantages of the functional data model,
previous implications of it have suffered from a number
of drawbacks, as follows.

The functional query languages FQL5 and GENESIS3

rely on a relational back-end DBMS for data storage and
update facilities, and only functions which are ex-
tensionally defined can be stored in this database.

In DAPLEX and languages which derive from it,12'1?! 30

functions are defined either extensionally by a set of
equations (base functions) or intensionally by a single
equation (derived functions). It is not possible for a
function to be partly extensionally defined but also to
contain a default equation for the general case.

DAPLEX is not computationally complete. Thus, in
the DAPLEX-related languages the functional data
model is either embedded in a procedural programming
language,30 or extended with procedural features,1718 or
embedded in Prolog.12'23 Later functional systems28

assume that intensional functions are coded in an external
programming language and not stored in the central
database. All these solutions give rise to different
formalisms for modelling real-world data and for com-
putation.

Finally, the persistent data types of the DAPLEX-
related languages are scalar types, abstract types, and
unions, products and sets thereof. No nesting of types is
possible and function composition results in 'flattened'
sets.

The development of FDL was motivated by the
considerable potential of a functional data model on the

one hand and the above limitations of previous
implementations of it on the other. FDL improves on
previous languages with a functional data model in a
number of ways:

• It is based upon the X calculus,15 thus allowing any
recursive function to be defined.

• Functions are not confined to base and derived ones
but can be partly extensionally defined, partly
intensionally defined.

• All functions, however defined, are stored in a single
repository. Equations are stored in a pre-interpreted
form ready for subsequent evaluation by a X calculus
evaluator.

• The data types of FDL include arbitrarily nested lists,
sums and products and are all persistent.

In this paper we are concerned with the implementation
of FDL and we refer the reader to Refs 25, 26 and 27 for
a detailed description of the language itself. We begin
the paper with an overview of FDL in Section 2,
including a comparison between FDL and conventional
functional programming languages. In Section 3 we
consider the storage level underlying FDL and the
operations it supports. In Section 4 we consider the
implementation of FDL over this storage level, describing
in particular the storage and update of functions and the
evaluation of queries. In Section 5 we give some
miscellaneous implementation details. Finally, in Section
6 we compare our implementation with that of related
database languages and give our concluding remarks.

2. OVERVIEW OF FDL

2.1 Data types
FDL is polymorphic and statically typed.7 Its primitive
data types are string, integer and bool. Extensible data
types corresponding to abstract entity types can also be
declared - we term these types nonlexical ones, after
Verheijen and Van Bekkum.32 Also supported are
arbitrarily nested lists, sums and products. For example,
the following FDL statements declare a type synonym,
date, for a product of three integers, a new sum type,
maritaLstatus, and a new non-lexical type, person:

date = = (integer ** integer ** integer)
maritaLstatus = sum
person - nonlex
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The components of a sum type are tagged by upper-case
identifiers, termed constructor functions,24 which can be
thought of as functions without reduction rules. For
example, the following statements declare three con-
structor functions, SINGLE, MARRIED_TO and
OTHER, which return objects of type maritaLstatus
when applied to arguments of the declared type:

SINGLE :-> maritaLstatus
MARRIED_TO : person ̂  maritaLstatus
OTHER : string->• maritaLstatus

In other words, maritaLstatus is a sum of three types:
the 'empty' type (identified by the tag SINGLE), the
person type (identified by the tag MARRIED_TO) and
the string type (identified by the tag OTHER). Unlike
conventional functional languages, FDL supports the
extension of sum types with new components (as
illustrated above) and also the removal of components
via the deletion of constructor functions.

Non-lexical types are also populated dynamically, in
this case via creation and deletion commands. Non-
lexicals (i.e. elements of non-lexical types) are hidden
from the user by displaying in lieu of any non-lexical a
transient global variable of the form $x, where x is an
alphanumeric identifier. For any non-lexical type, t, a
zero-argument generator function AILt returns the
current extent of t in the form of a list. Generator
functions are non-deterministic with respect to the order
in which non-lexicals are returned. For example, given
the declaration of the non-lexical type person above and
the commands

create person $p1, $p2, $p3
delete $p2

the query AILperson returns either the list [$p1, $p3] or
the list [$p3, $p1].

2.2 Functions

Functions are defined incrementally by the insertion and
deletion of equations. The type of a function must be
declared by the user before the function can appear in
any equation. We list some FDL functions below:
min_salary is a zero-argument function storing a
minimum salary, salary records the salaries of persons,
max determines the maximum of a list of integers, and
the higher-order function map successively applies a
function of type t, -> t2 to a list of elements of type t, and
returns a list of elements of type t2, for any types t,, t2.
The identifiers alpha, alpha"!, alpha2 ... are type
variables.7 Lists of the form [ ] , [x|y] and [x,, x2, ..., xn]
are equivalent to the expressions NIL, CONSxy, and
CONS x, (CONS x2 (...(CONS xn NIL)...)), re-
spectively, where CONS and NIL are the constructor
functions of the built-in polymorphic list type.

