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Two hybrid methods of distributive sort and quicksort are given. The first method sorts an array of records and the
second one sorts a linearly linked list in a stable way. The expected running time of the methods is O(n) for n records
and for a wide class of distributions of the keys (including all bounded densities with a compact support). For most
other distributions the running time is O(n log n), and the worst case time is O(n2,). The array version needs extra
storage space for n records and approximately n/5 integers. In the linked list version only an array of n/S pointers is
needed. The observed running times of the algorithms compare favourably with those of other efficient bucket sort
algorithms.
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1. INTRODUCTION
Internal sorting algorithms presented in this paper are
representatives of a hybrid method which consists of
a distribution phase followed by an application of a
comparison based sorting algorithm. The former scatters
the key values into buckets which are thereafter sorted
by the latter technique. The results are then gathered
to form the sorted sequence of records. A number
of different variants of this method has been pro-
posed1"4' ?i9"13 and it seems that the implementation of a
hybrid of comparison and distribution sort is not as
clearcut as one might expect. There are several reasons
for this.

First, in contrast to quicksort or heapsort, the hybrid
is no longer an in situ method. This is due to the fact that
the records are grouped to form a number of buckets and
the information for this requires O{n) extra storage. The
actual observed running time depends strongly on the
amount of extra storage used.7 Representing the buckets
with linked lists and using an auxiliary array for the
records leads to very efficient sorting. On the other hand,
if memory requirements are strict, only an extra array of
m integers is sufficient, where m is the number of buckets
used. Secondly, the performance of the hybrid method
should be comparable to the best comparison based sorts
for ill-behaved distributions of the key values. Finally, to
be fair to the comparison based sorting, the bucket sort
may not have any prior knowledge of the key values. For
example, we may not assume that the minimal key value
is known, that the keys are not identical, or that the
sentinel element is in its correct place. Although all these
details are easy to consider, the determination takes
processing time which should not be ignored. The best
sort routines based on comparisons are so fast that each
extra operation in bucket sort decreases the margin
between the running times of the two methods.

In this paper we give two general-purpose internal
bucket sort programs, Dsort and Ldsort which are
(1) theoretically strong in the sense that

- they have an O(n) expected running time for the
key distributions occurring frequently in prac-
tical situations8, an O(n log n) expected running
time for most other distributions and an O(n2)
worst case running time in extremely improbable
cases,

- their demand for the extra memory space is
moderate;

(2) applicable in practical situations because they
- sort quickly in commonly occurring cases, and
- do not cause unexpectedly long running times

for special types of key sets.

Dsort is a refinement of D-212 (written in FORTRAN).
The algorithm makes a compromise between the amount
of storage space and the running time. No explicit
linking is needed in the bucketing but an extra copy of
the records is utilized along with a counter array of
length of m. G. H. Gonnet8 gives a bucket sort routine,
interpolation sort (written in C), with the same demand
for storage space. The code is very compact and the
program is fast for uniformly distributed key sets.
However, the values of the minimal and maximal keys
are not determined in the routine and the processing
degenerates to 0{n2) insertion sort when all but one key
value differs significantly from all the other values.

Other related methods are D-312 and Usort.3 Both use
explicit (cursor) linking of the buckets and are very fast
for smooth key distributions. A two-stage distribution
function is used in the method DDP (double distributive
partitioning) of M. T. Noga and D. C. S. Allison.13 Also
in DDP the linking is explicit by cursors. An even
distribution of bucket sizes is searched by a two-phase
procedure. This results in a theoretically appealing
method and we are interested in knowing whether its
more involved bucket boundary calculations are valuable
in practical sorting situations, too.

Ldsort is related to Dsort but it manipulates a linearly
linked list of records. Now we need as extra storage only
a header array of m pointers to access the bucket lists.
The use of linking presupposes an efficient comparison
based sorting of a linked structure. It turns out that by
using a suitable technique and a careful coding, the
sorting can be done in a stable way, i.e. in such a way that
the initial mutual order of the records with equal keys is
preserved in the process. The resulting sorting algorithm
is logically closely related to Usort. However, the true
linking by pointers (as compared to the cursor links in
Usort) and the actions to prevent overwhelming
processing time for exceptional key distributions make
the new routine more robust. A linked version of DDP is
also given for comparison.

