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The efficient implementation of abstract data types and all functions that manipulate them would permit application-
oriented solutions to be developed without having to take undue account of executional properties. The synthesis of
efficient concrete types and functions forms the basis of the present paper, which appeals to a theory of inverse
functions for additional axioms to augment those of a first-order functional algebra. These axioms are then applied in
the simplification of the combinator-expressions arising in the synthesis of the functions between the concrete types. We
also show how the abstraction function itself may be deduced in certain situations where it is required to optimise
particular operations on an abstract type. In addition to possessing rigorous mathematical foundations, the function-
level axioms are more generally applicable than previous approaches to this problem, and induce a more mechanisable
rewrite-based transformation system.
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1. INTRODUCTION
The requirements that software be both correct and
efficient often conflict, so impeding its design and
maintenance. Using the transformational approach,
programs are developed by concentrating only on the
correctness, clarity, reliability and maintenance aspects,
and a series of meaning-preserving transformations are
then applied to the initial specification to produce an
efficient implementation. In this way the problem is
initially programmed at the appropriate abstract level,
by choosing and specifying appropriate abstract data
types in particular. In a transformation-based program
development methodology, consideration of efficient
representations of these data types is delayed until
implementation, where the operations required on a data
type will be implemented using the structures that are
available in the chosen implementation language. For
example, priority queues can be efficiently implemented
as binomial trees,13 or trees can be efficiently implemented
as vectors, as Floyd shows in Ref. 7. Alternatively, one
may be seeking an implementation of a data type such
that a particular set of operations defined on it are
optimised in some way; after all, the purpose of any
representation is to facilitate some kind of computation.
For example, having used a high-level representation of
the data type ' set of numbers', we may wish to find an
implementation that optimises the operations minimum
or maximum on it. To optimise the operation minimum,
one possible representation of such a set might be an
ordered list of numbers - in ascending order. In this way
the operation minimum would simply be implemented as
'head'. Similarly, if instead we required maximum to be
optimised, the list would be organised in descending
order. Of course, as Hoare points out in Ref. 10, one
should verify the correctness of the implementation of
the operations defined on a data type, and this is usually
done by specifying a representation function, which
specifies how the concrete data type represents the
abstract one. The task of verifying the implementation
then becomes that of showing that, under the rep-
resentation function, every operation implemented per-
forms its intended purpose, as defined by the axioms
given for the abstract type.

* To whom correspondence should be addressed.

Since program transformation is meaning-preserving,
its use in the synthesis of a data type's implementation
also provides the necessary verification at the same time.
But in addition to separating the concerns for correctness
and efficiency, the transformational approach brings
with it the possibility of mechanisation of the crucial step
of designing the structures to represent abstract data
types efficiently. A popular method for specifying a data
type defines the set of all primitive operations on it, and
is known as the algebraic or equational method.4812

Most of the work done to date on the synthesis of data
type implementations has been based on the more
traditional styles of program transformation; for ex-
ample, Darlington56 describes how this can be achieved
by applying the program transformation methodology of
Burstall and Darlington3 to the type's defining equations
and to the function mapping the concrete type to the
abstract one.

The majority of contemporary program trans-
formation schemes require a relatively large amount of
ingenuity - ' eureka-steps' - because they analyse
expressions written in lambda-calculus-based functional
languages. In these languages a function's definition
comprises equations giving the results of applications of
that function in terms of the particular arguments to
which it is applied. The resulting transformations
therefore rely on an analysis not only of functions but
also of objects - functions' arguments and results.
However, by compiling such programs into a com-
binatory, i.e. variable-free, representation, it is possible
for the analysis to achieve more powerful, automatic,
and generally applicable transformations. This is due to
the elimination of the concern for the domain of objects,
since function definitions are now expressed purely in
terms of other functions.

The basis of the data-type transformations developed
in this paper is a 'commutative square' of functions
comprising horizontally a user-defined function and its
corresponding concrete version, and vertically the ab-
straction functions between the domain- and range-
types. Then concrete functions are obtained as com-
positions involving abstraction functions, their inverses
and user-defined functions. This is explained in Section
2, after which the main results of our analysis of inverse
functions,9 are summarised and combined with Backus's
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algebraic laws,1'2 to yield a set of rewrite rules which we
use to drive our transformation system. In Section 5 we
present a scheme whereby the abstraction function may
also be deduced in certain situations where it is required
to optimise given operations on an abstract type as
discussed above, and illustrate the technique with
examples. The main results of the paper are summarised
in Section 6, along with some open questions and
suggestions for future applications and research.

Definition of symbols

We use the following notation throughout the paper,
much of which is in the FP style of Ref. 1.

T, F truth values ' TRUE' and ' FALSE'
0 function composition, i.e. (fog)x=f(gx)

for all objects x
[,] function construction, i.e. [f,g]x = </*,

gx} for all objects x
f=p^.q-,r fx = if px = T then qx else if px = F then

rx else 1 for all objects x
a constant function, i.e. ax = a for all objects

x * 1, a± = 1 (e.g. 0,T,letc.)
1 the undefined object, 'bottom'
id the identity function, i.e. idx = .x for all

objects x.
hd, tl, null, addl, subl, cons, eq, etc.