min_salary:-> integer
min_salary <=9000
salary: person -* integer
salary $p1 <= 20000
salary $p3 <= 30000
salary v <= min_salary +1000
max: (list integer) -> integer
max [x] <=x
max [x|y] <= let z = = max y in if (x > z) x z

map:(alpha1 -^alpha2) (list alphai) ^-(list alpha2)
map f [ ] <=[]
map f [x|y] <= [(f x) | map f y]

When a new equation is specified, if the RHS of the
equation contains no variables and could therefore be
evaluated before insertion into the database, it is not in
fact evaluated. This is in contrast to DAPLEX and
related languages, where the single equation which de-
fines a derived function is stored as entered but where
any expression on the RHS of an assignment to a
base function is first evaluated and the resulting value
stored. The advantage of FDL's approach is uniformity
of treatment for all equations. However, one can simulate
DAPLEX's update semantics in FDL if so desired since
a global variable assignment statement is provided,
Sx = = expression, which evaluates the expression on
its RHS and assigns the value obtained to the global
variable on its LHS. For example, we can enter the rule
that person $p1 's salary is equal to person $p2's salary:

salary $p1 <= salary $p2

or, alternatively, we can update $p1's salary with the
current value of $p2's salary:

$s = = salary $p2
salary $p1 <=$s

Equations with lists on their RHS are FDL's means of
storing bulk data. Also, if an RHS consists of a list of
distinct constants, [c,, c2, ..., cn], the user can request
the storage of this RHS as a set:

f LHS <= set [c,, c2, ..., cn]

The C| are then retrieved in an arbitrary order whenever
the equation is invoked during query evaluation. An
advantage of sets over lists on the RHS of equations is
that they consume less storage, since no ordering
information need be maintained (see Section 4.3.2). A
further advantage is that sets can be updated: a new
component, cn+1, can be added to the above set by the
request

f LHS <= include cn+1

and a component, c,, can be removed from the set by the
request

f LHS<= excludeCj

DAPLEX and related languages incorporate similar
constructs for the update of base functions.

2.3 Semantic integrity constraints

A final category of information which can be expressed
in FDL are semantic integrity constraints over functions
of type t,... tn -> s, where n ̂  1, the t; are non-lexical
types and s is any type. These integrity constraints are
zero-argument boolean-valued functions which must
always evaluate to true. They are declared by a statement
of the form

i c f

and defined by an equation of the form

f<=[<x, x^Hx^AILt, & ... & xn^AILtn &
list of boolean expressions] = [ ]
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where the construct [... || ...] is a list abstraction.24 For
example, the following constraint states that there are no
people with less than the minimum salary:

d <= [x || x«- AILperson & (salary x) < min_salary]
= []

and the following constraint states that there are no
people who earn more than their manager:

c2<= [<x1, x2> ||x1 ^AILperson & x2^AILperson &
(manager_of x1) = x2 & (salary x1) > (salary x2)]

= []

2.4 Metalevel functions

As well as a functional model for data and for
computation, FDL also has a functional model for its
meta data. The meta data are stored in the same
repository as the data, as we describe in Section 4. A
number of metalevel functions are supported for querying
this meta data and we list these functions below.
Functions which are shown returning the type void
print their result by side effect and cannot be composed
with further functions.

Types:-> (list string)
Functions :-> (list string)
Confuns:^-(list string)
lcs:^( l ist string)
Tempvars:->void
Typdec: string ->• (list string)
Fundec:string -»• (list string)
Confundec:strings (list string)
Fundef: string -» void

Types, Functions, Confuns and Ics return the names
of current types, functions, constructor functions and
integrity constraints, respectively. Tempvars prints a list
of the current global variables. Typdec, Fundec and
Confundec take (the name of) a type, function
or constructor function, respectively, and return its
declaration. Finally, Fundef takes a function and prints
its defining equations.

2.5 Comparison of FDL and functional programming
languages

The theoretical foundation of any functional language,
including FDL, is the k calculus. Functional program-
ming languages extend this calculus to a high-level
programming paradigm by including a number of
primitive types and functions, a set of type-forming
operators for the definition of further types, and facilities
for the definition of further functions via equations. As
we outlined above, FDL includes all of these features.
However, there are a number of important differences
between FDL and conventional functional programming
languages.

Firstly, in functional programming languages func-
tions are assumed to be defined completely at one time
and are 'updated' by redefinition. Such an update is
affected either by recompiling the entire programme with
the new definition replacing the old (as in Miranda)31 or
by compiling a new version of the function while previous
references to the function continue to use the old version
(as in ML).20 Neither approach is feasible in the database
environment of FDL, where data is amassed incre-

mentally and where small-grain (i.e. equation-based)
update facilities are necessary for functions.

Secondly, in functional programming languages func-
tions are assumed to be totally defined over their
argument domain. Thus a failure to match a set of
arguments against the equations defining a function is
treated as an error. This is not suitable for database
querying, where functions will frequently not be
exhaustively defined over their argument domains and
where a lack of information regarding a particular entity
should not cause the abortion of a query over a number
of entities. Hence, in FDL a null value @ (of polymorphic
type) is assumed to be the default definition of every
function.