The paper is organised as follows. Section 2 describes
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a Pascal implementation of Dsort in detail. Some
observations on Usort and DDP are made in Section 3.
In Section 4 we report a summary of the results of test
runs with array based bucket sort programs and some
other efficient sorting programs. The implementation of
Ldsort and LDDP is discussed in Section 5. Test results
for these methods are summarised in Section 6. Finally,
Section 7 contains some concluding remarks.

the parameter list would be augmented with a function
which compares two records and yields a Boolean result
expressing which one of the arguments is greater. This
would generalise our procedure to the extent that it could
be used to sort all records for which total ordering is
defined. We implemented this kind of routine, too. The
sorting was however significantly slowed down due to the
large time used for comparing keys.)

2. IMPLEMENTATION
2.1 Preliminaries
The non-recursive bucket sort titled Dsort has a heading
of the form:
procedure dsort (var p: array-to-besorted; lo, up:
integer);
and the following declarations:
const

large-file = 2000;
max-m = 10000;
ins-level = 9;

var
/, j , m, imax: integer;
counter: array [0..max-m] of integer;
s: array-to-besorted;
temp: element;
a, b: real;
min, max: key-type;

The procedure orders the elements of/? from the index
lo to index up to form an increasing sequence of key
values.

(Note 1. We have restricted ourselves here to the
integer type index values. Further, it would be more
elegant to choose a conformant array schema to obtain
a flexible interface to the procedure. However, this was
not carried out because only few systems support it. Both
these restrictions could be avoided by using a linked list
for the records to be sorted and passing the head of the
list to the sort routine.)

The constant large-file is used as a value for choosing
the method of sorting, ins-level defines the threshold
value which expresses when it is preferable to change
from quicksort to insertion sort. Max-m +1 stands for
the maximal number of buckets to be used. The calling
block must define the type array-to-besorted as an array
of records of type element containing the keyfield which
is of key-type. For example:

const
lowindex = 1;
highindex = 30000;

type
indexrange = lowindex..highindex;
key-type = real;
element = record

keyfield: key-type;
data: array [1..30] of char;

end;
array-W-besorted = array [indexrange] of element;

(Note 2. Due to the restrictions of Pascal, the type of
records to be sorted is fixed, that is, Dsort must know the
field name according to which the sorting is to be done.
To increase the usability of the routine, we ought to be
able to give the type of the record as a parameter. Then

2.2 Procedure body

The distributive method is unnecessarily complicated for
small files. Therefore, if the number of items is less than
large-file elements, quicksort is applied. Otherwise, a
three-level hierarchy is used: the bucketing technique is
applied as a preliminary step after which the buckets are
sorted with quicksort. The quicksort procedure has a
further threshold level: as soon as the partitioning results
in a subset, the size of which is less than ins-level, the
subset is left unsorted (partial quicksort). As a final step,
the whole array is scanned using insertion sort to fix up
the possible disorder which is clustered into small regions.
The overall structure of the body of Dsort is:

{choose the method of sorting)
if up-lo + 1 < large-file then

begin {small array}
"use partial quicksort";
"arrange p so that maximal element of the last

subfile is in p[up]"
end

else
begin {large array)

{initialisation}
"Determine the minimum (min) and maximum (max)

key values. Rearrange p so that p[up] is the maximal
element and omit it from the sorting";

if min < > max then
begin

"organise the records to form m buckets";
"sort the buckets by partial quicksort"

end
end;

"insertionsort using a sentinel element at the rear";

Small array

Quicksort is applied directly to arrays containing at most
large-file elements (typically large-file is of the order
2000). The routine partial-quicks is a modified version
from that of Sedgewick15. The changes are:

(a) to make the O(n2) worst case improbable, the
median-of-three is used for selecting the pivot
element,

(b) to limit the stack space to O(log«), the tail
recursion has been removed and the smaller subfile
is always sorted first, and

(c) the insertion sort part at the end of Sedgewick's
original quicksort procedure has been removed
because we want to perform the insertion sort with
a stopper element for the whole array containing
all the partially sorted buckets.