Standard primitive functions

2. MAPPINGS ON DATA TYPES
2.1 General approach
Consider the pair of abstract data types a,/?, and the
corresponding pair a', /?', which we take to be concrete
types that provide realisations of a, /? respectively. Then,
given the function f-.a^-P, it may be required to
synthesise a corresponding function, say / ' : a'->/?',
which performs operations on objects of type a' which
are isomorphic in some sense to the operations performed
by / on corresponding objects of type a. The function
/ ' might then be the ' implementation function' of / ,
which can be executed more efficiently than / and,
together with the types a and /?', removes from the run-
time system the need to represent the abstract types at
all. Let the abstraction function for abstract type a be
absff: a' -*• a where a' is the concrete, implementation type
corresponding to a. In this paper we assume abstraction
functions are single-valued. However, as we will note in
later sections, a many-valued function abstt could provide
the basis for representing sets (of type a) by lists (of type
a') which do not contain duplicate elements.

The concrete function / ' must form a commutative
square in the following diagram.

for example, if a = /? we have, dropping the subscript
from absa where there is no ambiquity,

abs.

abs
abs

so that/ ' = abs"1 o/o abs. For /? = /?', we have a triangle:

« - P

abs

so that / ' =/oabs. Equivalently, we may simply choose
abs» = id, the identity function. We take the fixed
functions to be polymorphic where possible, so that the
identity and selector functions, for example, apply to all
types.

For a product type of the form y — a x /?, we define

abs,,:a'x/?'->ax/? = [absao I,abs^o2]

and in general if a = a1 x... x an,
abs, = [absffl o 1,..., abs,n o ri]

and
abs;1 = [abs;1 o 1,..., abs;1 o «].

(Note that this yields abs, oabs;1 = id as required; in the
next section we will define abs;1 so that abs;1 o abs, = id
also.)

Thus, for example, the list constructor function, cons,
produces the following square

„ cons

abs. abs.

In other words,/oabsa = abs^o/', o r / ' = abs^o/oabs,,,
assuming that the inverse-function, absj1, exists. Thus,

cons

where abs = [l,absao2], a' representing the concrete
form of lists, a, with data objects of type p.

2.2 The concrete versions of user-defined functions

In general, given the abstraction functions for types a
and P and the abstract function/: a ->/?, we would like to
generate automatically the concrete version of/ i.e. the
function/' that completes the appropriate commutative
square, as an implementation of/. In other words, we
wish to find/'= abs/r"

1 o/o absa, expressed purely in
terms of the types a',/?', so that no representation of the
abstract type will be required at run-time.

Consider now first-order functional expressions £ with
the syntax

E::=A\E\oE2\[El,...,En]\El^E2;E3
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where A denotes the primitive functions. For primitive
function, a of type a->-/?, the concrete version is a' =
abs^"1 o a o absa, which is synthesised using the axioms of
the types a, a', /?, /?' and the definition of a. Note that for
a polymorphic function, p, we have p' = p, e.g. 1' = 1.
Otherwise it is easy to see, by induction on the type
structure of E, that £" is that expression obtained by
replacing in E each occurrence of every primitive
function, a, by its concrete version, a'.

To prove this claim, let Eafi denote an expression, E, of
type a->/?, and suppose first that Eay = El^o£2^.
Then

E' = abs),~
lo.Elft,o.E2a/,oabs1I

= abSj, 1o£'l^o<ius^oaus^ oc^^pc
(assuming abs^ is single-valued)

= EVoE2'.

Now, suppose that Eay = [Elay,...,Ena,y], where y =
7 i X - - - X } V Then

E' = abs/1 o [El an,..., EnayJ o absa

= [abs^"1 o Elan o abs,,..., abs^'1 o Enayn o absJ

If Eay = ElaB^>- E2ay;E2ay where B denotes the boolean
type comprising the truth values T and F and the value
'undefined', the inductive step follows simply, since
B = B' and

£" = idoifl^

Finally, suppose that/is a first-order, recursively defined
function. Then its defining expression has the syntax
given above for E, extended to admit the function
variable / as an additional syntactic type. Then the
concrete version,/', o f /has for its defining expression
the defining expression of / with all occurrences of
primitive functions replaced by their concrete versions,
and /replaced by / ' . This follows by precisely the same
induction as that used above, the base case of is =/being
trivial. Strictly, this follows since the corresponding
ascending Kleene chains have the same limit since for all
n (En±)' = (£')°1- This limit is the least fixed point of
the equation for/ ' .

2.3 Non-uniqueness of concretisation functions
Although the abstraction relations, absCT, are assumed to
be single-valued, being so defined by the programmer (or
perhaps automatically synthesised as discussed in Section
5), they are not in general 1-1. This is not surprising,
since there will typically be a number of different objects
in the domain of the concrete type a' that correspond to
any given object in the abstract domain of a. For
example, a list may be realised by a vector-integer pair,
in which the integer is the length of the list, n > 0 say,
and the rth element of the list is the same as the
(« — /+l)th component of the vector. Thus the list
elements are stored in reverse order in the vector, and the
integer n is the 'head-pointer'; this facilitates an efficient
'cons' operation. There are therefore an infinite number
of vectors corresponding to any given list: all components
after the nth in a vector of dimension greater than n
representing a list of length n are arbitrary. Another

example is the realisation of a list by a binary tree which
is defined to be either empty or else a triple comprising a
root-node and two binary trees (the left and right sub-
trees). The list represented by the binary tree b is then
formed by appending three lists: the list corresponding
to the left sub-tree of b, the singleton-list comprising the
element at the root-node of b, the list corresponding to
the right sub-tree of b. For a list of length n, there are
then n sets of such possible binary trees, each tree in a
given set having a different element at its root-node. For
example, if n = 2, there are the two possible binary
trees:

null

null

or

null null

null

null

Formal definitions of these two implementations of lists
are given in Section 4, along with the mechanical
synthesis of the corresponding data-type transformations
and of certain user-defined functions on lists.