Thirdly, in languages where functions are defined by
multiple equations, a pattern-matching algorithm deter-
mines which equation defines the function for any given
list of arguments. However, FDL functions are defined
incrementally by the insertion and deletion of equations,
so pattern-matching algorithms which rely upon some
ordering of these equations (such as the top-to-bottom
algorithm of Miranda) or upon an examination of all the
equations to check that the function is defined un-
ambiguously (such as the best-fit algorithm of HOPE +)10

are not suitable. Instead, we use a left-to-right, best-fit
pattern-matching algorithm (see Section 4.4.1) which is
independent of the order in which equations are inserted
and retrieved, and which guarantees that ambiguity is
always avoided.

Unlike FDL, functional programming languages do
not provide dynamically extensible data types. Neither
do they include integrated meta data, so the powerful
facilities available at the object level cannot be used to
formulate metalevel queries. Finally, the long-term
storage of functions as source or object code and their
run-time storage in a main memory data structure are
not adequate for large volumes of data. Thus in FDL
functions persist on secondary storage and there is run-
time management of this data.

Other functional languages also support the persistence
of data on secondary storage, for example Galileo,1

Amber6 and Napier88.21 However, these languages do
not assume a functional data model and so inherit the
drawbacks of functional programming languages re-
garding function updates and pattern-matching sem-
antics.

3. THE STORAGE LEVEL UNDERLYING
FDL

FDL supplies the Level 1 functionality of the 3-level
TriStarp system,16 which uses a binary relational storage
structure (BRSS) at its Level 0. We refer the reader to
Refs 9 and 11 for a detailed account of binary relational
storage structures. Here we confine ourselves to their
salient features.

Briefly, a BRSS supports the storage and retrieval of 3-
field records, or triples. Each component of a triple is a
token comprising a tag and a value (tokens need to be
tagged so as to distinguish between different objects with
the same alphanumeric representation, for example the
function map and the string map). A simple associative
form (saf) identifies by partial match a subset of the
triples in a BRSS. A saf is itself a triple, <s,, s2, S3>, where
each S; is either a token or the wildcard value, *.
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For the purposes of FDL, we use tokens with tags Var,
String, Int, Bool, Con, Fun, Builtin and Sys, corre-
sponding to variables, strings, integers, booleans,
constructor functions, user-defined functions, built-in
functions and system-internal tokens (for example, non-
lexicals). We also use two tokens, Let and Apply, to
represent definition of local variables and application of
expressions, respectively. The following operations are
supported by the BRSS underlying FDL:

• insert(t) inserts the triple t into the BRSS, returning
whether t is indeed a new triple.

• delete(s) deletes all the triples which match the saf s,
returning the number of triples deleted.

• retrieve (s) returns a list of the triples which match
the saf s, in some arbitrary order.

• generate-new returns a token with tag Sys and
value some number, i, such that the token Sys i is not
a component of any triple in the BRSS.

In the next section we describe how FDL utilises these
operations for the storage and retrieval of its persistent
data. We defer implementation details regarding the
BRSS to Section 5.

4. THE FDL IMPLEMENTATION

Our implementation has the modular architecture
illustrated in Fig. 1. We describe the overall functionality

Parser

/New equations and queries

O'her updates Type checker

New equations

Assembler

\

Integrity constraint
enforcer

Queries
Printer/E valuator

Figure 1. The FDL architecture.

of this architecture in Section 4.1. We then address
individual components of the architecture in greater
detail, namely the parser, the assembler and the
printer/evaluator. FDL's type checker is based upon
that described in Refs 7 and 10, with the simple extension
that non-lexical types are treated just as built-in types.
Due to space limitations, we do not discuss FDL's
integrity constraint enforcer here and refer the reader to
Ref. 26.

4.1 The Overall Architecture

FDL's parser recognises the following user requests:

• the insertion or deletion of an equation
• the creation or deletion of a non-lexical
• the declaration or deletion of a function

• the declaration or deletion of a type
• the declaration or deletion of a constructor function
• the declaration or deletion of an integrity constraint
• the evaluation of a query

These requests progress through the architecture of Fig.
1 as follows.

Insertion of an equation. The equation is passed to the
type checker. This retrieves from the BRSS the type
declared by the user for the function being defined and
verifies that the equation conforms to this type. If it is
correctly typed, the equation is assembled into a set of
triples which are inserted into the BRSS. The integrity
constraint enforcer then verifies the update with respect
to the semantic integrity constraints and if any of these
are violated reverses the update.

Deletion of an equation. The type checker is bypassed
for such a request, since the type of a function is not
altered by the deletion of one of its equations (we recall
that in FDL function types are declared explicitly by the
user rather than inferred from the defining equations).
The assembler identifies a set of triples for deletion from
the BRSS and the integrity constraint enforcer verifies
the update with respect to the semantic integrity
constraints.

