
S. THOMPSON AND R. LINS

9. T. Johnsson, Lambda lifting - transforming programs to
recursive equations. In Functional Programming Languages
and Computer Architecture, edited J. P. Jouannaud.
Lecture Notes in Computer Science 201, Springer,
Heidelberg (1985).

10. T. Johnsson, Compiling Lazy Functional Languages. Ph.D.
thesis, Chalmers Tekniska Hogskola (1987).

11. G. Kahn (ed.), Functional Programming Languages and
Computer Architecture, Lecture Notes in Computer Science
274, Springer, Heidelberg (1987).

12. P. J. Landin, The mechanical evaluation of expressions.
The Computer Journal 6, 308-320 (1964).

13. R. D. Lins, On the Efficiency of Categorical Combinators
in Applicative Languages. Ph.D. thesis, University of Kent
at Canterbury (1986).

14. R.D. Lins, Categorical multi-combinators. In Ref. 11.
15. R. D. Lins and S. Thompson, On the Equivalence Between

CM-C and TIM. Computing Laboratory Report 67,
University of Kent at Canterbury, (1989, revised 1990).
(Submitted for publication in Journal of Functional Pro-
gramming)

16. D. S. Scott, Relating theories of the lambda calculus. In To
H. B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus and Formalisation, edited J. P. Seldin and J. R.
Hindley, pp. 403-450. Academic Press, London (1980).

17. D. A. Turner, An overview of Miranda. In Research Topics
in Functional Programming, edited D. A. Turner, pp.
1-16. Addison-Wesley, Wokingham (1990).

18. C. P. Wadsworth, Semantics and pragmatics of the lambda
calculus. D.Phil, thesis, Oxford University (1971)

Book Review

PETER LINZ
An Introduction to Formal Languages and
Automata
D. C. Heath, Lexington, MA, 1990. 373 pp. US
$37.00. ISBN 0-669-17342-8

The preface to the book identifies it as an
introduction to the 'Theory of Computation',
corresponding closely to course CS 16 in the
ACM Curriculum 78. The author's stated aim
is to familiarise students with the foundations
of computer science, and to teach material
that will be useful later: though mathematical
theorems are stated precisely, formal proofs
are seldom given.

In my experience this is a difficult course to
give, since students vary greatly both in their
degree of mathematical preparation and in
their readiness to commit themselves to an
abstract approach. The solution here is to
develop the skills needed to handle abstract
computational structures by a wealth of
practical examples and exercises, concentrat-
ing on languages and automata for the most
part. Only the basic elements of the theory of
recursive functions are included, in four pages
that consist entirely of definitions. Complexity
theory is hardly touched on: the final section
quotes some of the major results, giving
references to Hopcroft and Ullman's Intro-
duction to Automata Theory, Languages and
Computation (1979) for the proofs.

Although the approach leans heavily on
examples, Linz emphasises that his aim is not
to supplement texts on compilers, and the
treatment is not slanted towards applications
in more practical computer science. The many
students who see themselves first and foremost
as programmers will probably be more at-
tracted by Glenn Brookshear's Theory of
Computation: Languages, Automata and Com-
plexity (1989). That book also manages to
present the elements of recursive function
theory in very much a programming style.

The difficulties that many students encoun-
ter with the mathematics of computation

theory are more to do with notation (the
language of mathematics, if you like) than
with content. This new book does not make
any attempt to soften the blow, and some
students will be unnecessarily intimidated
because of this (see for example Exercise 15 at
the end of Section 7.1). The essential ideas
that have to be conveyed to the reader are
intuitive but quite sophisticated: in formal
language theory, non-determinism and am-
biguity ; in computation theory, the notions of
the decidable and the semi-decidable. This
latter distinction is arguably the most im-
portant insight that arises in the whole theory,
and it is essential that recursive enumeration is
tied in with the idea of an effective process. At
various stages I wished that the author had
been more prepared to go into detail, none
more so than in the discussion of the Universal
Turing machine. I do not believe that com-
puter scientists find an explicit construction
exhausting, rather the reverse. Further, having
seen and believed in such a construction,
students have a sharper intuition for the
enumeration theorem.

This is where I think that the new book falls
down. Too little attention is devoted to
establishing a feel for what is constructive,
and sometimes the approach is downright
misleading. An example is in the proof of
Theorem 11.3, where the word construct is
used loosely in the second paragraph. The
context at that point is that of a countable set
with some order on its elements: it is only later
that the enumeration procedure is invoked.
Technically this doesn't matter in the least -
the first part of the proof is concerned with a
language that is not recursively enumerable -
but it blurs the distinction between effective
construction and existential definition, and
that distinction should be one of the main
messages.

Where the new book scores is in motivation
by example, particularly for context-free lan-
guages. In particular I found Example 5.13
(on inherent ambiguity) and Example 7.9

(which explores the power of deterministic
pushdown automata in recognizing context-
free languages) to be especially illuminating,
clearly presented and convincing. Those sec-
tions are both thoroughly successful, and the
advantages of proceeding by example are
apparent. Throughout the book the quality
of the printing is excellent, with generous
amounts of space given to both displays
and diagrams. Ideally the left-hand margin
should have been made narrower on left-hand
pages only (in my review copy the text slid
off towards the spine), but the physical layout
is way above average.

Overall this book can be welcomed for the
clear treatment of regular and context-free
languages, and for the wealth of examples and
exercises. However, I do not think it is the
front runner among general introductions to
computation theory. That is a highly com-
petitive field. Explicit interpretation of en-
coded algorithms is an essential feature of
computational models, and students need to
understand it in order to appreciate crucial
diagonal arguments. I have already mentioned
two books that I think are better balanced
than this new one. Thomas Sudkamp's recent
Languages and Machines (1988) is also good;
it covers most of the material in Linz's book
and also includes a lot about complexity
theory. Davis and Weyuker's Computability,
Complexity and Languages (1983) can claim to
be a classic in much the same way as the book
by Hopcroft and Ullman.

I have mentioned four books that serve as
an excellent and balanced introduction to
language theory and computability, and there
must be others that I am not aware of. This
new book can be recommended to anyone
whose primary interest is in the language
aspects of the subject, but it is not in my view
suitable as a sole reference for a course on
computation theory.

KEN MOODY
Cambridge

176 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/176/360272 by guest on 09 April 2024