However, in practice there will be only one object of a
concrete type, a', which is used to represent a given
object in the abstract type a. For example, a list of length
n would typically be represented by a unique vector with
n components (together with its dimension, n) or by a
unique, evenly balanced tree. The abstraction function
therefore has a unique inverse function, which will not, in
general, be onto, and we define, for abstract type a, the
single-valued concretisation relation, cone,, = abs"1.
Here, then, we are using the normal notion of a function
and we assume that any abstraction function, absCT, has a
unique inverse, cone,,; the more general approach is
suggested in Ref. 9.

Our transformation system operates by successively
rewriting the expressions defining the functions cone and
/ ' defined above, in terms of abs and / using a set of
axioms which is described in Section 3. This set includes
the FP axioms,1 and those relating to function-inversion,9

which are generally applicable. In addition, the user-
supplied definitions of the abstract data types are also
used as the basis of further axioms for their particular
transformations. In this way, many functions/':a'->/?'
corresponding to /:<*-•/? supplied by the programmer
may be synthesised. Several examples of the applications
of this type of transformation are given in Sections 4 and
5, in the latter of which the function cone is also
synthesised.

3. THE TRANSFORMATION SYSTEM:
AXIOMS AND RULES

3.1 A functional language for transformation

In order to define transformations on data types of the
sort considered in the previous section, we need a
language in which we can express the inverse of every
function (to obtain cone) and the composition of
functions. We consider first-order functions and give all
functional expressions in variable-free form. Thus a
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language based on first-order categorical combinatory
logic augmented to facilitate the definition of inverse
functions is suitable, certainly providing the required
composition operator. We therefore adopt a suitably
augmented variant of an FP-like language.1 All the
primitive functions of FP are assumed to be available,
together with their corresponding inverses, but the
selector primitives of FP, 1,2,... are represented by nm,
where m ^ « 3= 1. The primitive nm reads as ' select the
«th element of a sequence of m elements'. Similar dialects
of FP have been used in other transformation systems,
e.g. Kieburtz and Shultis,11 since these selectors convey
some typing information, namely the size of the sequences
to which they can be applied.

We also introduce logical function variables which
represent (unknown) functions, and appear in the
function-level expressions for the inverses of selector
functions and of constructions of functions. Logical
function variables are denoted by the infinite set of
primitives ?1,?2,... and are bound to ground function
values by function-level unification, which we introduce
below. Examples of inverse functions with occurrences of
logical variables are:

hd"1o/= [/,?1,...] = conso[/,?l]

t l-1o/=conso[?l , / |

In general, the program-forming operations of FP,
abbreviated to PFOs, must be generalised to operate on
power domains so that they can be applied to set-valued
functions and so accommodate inverse functions which
are not single-valued. Although the definition of com-
position need not be changed, the generalisations needed
for the construction and conditional PFOs are non-
trivial. For example, the extended construction-PFO is
defined by

[f1,...Jn]X={<y1,...,yn>\yief({x}*,

1 s$ i < n, x e X}

for functions fx,...,/„ and set X of objects, where {x}*
denotes the Scott-closure of {x} in the power domain of
which A' is a member.

The conditional-PFO becomes even more complex.
However, for our purposes, all functions may be assumed
single-valued, and the PFOs need not be so extended.

We also define the PFO ' unity-at-function-level',
denoted by <| >, which is used for the inversion of
constructions of functions. <? P takes two or more
functions of the same arbitrary type as arguments and
returns a new function of that type. The definition of the
•̂  > -PFO is given by axioms in the next section as first-
order unification, function-representations being the
objects of our unification. Since unification is associative
and commutative, <$ >̂ also has these properties.

3.2 Axioms

In the general case of inverse-function synthesis, we must
introduce set-valued functions and so generalise some of
the definitions of the PFOs as noted in the previous
section. As a result, some of the FP axioms of Backus1

then do not hold as they stand. For example, it may no
longer be the case that [f,g]oh = [foh,goh] for all

functions / , g, h, although it does remain the case that
"m°L/i>•••>/*.] =/n f o r l < « ^ m . However, for our
purposes, where all functions are single-valued, we may
include all of the FP axioms in our system, and we also
introduce axioms which involve the extensions that we
have made, most notably the PFO -4 > and the inverses of
primitive functions.

For any functional expression / , we define the
axioms:

<^?l,/> = / (including <?/> = / ) (and thus by
associativity and commutativity
«?1,...,?»•,/, ?( i+l) , . . . ,?*!>=/
for k^i^l). (Al)

For the inverse selector function if1 (0 ^ i <y)
1 / [ ? ? ( i ) / ? ( / i ) ? ] ( A 2 )

lt..., a l j , [fl21;..., a2n],..., [am^ ..., amn] >
2

<$aln,a2n,...,amn$>] (m,n^
hd-1o/=conso[/,?l]
tr1o/=conso[?l,/]
cons"1 = [hd,tl]
ho <^f,g^> = <^hof,hog$>
and
<f,g> oh = <^foh,goh$>
for all functions / , g, h

for all functions
<[h,k]

f,g,h

(A3)
(A 4)

(A 5)

(A 6)

(A 7)

(A 8)

q
4r,r'p)

if p implies p'

;
(A 9a)

(A9b)

Note that these axioms are consequences of object-level
unification semantic properties, abstracted to the func-
tion level (i.e. the variables have been abstracted).