Creation of a non-lexical. The extent of any non-lexical
type t is stored as a set on the RHS of the single equation
defining the generator function AILt:

AILt <̂  set [ev ..., e j

Hence the creation of a new non-lexical of type t is
treated as the following update to AILt, where e is a
unique token obtained by a call to generate-new:

All_t<= include e

Deletion of a non-lexical. The deletion of a non-lexical,
e, of type t is treated as the following update to the
generator function AILt:

AILt <= exclude e

The deletion only proceeds if there are no equations
containing e other than the above set valued equation for
AILt-we give the implementation of this test in 4.3.3
where we consider deletions in detail.

Declaration of a function. The declaration of a function
is treated as an insertion of a metalevel equation for the
metalevel function Fundec. Thus, the declarations of the
functions min_salary, salary, and max of Section 2 are
translated by the parser into the following metalevel
equations (we note that types and functions are repre-
sented by their names at the meta level).

Fundec "min_salary"
<=["->", "integer"]

Fundec "salary"
<=["person", "->", "integer"]

Fundec "max"
<=["(list integer)", " - > " , "integer"]

Such equations are assembled for storage in the BRSS
just as equations for user-defined functions.

Deletion of a function. The deletion of a function
comprises the deletion of each of its defining equations,
followed by the deletion of its declaration. The deletion
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of the declaration only proceeds if the function does not
appear on the RHS of an equation defining some other
function - we consider the implementation of this test in
Section 4.3.3.

Declaration of a type. The declaration of a type is
treated as the insertion of a metalevel equation defining
the metalevel function Typdec. For example, the
declarations of the types date, person and maritaLstatus
of Section 2 are translated by the parser into the
following metalevel equations:

Typdec "date"
<= [" synonym ", " (integer **integer ** integer)"]

Typdec "person"
<= ["nonlex"]

Typdec "maritaLstatus"
<= ["sum"]

Deletion of a type. The deletion of a type proceeds only
if the type does not appear in the declaration of any
function or constructor function and, if the type is a non-
lexical one, only if its generator function does not appear
in any equation. We consider the implementation of
these tests in Section 4.3.3.

Declaration or deletion of a constructor function. The
declaration of a constructor function is also treated as a
metalevel equation, in this case defining the metalevel
function Confundec. For example, the declarations for
SINGLE, MARRIED_TO and OTHER in Section 2
translate into the following metalevel equations:

Confundec "SINGLE"
<= ["->", "maritaLstatus"]

Confundec "MARRIED_TO"
<= ["person", "-»•", "maritaLstatus"]

Confundec "OTHER"
<= ["string", " - > " , "maritaLstatus"]

The deletion of a constructor function comprises the
deletion of its declaration and only proceeds if there are
no equations with reference this constructor.

Declaration or deletion of an integrity constraint. The
declaration of an integrity constraint, c, updates the
metalevel functions Ics and Fundec:

lcs<= include " c "
Fundec "c" <= [ " ->", "bool" ]

The insertion of the single equation defining an integrity
constraint is treated as any other insertion. The deletion
of an integrity constraint is identical to the deletion of
any other function.

Evaluation of a query. Queries are expressions to be
evaluated with respect to the current functions and non-
lexical type extents. Queries are type-checked and, if
type-correct, passed to the printer/evaluator for evalu-
ation and output of results.

4.2 The Parser

The parser translates all update requests into equations,
as described in Section 4.1. It then translates both
equations and queries into directed acyclic graphs (dags)
where

dag = token | Apply dag dag 1k dag dag |
Let dag dag dag

Dags of the form Apply d, d2, k d, d2 and Let d, d2 d3

represent application, k abstraction and definition of
local variables, respectively. As their name suggests, dags
are implemented as directed acyclic graphs in main
memory. The inner vertices of these graphs are labelled
Apply, k or Let and the leaf vertices are simple tokens.
Vertices labelled Apply and k have two branches
emanating from them and vertices labelled Let have
three.

A query or equation undergoes three transformations
during its translation into a dag: zero-argument functions
are given a dummy argument (Sys 0), global variables
are replaced by their current values, and local variables
are renamed as VarO, Var1, Var2, ... according to their
order of appearance. For example, the query
let s = = salary $p1 in s-min_salary
is represented by the following dag, where p1 stands for
the current value of the global variable $p1 :

Let (VarO) (Apply (Fun "salary") (Sys p1))
(Apply (Apply (Builtin " - " ) (VarO)) (Apply

(Fun "min_salary") (SysO)))

Similarly, the two equations for the function map in
Section 2 are represented by the dags:

k (VarO) (X (Con "NIL") (Con "NIL" ) )
and

X (VarO) (k (Apply(Apply(Con"CONS") (Var1))
(Var2))

(Apply(Apply(Con"CONS") (Apply(VarO)
(Var1))) (Apply(Apply(Fun "map") (VarO))
(Var2))))

The translation of list abstractions is beyond the scope of
this paper and we refer the reader to Ref. 24 for a
detailed exposition.