Two 'theorems' that derive from these axioms, and
which we will find important for removing unification
from the definitions of inverses, are

<^1 O Cl-tj . . . , tl O Q ^ ^ I&\ j • • * , "«J \ /

which follows by repeated application of (A 2), and then
(A 3) and (A 1)

^ h d ^ o / i t l ^ o g ^ =consof/,g] (T 2)

which follows by application of (A 4), (A 5), (A 7) and
then (A 3).

3.3 Function inversion

We now summarise the main results for constructing the
inverses of various fixed and recursively defined func-
tions. First, the inverse of a composition of two functions
is given by

and the inverse of the construction of n functions is given
by
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The proofs of these results can be found in Ref. 9, where
a similar result for conditionals is also derived.

Now consider the function/defined recursively by the
equation f=p^-q;E for fixed functions p, q and ex-
pression E having the following syntax

E::=f\a\EoE\[E,E,...,E],

where the syntactic type a denotes fixed functions and
/ is the function variable. (The further syntactic type,
a->E;E may also be added if we include the result for
the inverse of a conditional. However, we will not find
this necessary here.) We may now write down an
expression for E~x by hierarchical decomposition into
the syntactic types corresponding to composition and
construction.

For example, if E = E1oE2, then E~x = E2~
xoEx~

x. If
E1 = [E3,E4] and E2 = addl, then E~x = <$E3-

Xp 12,
E4~

xo22P and Efx = subl (a primitive type) and so on.
Moreover, again by a case analysis of the syntactic types,
we can see that for any such expression E,E~X may be
written H'f~x for some fixed functional H'. The rigorous
proofs are very easy inductions on the types. Given E
with this syntax, a functional H defined by Hf= E is
called composite.

The main result of the inversion of recursively defined
functions is the following, the proof again appearing in
Ref. 9.

Let / be defined by j" = p->q;Hf for composite
functional H and continuous functions p, q. Assuming q
jo 1_1
1 3 * »> /"-I „_ „-! . „-! . UV/--1 (-1 y\

where H' is defined by H'f x = (Hf) l for function
variable / . (In fact f~x is the greatest fixed point of this
equation.)

4. TRANSFORMATION FOR AUTOMATIC
IMPLEMENTATION OF DATA TYPES

4.1 Representing lists as trees

We might wish to represent a list as a tree, for example
to take advantage of parallel evaluation. Assume that we
are given the following data definition:

data tree a = = empty + + node (tree a x a x tree a)

together with the abstraction function, abs, which shows
how the concrete data type, tree, maps to the abstract
type, list, i.e.

dec abs: tree a -*• list a.
abs (empty) = nil
abs (node (t\,n,t2)) = abs(fl) < > n::abs(f2)

We would like to synthesise the concrete versions of the
abstract functions that operate on lists, and in particular,
we synthesise below a function revtree corresponding to
the function rev that reverses lists.

The function abs can be expressed in variable-free
form as follows,

abs = isempty -*• nil;

append o [abs o 13, cons o [23, abs o 33]]

Now by our inversion results we can synthesise the
inverse function of abs, i.e. cone, as follows.
cone = abs"1

= null -»• empty; (append o [abs o 13, cons o [23,
abseil])"1 by (I 3)

= null -*• empty; [abs o 13, cons o [23, abs o 33]]~l

o append"1 by (I 1)

= null -»- empty; <? 13
1 o abs"1 o 12, (cons o [23,

abso3J)"1 o22>oappend"1 by (I 2)

= null -> empty; <? 13
 x o abs"1 o 12, [23, abs o 3J"1

ocons"1 o22>oappend"1 by (I 1)

= null -> empty; <̂  13
 x o abs"1 o 12, <? 2" x o 12,

abs" o cons"1 o
append"1 by (I 2)

= null -+ empty; < 13
 x o cone o 12, <̂  23

 x o 12,
33

xoconeo22^> ocons"1 o22>oappend"1

= null -»• empty; <|13
 x o cone o 12, <? 23

 x o 12,
33

1oconco22> o[hd,tl]o22

> o append"1 , by(A 6)

= null -»• empty; « 13
 x o cone o 12, <g 23

 x o hd o 22,

2

>̂ ̂ > o append"1 by (A 7)
= null-+ empty;«[coneo I2,?l,?2],[?3,hdo22,

cone o 11 o 22] > o append"1

= null ->• empty; [cone o 12, hd o 22,
cone o 11 o 22] o append"1

This systematic generation of cone is clearly correct, but
the shape of the concrete tree depends on how append"1

(the function 'split' that splits a list into two lists) is
defined. Although, in general, the function split is many-
valued, we assume here that append"1 is single-valued,
some canonical splitting of its argument being chosen for
the concretisation, as discussed in Section 2. In practice,
a balanced-tree representation would normally be re-
quired to enhance the exploitation of parallelism. For
example, the pair of lists returned by an application of
append"1 would be such that their lengths were equal or
the second had one more element than the first. In fact
we need not assume append"1 is single-valued, whereupon
cone too will be many-valued. In this way we would
derive a recursive definition for revtree which is an
approximation (under the ordering of our function
space). The fixed point for revtree that we will define
shortly certainly satisfies this relation but is not the only
solution.