4.3 The assembler

In this section we describe the storage of equations
(4.3.1) and the optimised storage of equation right-hand
sides (4.3.2). We also show how FDL's deletion
commands are implemented given this storage scheme
(4.3.3).

4.3.1 Storage of equations

The equations defining each function (whether user-
defined or metalevel) are stored in the form a labelled
tree, which we term the function's match tree. The root
of this tree is the function, and the remaining nodes are
unique tokens of the form Sys i, which are generated by
calls to generate-new. The arcs of the tree are labelled
with the components of the LHSs of equations. Each arc
n^iabeim j s s to recj a s o n e tnpie <n/ label, m>. We
illustrate the match trees for the functions salary, map
and min_salary of 2.2 in Fig. 2. We observe that the arcs
emanating from each node of a match tree are uniquely
labelled so that the match tree represents a left factoring
of the equations defining the function.

The insertion of a new equation thus comprises two
parts:

(i) the assembly of the equation LHS into a set of
triples to be inserted into the match tree; and

(ii) the assembly of the equation RHS into a set of
triples uniquely identifiable by the leaf node of the LHS.

Step (i) is accomplished by 'flattening' the equation

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 123

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/119/360215 by guest on 10 April 2024



salary

A. POULOVASSILIS

map min_salary

Syspl | VarO

1 Sysp2 \

RHS I

RHS

RHS

RHS

I VarO

Con "CONS" Con "NIL"

Varl

1 Var2

RHS

Figure 2. Examples of match trees.

RHS

LHS to remove A abstractions and applications and then
traversing the match tree from the root to the leaves,
inserting any arcs which are missing (if there are no arcs
missing, there already exists an equation with the same
LHS and the new RHS simply replaces the old). Step (ii)
is accomplished by storing the sub-expression represent-
ing the RHS as a set of triples which contain the leaf
node of the LHS in their first field and a unique number
in their second field. For example, consider the insertion
of the equation

map f [x|y]<=[(f x) | map f y]

into an empty match tree. The 'flattened' LHS is [VarO,
Con "CONS", Var1, Var2], hence the following
four triples are inserted, for some unique tokens
Sys i, —Sysi4:

<Fun "map" , VarO, Sys i,
Sys i2) <Sys i2, Var1, Sys

<Sys i,. Con "CONS",
3> <Sys i3, Var2, Sys i4>

The dag representing the RHS of the above equation is

(Apply(Apply(Con "CONS") (Apply(VarO)
(Var1))) (Apply(Apply(Fun "map") (VarO))
(Var2)))

which is assembled by a pre-order traversal into the
following set of triples:

<Sys i4, IntO, Apply><Sys i4, Int1, Apply)
(Sys i4, Int2, Con "CONS"><Sys i4, Int3, Apply)
<Sys i4, Int4, VarO)<Sys i4, Int5, Var1>
(Sys i4, Int6, Apply)<Sys i4, Int7, Apply)
<Sys i4, Int8, Fun "map")<Sys i4, Int9, VarO)
<Sys i4, IntiO, Var2>

Thus the token Sys i4 links the RHS of the equation to
the LHS and also enables the retrieval of the RHS by
only one call to the BRSS, namely retrieve (Sys i4, *, *).

4.3.2 Optimised storage of right-hand sides

Two simple optimisations are applied to the storage of
equations. Firstly, if the RHS of the equation is a
constant, it is stored as the third component of the last
triple representing the LHS. For example, the equation

salary $p1 <= 20000 of Section 2 is stored as one triple
<Fun "salary", Sys p1, Int 20000).

A second optimisation concerns the storage of lists.
We recall from Section 2 that if an equation has an
enumerated list on its RHS, [c1# c2, ..., cn], the user can
request the storage of this RHS as a set. This results in
the storage of n arcs <Sys i, last-component, c,), <Sys
i, last-component, c2), ... <Sys i, last-component, cn>,
for some Sys i, at the bottom of f s match tree as opposed
to just one arc. The number of triples stored is thus
reduced by a factor of four since no Apply or CONS
tokens are stored. The inclusion of a further constant
cn+i in the above set is achieved by inserting the triple
(Sys i, last-component, cn+1> and the exclusion of a
constant c, by deleting the triple <Sys i, last-component,

4.3.3 Deletions

Given the above storage scheme for both user-defined
and metalevel equations, we can use the retrieval facilities
provided by the BRSS to implement FDL's deletion
commands without having to store any further 'depen-
dency' information.

Deletion of an equation. The appropriate path from the
root of the match tree to a leaf is identified, the RHS is
deleted, and any arcs of the match tree which are now
redundant are also deleted.

Deletion of a function. We recall from Section 4.1 that
this consists of deleting both the function's definition and
its declaration. We delete the definition by traversing and
deleting the entire match tree. We only delete the
declaration if the function does not appear in the RHS of
any other function definition. Given our storage of
RHSs, this test simply consists of verifying that retrieve
<*, *, Fun function-name) = [] .