Now since three of the functions in our commutative
square are defined we can proceed to synthesise revtree.
We will make use of the following additional axiom
which is actually an alternative definition of the function
rev:

rev(x < > y::z) = rev(z) < > y::rev(x)

i.e. rev o append o [a, cons o [b, c]]
= append o [rev o c, cons o [b, rev o a]]

where a, b and c are any arbitrary functional expressions.
Now from the commutative diagram, omitting the

subscripts from the selector functions for brevity, we
have

revtree = cone o rev o abs

= isempty -> cone o rev o nil; cone o rev o
append o [abs o 1, cons o [2, abs o 3]]

by substituting for abs

= isempty -»• cone o nil; cone o rev o append o
[abs o 1, cons o [2, abs o 3]]

from the definition of rev
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= isempty -> empty; cone o rev o append o
[abs o 1, cons o [2, abs o 3]]

by definition of cone

= isempty -> empty; cone o append o
[rev o abs o 3, cons o [2, rev o abs o 1]]

by applying the additional axiom

= isempty -»• empty; (null -> empty;
[cone o 12, hd o 22, cone o 11 o 22]
o append"1) o append o [rev o abs o 3,
cons o [2, rev o abs o 1 ]]

by substituting for cone

= isempty -»• empty; [cone o 12, hd o 22,
cone o 11 o 22] o append'1 o append o
[rev o abs o 3, cons o [2, rev o abs o 1 ]]

since null o append o [rev o abs o 3,
cons o [2, rev o abs o 1]] can never be
true due to the use of cons

= isempty -> empty; [cone o 12, hd o 22,
concotl o22]o[revoabso3,
cons o [2, rev o abs o 1]]

= isempty -»• empty; [cone o rev o abs o 3,2,
cone o rev o abs o 1]

= isempty -» empty; [cone o abs o revtree o
cone o abs o 3,2, cone o abs o revtree o
cone o abs o 1]

by substituting for rev
= abs o revtree o cone

= isempty -»• empty; [revtree o 3,2, revtree o 1]

(Recalling the comment above, more generally this
equation would be an approximation, the fixed point we
define here being one solution.)

In other words we have synthesised the following
recursion equations for revtree

revtree (empty) = empty
revtree (node (t 1, n, t2))

= node (revtree (t2), n, revtree (tl))
Now the execution time of reverse (x) is of order the
length of x, whereas revtree (cone (x)) can theoretically
execute in time of order log2 of the length of x on parallel
processors.

4.2 Representing lists as vectors

We consider a problem in which a list is represented
sequentially as a vector with an offset to indicate the
current position of the head, i.e. with type y-list =
(vector x integer), the types of item in the list and vector
being the same. It is required to determine the concrete
version of the function which appends two abstract lists.
The problem is shown in the following diagram.

appendlist list

abs

f-list •
append'

abs"

-»• f-list

Given abs and append, we need to find first cone = abs"1

and then append', which will have the same recursive
structure as append, as observed in Section 2.2. We will
use a function-level version of the notation given by
Darlington.6 We already have the axioms for lists in the
form of the FP sequence-axioms and just define

nil': -»• vector (the empty vector constructor function)

assign: vector x value x integer ->• vector

read: vector x integer ->• value

The type value is an arbitrary base type for the elements
of the vector and of the list, for example integer. The
axiom given for the vector type is

read (assign (v, i,j), k) = i if j = k

read (v, k) otherwise
This immediately implies that the inverse function of
read is read"1 given by

read"1 = [assign o[?l, id, ?2],?2]

for logical function variables ?1,?2.

We will also use another axiom for the vector data type,
concerning the function assign. For integer n > 0, and
functions x, v,

-̂  assign o [?1, x, add (n)o 2 ov], 1 ou>

= assign o [1 o v, x, add («) o 2 o v]

where x returns a ' value' and v returns an object of type
u-list. This is consistent with the axioms given for vectors
and intuitively correct because

read o v = read o assign o [1 o v, x, add («) o 2o v ] Vw + 0.

In other words, if an assignment is made in a position in
the vector component of an object of type y-list which is
not the head position (its second component), the result
of reading the head item is unchanged.

It is also given that abs: vector x integer -»• list, is
defined by

abs = eqO o 2 -> nil; cons o [read, abs o [1, sub 1 o 2]]

or abs = eqO o 2 -> nil; //abs for appropriately defined
functional H.

We must now find abs"1 (i.e. cone) from abs, and
hence cons', hd', tl', the versions of the primitives cons,
hd and tl defined on the vector representation of lists.
Application of the standard FP laws will then yield the
required defining expression for append'. Indeed, in this
way the answer obtained by Darlington follows by
purely mechanistic (and mechanisable) means. In par-
ticular, the where-abstractions are generated quite
naturally using constructions (created during the for-
mation of inverse functions), which are accessed by
(compositions of) selector functions. Of course, the
choices of the new axiom and of the definition of read"1

are not fully automatic, but these are the only 'Eureka-
steps', and the properties of the target type must in any
case be specified in some way by the programmer.

For the primitive function hd, since list items in each
representation are identical, we have a 'commutative
triangle'and hd '= hdoabs = read

(strictly, hd' = eqO o 2 -> 1; read, but we assume read
returns 1 when applied to an empty vector). The selector
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function tl has type list->list, so that t l ' = concotlo
abs = concoabso[l,subl o2] = [l,subl o2].