Deletion of a constructor function, c. We only delete c
if it does not appear in the LHS or RHS of any equation.
We observe from Sections 4.3.1 and 4.3.2 above that c
appears in a triple of the form (token, Con c, token) if
it is on the LHS of an equation and in a triple of the form
(token, token, Con c> if it is on the RHS. Hence, it is
sufficient to check that retrieve (*, Con c, *> =
retrieve (*, *, Con c> = [ ] .

Deletion of a type t. This requires two checks. Firstly,
t must not appear in any declaration, that is retrieve (*,
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*, String t> = [] . Secondly, if t is a non-lexical type the
generator function AILt must not appear on the RHS of
any equation, that is retrieve <*, \ Fun AILt> = [] .

Deletion of a non-lexical e of type t. We only delete e
if it does not appear in the LHS or RHS of any equation.
We recall that the extent of t is stored on the set-valued
RHS of the generator function AILt, in other words as a
set of triples <AILt, SysO, e,>, <AILt, SysO, e2>
<AILt, Sys 0, en>. Hence, we need to check that retrieve
<". e, *> = [] and retrieve <*, *, e> = [<AII_t, SysO,

4.4 The printer/evaluator

Query evaluation in FDL is based upon the technique of
graph reduction24 employed in functional programming
language implementations, with the important difference
that when evaluating a function application, fa, ... an,
the function f is not replaced by a k abstraction
representing the 'whole' of f but by the RHS of the
single equation which defines f for the arguments
ai-an-

Query evaluation requires two main operations,
PRINT and EVAL, listed in Fig. 3. The evaluation is
driven by PRINT. PRINT passes the dag representing a
query to EVAL which simplifies the dag into weak head-
normal form (WHNF),24 that is, to a dag of the form
Apply(...(Apply d0 d.,)...)dn where d0 is a constant,
constructor function, or function of arity m > n. Upon
return from EVAL, PRINT displays d0 and recursively
calls itself to evaluate and display d, to dn in turn.

In EVAL, the operation MATCH (which we consider
further in Section 4.4.1) matches the arguments of a user-
defined function against the arcs of its match tree,
creating bindings for any variable arcs on the way and
terminating at a unique RHS. MATCH returns this RHS
with its free variables instantiated to the appropriate
bindings. The operation REDUCE-BUILTIN executes
the code denning a built-in function for the given
arguments and replaces the function application by the
result. REDUCE-BUILTIN also undertakes the evalu-
ation of inverse functions, which we consider further in
Section 4.4.2.

4.4.1 The pattern matcher

The pattern matcher, MATCH, takes a user-defined
function and its arguments and returns the definition of
the function appropriate for these arguments. Con-
ceptually, FDL's pattern-matching algorithm scans the
LHSs of the function's equations from left to right and
at each parameter selects only those equations which
contain the most specific match for the current argument.
The detailed semantics of this algorithm are given in Ref.
26. The algorithm has two desirable properties:

• the semantics of a function, f, are independent of the
order in which its equations are inserted or retrieved;

• no update can give rise to an ambiguous definition for
f (since no two equations can have the same LHS and
so the process of selecting only the most specific
matching equations at each parameter must terminate
with at most one equation).

Given our storage of equations in a match tree, MATCH
implements the above semantics by traversing the match
tree from the root to a leaf, selecting the most specific arc
at each node and not backtracking. If at any step of the
traversal there is no arc matching the current argument,
MATCH returns Con "@" (we recall that @ is FDL's
'undefined' null value). We list MATCH in Fig. 4. The
parameter "v" records the number of the next variable
expected in the traversal and is initially 0.

From the clause marked f in Fig. 4 we observe that
FDL evaluates function applications lazily, i.e. it only
evaluates them if they need to be matched against a
constant. We also observe that this clause is the only
place where MATCH retrieves arcs matching a saf of the
form <node, *, *> as opposed to the more specific saf
<node, label, *>. Since the arcs emanating from any
node in a match tree are labelled uniquely, there will be
at most one arc matching a saf of the form <node, label,
*> but there may be any number of arcs matching a saf
of the form <node, *, *>. To avoid the complete retrieval
of these latter arcs when in fact we are only interested to
see whether there is any constant-labelled arc, a ' triple-
at-a-time' retrieval operation would be useful. In fact,
the BRSS underlying FDL does provide such an

PRINT(q)
case EVAL(q) of

a function application:
display ('partially applied function')

an application, Apply(...(Apply(Con c) d,)...)dn, where n
display(Con c)
for i = 1 to n PRINT(d;)

0:

EVAL(q)
case q of

a local definition. Let d, d2d3:
substitute d, by d2 in d3

return(EVAL(d3))
a user-defined function application, Apply(...(Apply (Funf) d,)...) dn, where n^Arity(f):

do:=MATCH([d, d ^ r t ] , [ ] , Fun f)
return(EVAL(Apply(...(Apply d0 (Wf)+1)...)dn))

a built-in function application, Apply(...(Apply(Builtin f jdj.-. jd,,, where n ^Arity(f):
return(REDUCE-BUILTIN(q))

other:
return(q)

Figure 3. The printer/evaluator.
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operation and we refer the reader to Ref. 9 for details of
it.
The operation DISASSEMBLE in Fig. 4 reconstructs
into a dag the set of triples representing an RHS by
reversing the pre-order traversal of Section 4.3.1.
INSTANTIATE instantiates the variables in this dag
according to the bindings collected by MATCH. Once an
RHS has been disassembled the resulting dag is in fact
maintained in a main-memory cache in order to avoid its
repeated retrieval and disassembly (for example during
the evaluation of a recursive function). A main-memory
cache for the LHS of equations, that is for the arcs of
match trees, also achieves a significant improvement in
query evaluation times.