To synthesise cons', we will need the expression for
cone (which has serendipitously cancelled so far). By
direct application of the inversion method, we obtain

(i/abs)"1 = [read,abso[l,sub 1 c^fl^ocons"1 by (I 1)
= <g read"1 o 1, [1, sub 1 o 2]"1 o abs"1 o 2 >

o[hd,tl] by (A 6) and (I 2)

= ^ read^o l , « r 1 o l , 2 - 1 o a d d l o 2 >
oconco2g>o[hd,tl] by (I 2)

o[hd,tl] by(Tl)
= «[assign o[?l, id, ?2]ol,[l,

addl o2]oconco2> o[hd,tl]
substituting for read"1

= «[assign o [? l,l,?2],?2],[lo cone o 2,
addlo2oconco2]> o[hd,tl]

= <g[assigno[?l, l,addl o2oconco2],
addl o2oconco2],[l oconco2,
addl o2oconco2]> o[hd,tl]
by axioms (A 3) and (A 1)

= [<§assigno[?l, l,addl o2oconco2].
1 oconco2>,addl o2oconeo2]o[hd,tl]
by (A 3)

= [assign o [1 o cone o 2,1, add 1 o 2 o cone o 2],
addl o 2oconeo 2] o[hd, tl]
substituting for v = cone o 2,
x = l o l , « = 1 in the axiom

= [assign o [ 1 o cone o 11, hd,
addl o2oconcotl],addl o2oconcotl]

Hence by the main inversion result, (I 3), we obtain the
following definition for cone:

cone = null -> [nil', 0]; [assign o [ 1 o cone o 11,

hd, addl o2oconcotl], addl o2oconcotl]

Similarly, recalling the commutative square for cons
above,

cons' = [assigno[l oconcotl,hd,addl o2oconcotl],

addl o2oconcotl]oconso[l,abso2]

(using the facts that null o cons = F and that id maps
(list) values to (vector) values, giving a mapping [l,abso
2] for a value-vector pair)

= [assign o [ 1 o cone o abs o 2,1,

add 1 o 2 o cone o abs o 2],
add 1 o 2 o cone o abs o 2]

= [assign o [1 o 2,1, add 1 o 2 o 2], add 1 o 2 o 2]

Finally, since the range of null and null' are the same, i.e.
the boolean type,

null' = null o abs = eqO o 2 -> null o nil;

null o cons o [read, abs o [ 1, sub 1 o 2]]

= eq0o2->T;F = eq0o2

Thus we obtain by the result in Section 2.2

append' = eqO o 2 o 1 -> 2; cons' o [hd' o 1,

append'o[tl'o 1,2]]

= eq0o2o 1 -• 2;[assigno[l o2,1,

add 1 o 2 o 2], add 1 o 2 o 2] o [read o 1,

append' o [[ 1, sub 1 o 2] o 1,2]]

This is the equation required, which perhaps becomes
clearer if we write [uj] to denote append'o[[l, sub 1 o2]
o 1,2], and simplify the else-part expression using FP
axioms to get

append' = eqO o 2 o 1 -+ 2;

[assign o [u, read o 1, add 1 07], add 1 oj]
where [u,j] = append'o[[l,sub 1 o2]o 1,2].

This is now in precisely the form that appears in Ref.
6, i.e.
append' (< vx, 0 >, < v2, i2 >) = < v2, i2 >

append'(<v1,i1 + l>, <v2,i2>)

= assign (M, read (t>15 i1 + l),j+ 1)
where < u,j> == append (vu i1>, < v2, i2 >).

5. TRANSFORMATION OF DATA TYPES
FOR OPTIMISATION OF GIVEN
OPERATIONS

Given a data type, we often require to optimise a
particular set of its operations. After all, the purpose of
any representation is to facilitate some computation. For
example, having used a high-level representation of a
data type such as ' list of numbers' we may wish to find
an implementation that optimises the operation minimum
on it. One possible solution is a list of numbers in
ascending order. In this way the minimum operation
would simply be implemented as head. This type of
transformation requires greater deductive capabilities
and in general (assuming such an optimisation exists)
appears elusive. However, given the capacity to recognise
the applicability of axioms such as (A 9 b), i.e. the ability
to detect statically that one predicate implies another, the
function-level approach outlined below provides a
solution that is mechanisable.

In general we would like to optimise n ^ 1 operations,
fu... ,/„ on a data type a, and to synthesise the function,
conca, that maps the abstract type a to its concrete
implementation type on which the optimised versions,
/, ' , of/, will operate. The idea is to try to generate the
cone function automatically so that most of the ' work'
performed by the functions// is included in it, so that we
can then give new definitions for the / / that are
inexpensive, representing the remainder of that 'work'.

Now, given/( of type a-*-j!we can again make use of
the rule/j'oconc,, = conc^o/,. We then have in general
that conca =fi'~

1oconcpiofl for all i such that/f :<*->•/?„
where /?, may be any type. Since all such equations must
be satisfied simultaneously, there must be a substitution
for the logical function variables in each right-hand side
which renders them all equal. Thus we define

conca = « Z/"1 o concp, o/( |/(: a -> 0t P

with obvious notation. In this way, given expressions for
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the concrete functions// (1 < i < «) it may be possible to
use the w-fold function-level unification as a definition
definition for conca. However, note that although conca
must satisfy this equation, it is not necessarily equal to
its solution (i.e. its least fixed point).

The possible results of the unification now fall into
three classes, (a) Failed, i.e. there is no substitution and
so no optimised type can be found, (b) A result which
contains logical function variables, in which case an
optimised type exists but is not unique, (c) A result which
contains no logical function variable, in which case there
exists a unique optimised type, the result being the
associated concretisation function.

In fact here we have introduced function inverses
which may not be single-valued, and so in general we
require the more complex apparatus of a general analysis
of inverse functions. However, our present capabilities
are sufficient for the following examples.

Example 1

Suppose we wish to optimise two operations on lists:
' last' which finds the last item and ' Rtail' which returns
the list excluding its last element. These functions are
defined on the abstract type list (a) by

last (JC :: nil) = x

Rtail (x:: nil) = nil
Rta i l (x::y::l) = x : : R t a i l (y:: 1)

The definition of last and Rtail in FP is as follows:
/ t = last = nullotl ->hd;lastotl
and

/2 = Rtail = nullotl -^nil;conso[hd, Rtailotl]
Now suppose the concrete functions proposed for last
and Rtail are specified as

/ / = last' = hd and / , ' = Rtail' = tl

The synthesised representation function concllst(a), ab-
breviated to cone, is then the result of the function-level
unification of the right-hand sides of the equations
derived for it from each of the function-pairs (/ ,//),
1=1,2.

The base case of the representation function is also
specified, so as to preserve the null list, nil. The
synthesised representation function, cone, is then defined
by
cone o nil = nil and

cone = <g / / " ' o/^/j '"1 o cone o/2 $>

= <nullotl -^hd^ohdjlid^olastotl,
nullotl -»• 11-1 oconeonil;
t l - 1 o cone o cons o[hd, Rtail otl] >̂

= nullotl -> ^hd^ohd, 11-1 oconeonil?>;
<€ hd"1 o last o 11, tl -1o cone o cons o[hd,
Rtail otl]>
by (A 9), since equal predicates

= nullotl ->•
cons o [hd, nil]; cons o [last otl, cone o cons o [hd,
Rtailotl]]
by (T 2) and since cone o nil = nil

= nullotl -»• [hd];conso[lastotl,
cone o cons o [hd, Rtail otl]]
by FP axiom

This synthesised function therefore forms the concrete
data type by simply reversing the list.

Example 2

Suppose we wish to optimise two operations on lists of
numbers: 'min', which finds the minimum item and
'deletemin', which deletes it. These functions are defined
on the abstract type a = list(num) by

min (x:: nil) = x

minO:::^::!) = if min(j>::l) ^ x then x else min(>::l)

de le te (x,y::l) = ifx = ythen 1 e lse y : \ de le te (x, 1)

deletemin (1) = delete (min (1), 1)

It is intended to represent min by hd and deletemin by tl
on the concrete type, i.e.// = hd,/2' = tl as in Example
1. The definition of min and deletemin in FP is as
follows:

fx — min = nullotl -^hd; leo[hd,minotl]^hd;minotl

/2 = deletemin = delete o [min, id],

where delete = eq o [1, hd o2] -»tl o 2;
cons o [hd o 2, delete o [1, tl o 2]], i.e.

deletemin = eqo[l,hdo2]o[min,id]^-tl o2o[min, id];
cons o [hd o 2, delete o [ 1,11 o 2]] o [min, id]

= eq o [min, hd] ->• 11;
cons o [hd, delete o [min, tl]]

For convenience of notation, we write these as

min = null o tl -s- hd; H
and
deletemin = eqo[min, hd] -> t l ; G

for appropriately defined expressions H and G.
The base case of the representation function is also

specified, so as to preserve the null list, nil. As in
Example 1, the synthesised representation function,
cone, is then defined by
cone o nil = nil and

cone < //"* o/i,//-1 o cone o/2 £>

= <̂  null otl -> hd"1 o hd; hd"1 o//, eqo
[min, hd]-^tl~'oconcotl jtl^oconc

= nullotl-> ^hd^ohd, tl^oconcotl
(eq o [min, hd] -»• <̂  hd"1 o H,

by (A 96),
since null otl implies eq o [min, hd]

= null o 11 -> cons o [hd, cone o nil]; (eq o [min,

by (T2) and since nullotl
implies tl = nil

= nullotl ;(eqo[min,hd]

byFP
axiom and since cone o nil = nil

nullotl ->[hd];(eqo[min, hd]-*conso
[H, cone o 11 ]; cons o [//, cone o G\)
by (T 2) for both parts
involving function-level unification
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where H and G are the else parts of the definitions of min
and deletemin respectively.

Our result is very similar to what an intelligent
programmer might have designed for this purpose. Such
a function might be:

cone (nil) = nil

cone (x:: nil) = x:: nil

cone (x::y::z) = min (xr.yr.z)::

cone (deletemin (x:: y:: z))

Here cone is single-valued, but suppose instead we only
had the operation deletemin which we wished to optimise
by tl . Then the concretisation function would be cone'
defined by

cone' = t l~xo cone' o deletemin

where cone' o nil = nil

Thus

cone' = cons o[?l, cone'o deletemin]

= cons o [? 1, cons o [?2,... cons o [In, nil]...]
when applied to a list of length n.

In fact the concretisation function, cone', is the most
general, and here it loses all information as to the values
of an abstract list's elements. This is actually quite
acceptable, since we have not represented any selector
function on our concrete type. If, for example, we had
also wished to represent the function 'max' (giving the
maximum element) by hd, we would have obtained
cone' = conso[max, conso[max, ... conso[max, nil]...],
or if we had required max to be represented by last
we would have obtained cone'= conso[?l, ...conso
[?(« — 1), cons o [max, nil]...], for lists of length n. In every
example, the concrete version of a selector function
returns the correct element from the concrete list, and
also from the concrete versions of the lists obtained by
successively deleting the minimum element. Note that
although we can always choose some unique definition of
cone, by appropriate assignments to the logical variables,
the corresponding abstraction function, cone'"1, is many-
valued because of the destructive nature of the function
deletemin. Our assumption of single-valuedness gener-
alises satisfactorily here, but we are approaching the
same problem as we noted in Section 2, concerning the
representation of sets by lists.