4.4.2 Inverse functions

For any first-order function f: -» s such that t is a non-
lexical type and s is not a list type, FDL provides an
inverse function inv_f :s-> (list t) defined by the equation

inv_fx<= [y | |y^AILt & (fy) = x]

If f is defined extensionally by a set of equations

fe2

we optimise the evaluation of expressions of the form
(inv_f E) by evaluating the argument E to a constant, c
say, and by retrieving (inv_f c) directly from the BRSS
rather than using the equation for inv_f: we call retrieve

MATCH (arg list, bindings, node, v)
if argJist = [ ]

RHS_triples := retrieve <node, *, *>
if RHS_triples = [ ]

return (node)
else a == DISASSEMBLE(RHS_triples)

return (INSTANTIATE (a, bindings))
else [arg | rest] == argJist

case arg of
f an expression not in WHNF:

if retrieve <node, *, *> contains a triple
<node, Con c, n> for some c and n

arg = EVAL(arg)
/*drop through to... */

an application, (Apply(...(Apply dod,)...) dn):
if retrieve <node, d0, *> = [<node, d0, n>]

for some n
return (MATCH (rest, bindings, n, v))

else if retrieve <node, Varv, *> = [<node,
Varv, n>] for some n

return (MATCH (rest, [<Varv, arg>|
bindings], n, v + 1))

else if retrieve <node, d0, *> = [<node,
d0, n,>, ... <node, d0, nm>] or

retrieve <node, Varv, *> = [<node,
Varv, n,>, ... <node, Varv, nm>]

return(Apply(Apply(Con "CONS")
n j (... Apply(Apply(Con

"CONS") ( n j ) (Con
"NIL")...))

else return(Con "@")

Figure 4. The pattern-matcher.

<Fun f, *, c> and return a list containing the second field
of each triple retrieved.

Similarly, for any first-order function f :t-> (list s),
where t is a non-lexical type and s is any type, FDL
provides a 'converse' function inv_f : s ^ (list t) defined
by the equation

inv_f x<= [y || y<-AILt & member x (f y)]

Again, if f is defined extensionally by a set of equations

fe,<=set [cn clk)]
fe2^set [c21 c2k2] ...
fen<=set [cn1 cnkj

we optimise the evaluation of expressions (inv_fE) by
evaluating E to a constant, c say, and returning a list
containing the second field of each triple in retrieve
<Fun f, *, c>.

5. FURTHER IMPLEMENTATION
DETAILS

The BRSS currently underlying FDL consists of a triple
store implemented by Derakhshan9 and a lexical token
converter (LTC) based upon the work described by
Lavington.19 The triple store provides operations for the
insertion, deletion, and retrieval of triples of fixed-length
identifiers. The LTC provides a one-to-one two-way
mapping between tokens and fixed-length identifiers to
be used in the triple store in the place of tokens. The LTC
also supplies the generate-new operation.

In the interests of simple memory management and
efficient manipulation of strings, we represent tokens by
their corresponding LTC identifiers in FDL's dags and
we only convert them back for printing. Thus dag vertices
are of fixed rather than variable length. These vertices are
allocated from a statically declared heap. Vertices no
longer required during the evaluation of a query are
added to a free list and recycled as necessary (see Ref. 24
for a detailed discussion of memory management in
functional languages).

The triple store is a 3-dimensional grid file22 extended
by Derakhshan with a facility for optimising query
response time given the expected probability distribution
for queries.8 A key feature of an w-dimensional grid file
is that tuples corresponding to neighbouring points in
the w-dimensional key space are clustered into the same
data pages. Furthermore, Derakhshan's optimisation
facility has allowed the 3-dimensional grid file used by
FDL to be set up so that the clustering of triples is biased
in favour of the first key field and within that in favour
of the second key field. We justify this tuning by
observing that the safs used by FDL during query
evaluation always have their first field specified and
frequently have their second field specified too (refer to
MATCH in Fig. 4 and the evaluation of inverse functions
in Section 4.4.2). In fact, it is only during the verification
of deletions (in Section 4.3.3) that the first field of our
safs is indeterminate.

The main requirements for the implementation of any
database language derive from the assumption that the
language will be accessing data structures which do not
reside in main memory. Thus the minimisation of
database I/O during query processing is desirable. In
particular:
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virtual storage should be utilised for buffering database
v

• main memory should be utilised for caching data
structures which are used frequently;

• constructor functions such as CONS should be
evaluated lazily;

• data which are logically related should be stored
physically clustered.

In the case of FDL, database I/O is handled by the Level
0 BRSS, which does indeed include a buffer manager.
Main memory is utilised during query evaluation and
integrity constraint enforcement; in particular, the LHS
and RHS of most frequently used equations are cached,
as are the current semantic integrity constraints. Con-
structor functions are evaluated lazily, since query
evaluation only proceeds to weak head-normal form.
Finally, given the clustering properties of the grid file, the
LHSs of equations for single-argument functions are
clustered via the function name. The triples constituting
the RHS of any equation are also clustered by virtue of
their common first field. However, the LHSs of equations
for multi-argument functions are each stored in more
than one triple and so may not be clustered.

6. CONCLUDING REMARKS
We have described the implementation of the com-
putationally complete functional database language
FDL. We have discussed how a BRSS is utilised for the
storage, update and retrieval of FDL's persistent
structures, in particular showing how

• the left- and right-hand sides of equations are
decomposed into sets of triples;

• meta data is stored and manipulated in the same way
as data;

• FDL's left-to-right best-fit pattern matching is
implemented by identifying a single path from the root
of a function's match tree to its leaves, with no back-
tracking ;

• the update of a function is achieved by a similar
traversal of its match tree.

We have also shown how the technique of graph
reduction is adapted for the evaluation of FDL queries
by extending it with inverse functions and with the
retrieval of equations from the BRSS. Our implemen-
tation compares well with other database languages
which adopt a functional data model.

P/FDM1223 utilises the UNIX NDBM data man-
agement utility for data storage and access. Abstract
entities are accessed by specifying the values of a number
of key functions thereof (cf. FDL, where entities are
uniquely identified by means of surrogates). Equations
can only be accessed by specifying the function and
arguments, so inverse functions must be stored explicitly
(cf. FDL, where inverses of base functions are derived
and data is not replicated). Derived functions are
translated into Prolog and stored as source code (cf.
FDL, where derived functions are stored in a pre-
interpreted form and are evaluated functionally).

EFDM17'18 is implemented in the persistent pro-
gramming language PS-Algol. The extent of each abstract
entity type is stored as a linked list. Each abstract entity
is accompanied by a pointer to a further list containing
the values of all single-argument base functions of the
entity. The inverse of a single-argument base function is
therefore derived by traversing the entire extent of its
argument type (cf. FDL, where the inverse of such a
function does not require a scan of the argument type).
Derived functions are stored as abstract syntax trees,
analogously to FDL. However, the functional com-
ponent of EFDM is limited and cannot support the
persistence of arbitrary recursive functions.

Some areas of FDL require further work. The pattern-
matching algorithm could be modified to incorporate
back-tracking up the match tree while also retaining the
desirable property that no update causes a function
definition to become ambiguous. Also, the graph
reduction of X expressions is in general less efficient than
the reduction of semantically equivalent expressions
consisting only of combinators24 since, with the latter,
overheads arising from copying sub-trees and
instantiating variables are greatly reduced. Clearly, the
implementation of FDL could be modified so that all X
expressions are transformed into combinator expressions
before being stored or evaluated.
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Book Review

B. SAMWAYS and T. BYRNE-JONES
Collins Gem Basic Facts: Computers, 3rd edn
Harper Collins, Glasgow, 1991. £2.99. ISBN
0 00 459250 6 (UK edition); 0 00 4592514
(export edition).

This is one of a series of' Basic Facts' booklets
on various subjects intended mainly for
schools. Many smallish books are referred to
as pocket books, although one would need
very large pockets to contain them; I even once
knew a publication of telephone directory size
that called itself a pamphlet. This little
dictionary, on the other hand, really is a
pocket book. Its size is only 4 | in. by 3j in. by
less than \ in. thick, and its cover is made of a

plastic material that would stand up to a lot of
wear. If you do need a computing dictionary
to carry around in your pocket, this one
certainly has advantages.

Within that small size, it runs to 247 pages
and over 700 definitions which, in general,
seem to be clear and accurate. Among a few
errors and oddities noted: (1) under 'segment
display' it is shown how the segments combine
to form each digit from 1 to 9 but 0 is omitted;
(2) there is the common muddle over whether
or not K. means kilo and when 1000 is indicated
and when 1024. This is carried forward into
the definitions of megabyte and gigabyte.
Then we find tetrabyte, which should be
terabyte surely, defined as ' 1000 gigabytes, or

1024 megabytes'; (3) 'character' is defined as
'any keyboard symbol'. This is followed by
some examples, but there is no suggestion that
non-keyboard characters may exist; (4) an
appendix entitled 'Abbreviations and acro-
nyms' contains a number of entries that do
not really fit that heading e.g. AND, OR,
NOT, PASCAL, QWERTY (or can
QWERTY be considered as an abbreviation ?).
Adding 'etc' to the heading would be ad-
visable.

In general, however, I find it an attractive
booklet that can be recommended.

I. D. HILL
London
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