6. CONCLUSION
The mechanical synthesis of efficient implementations of
abstract data types as concrete types benefits greatly
from an algebraic approach using a combinator-based
analysis. Our results are based on the simple observation
that a square of functions defined on the abstract and
concrete domain types and range types must commute.
Assuming the availability of the composition operation
and of inverses for the given abstraction functions
(mapping the concrete type to the abstract type), the
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GERHARD BREWKA
Nonmonotonic Reasoning: Logical Foundation
of Commonsense
Cambridge University Press. £19.50.
ISBN 0 521 38394 3.

This book discusses aspects of nonmonotonic
reasoning at three levels: logic (proof- and/or
model-theoretic accounts of nonmonotonic
systems), implementation (automated theorem
provers for nonmonotonic systems) and what
the author terms pragmatic (rule-based non-
monotonic systems or nonmonotonic process
systems).

It is at the first level where most of the
influential approaches to nonmonotonic rea-
soning have been proposed. The book begins
with a broad overview of many of these
approaches. Some of the prominent features
are (1) the clarity with which what many
Artificial Intelligence (Al) workers consider to
be difficult approaches are presented; and (2)
the adequate accuracy of the presentation,
which seems to have done justice to every
approach cited in the book up to the point of
controversy. Therefore, the book should prove
extremely useful and valuable for the novice
who needs an almost painless introduction to
a very complicated area of research.

As for the researcher who is already in the
field the book offers less, but it is still
adequately valuable and interesting. Undoubt-
edly, there are some new ideas such as the
author's proposal of preferred subtheories
which are both stimulating and beneficial to a
researcher.

The second level, to which only one chapter
is dedicated, is as interesting as the first. The
computational aspects of nonmonotonic logics
are interestingly difficult to handle. More is
expected at this level if one of the main
objectives of the book is to show that
theoretically sound nonmonotonic reasoning
can be done efficiently and if the author
believes that' there will probably not be much
progress in the development of formalisations,
nor an increase in the trust in the existing
ones, without programs, which can handle
more realistic examples than those which have
been studied so far'. It would have been
extremely helpful if the book could have given

or, at least, emphasised the need for an in-
depth comparison of the different approaches
cited at level one in terms of their comput-
ational properties.

For the pragmatic level, which is the most
appealing to Al workers, the book presents an
interesting attempt at formalising some type
of ' truth maintenance systems' by providing
model theoretical semantics.

The overall expository value of the different
approaches and different levels of the book
cannot be under-estimated. The book has
been fairly successful in its main goal, which is
to give a broad overview of the state of the art
in different fields of research in the area of
nonmonotonic reasoning. It does not give
more than a vague orientation in the field. It
regards the different research activities in the
field as alternative ways of achieving sound
theoretical foundations and efficient compu-
tation of nonmonotonic reasoning. This, in
fact, is what one ideally wants to happen and
believe, but the reality is something different.
As earlier Al literature shows, workers at the
pragmatic level had for a long period dismissed
the idea of formalisation and sound theoretical
foundation. What is surprising is that the
book's message is that different activities,
rather than different approaches to nonmono-
tonic reasoning, are ways of achieving a
common goal.

N. OBEID
Colchester

DAVID LIGHTFOOT
Formal Specification using Z, Macmillan.
ISBN 0-333 544080. £13.99
The zealots of the 'formal methods' com-
munity will not like this book: it contains
more natural language than dense mathemat-
ics, was not written using LaTeX, and is an
attempt to teach a formal notation rather than
show off the author's mathematical ability.

Lightfoot has concentrated on the system
specification aspects of Z and has wisely
ignored attempting to teach development, a
topic which generates a large amount of
concrete mathematics - even when the de-
velopment is simple, such as the transform-
ation from a sequence to a linked list.

The style of the book is pleasantly relaxed

and the pace is not too fast. The author covers
the important 80% of Z relevant to system
specification in the traditional way: starting
with logic and progressing, via sets, to func-
tions and sequences. The only weakness of the
book is that it eschews large examples. One of
the major advantages of Z is its structuring
facilities, particularly the way that the schema
calculus enables system specifications to be
presented in an incremental way. The author
would have improved the book if he had
included a final chapter describing a sub-
stantial example.

The potential audiences for this book are
students on degree and HND courses, and
staff in industry with a little mathematical
knowledge who want a quick introduction to
formal methods. Certainly, this is the first
formal methods book that I have read which
is suitable for HND students - albeit students
in the final year of their course.

The formal methods community — and I
count myself a member of it - seems to be in
crisis. For the last ten years it has attracted
quite a large amount of funding and formal
methods are on the syllabus of every university
computing department; yet progress has been
pitifully slow, with the occasional embar-
rassing failure such as the Viper micro-
processor acting as a punctuation mark.
Certainly, the vibrations that I perceive from
the Department of Trade and industry and the
Science and Engineering Research Council are
of increasing dissatisfaction with the subject
over its lack of progress.

One of the reasons for this lack of progress
is the small amount of good technology
transfer materials that has been produced.
The formal methods community has, over the
last decade, contented itself with writing
postgraduate-level textbooks and using them
to teach undergraduates. Happily, this seems
to be no longer true. The recent issue of An
Introduction to Formal Specification and Z by
Till, Potter and Sinclair, published by Prentice-
Hall, has started to reverse the trend. This
book continues it. The problem though, I
suspect, is that it has been written five years
too late.

D. INCE
Milton Keynes
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