Note that also in this branch of the program the array
consists of 'buckets'. The upper limit for the size of a
bucket is determined by ins-level.
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The following code excerpt rearranges p so that the
maximal element of the last subfile is in p[up].

{Small array}
partiaLquicks(p, lo, up);
max: = p[up].keyfield; imax: = up; y.= up-insJevel;
if j < lo then j : = lo;
for / : = up-l downto y do

if p[i].key'field > max then
begin max:= p[i\.keyfield; imax: = i end;

swap{p[up], p[imax\);
up:= up-\;

The call of procedure swap is to be replaced in the fina
code by the three statements:

temp: = p[up]; p[up]: = p[imax]; p[imax]: = temp;

Large array
Initialisation

The records with the minimal and maximal keys are
determined and the latter is moved to the correct place to
act as a sentinel element in the insertion sort. The
maximal element is excluded from sorting. Note that the
modification of the upper limit up does not alter its value
outside Dsort.

min:= p[ld\.keyfield; max:= min; imax:= lo;
for i: = lo+l to up do

if p[i\.keyfield < min
then min: = p[i[.keyfield
else if p[i].keyfield > max then

begin max: = p[i\.keyfield; imax:= i end;
swap(p[up], p[imax]);
up:= up-l;

Organise the records to form m buckets

The substeps are
SI: 'initialisation';
S2: 'determination of the number of records in the
buckets';
S3: 'initialisation of the cursors to the buckets';
S4: 'construction of the buckets';

SI: 'initialisation'
We divide the records into m = n/k buckets. Here we use
k = 5, which gave in test runs profitable sorting times for
smooth key distributions. To maintain information about
m buckets, we use m + 1 storage locations from the array
counter. At the beginning of the sorting the array is used
to find the number of records in each bucket. Thereafter
the same space serves for a set of cursors to the buckets.
The value of m is restricted to max_m, which gives the
high index of counter.

A record with a key x is placed in the bucket i
(0 < / < m—\), where

/ = floor[(x — miri)*(m — 1) /'(max — min)]

= floor[x*a + b].

The coefficients a and b are given below.

m: = trunc((up-lo + 1 )/5);
if m > max-tn then m: = max_m;
for j : = 0 to m do counter[j] := 0;
a: = (m—\ )/(max — min);
b:= — ((m — 1 )*min) /(max — min);

S2: 'determination of the number of records in the
buckets'
The number of records in each bucket is counted in
counter[i] (i = 0..m). To speed up the construction of the
buckets we store the elements of p temporarily into the
array s. The step is as follows:

for /: = lo to up do
begin

j:= trunc(p[i\.keyfield*a + b);
counter[j]: = counter[j] + 1;
s[i\:= p[i\

end;

S3: ' initialisation of the cursors to the buckets'
The counter array is transformed into a cursor array
giving the address of the first free slot in each bucket.

counter[0]: = counter[0] + lo—l;

forj:= 1 to m do counter[j\:= counter[j— \] + counter[j\;

Note that the bucket m is empty and therefore from
step SI we have counter[m] = 0. After S3 its value is
identical with the value of counter [m— 1] (= up — lo+ 1).
This is advantageous at the time quicksort is applied to
the buckets.

S4: ' construction of the buckets'
The contents of s are mapped back to p to form the
m buckets:

for /: = up downto lo do
begin

j : — trunc(s[i].keyfield*a + b); p[counter[j\]: = s[i\;
counter[j]: = counter[J] — 1;

end;

after which the elements of the buckets reside in
consecutive addresses in the original array.

Sort the buckets by partial quicksort

for7:= m—\ downto 0 do
partiaLquicks (p, counter[j]+\, counter[j+ 1]);

Insertionsort
Because a sentinel element was stored in the distribution
phase in p[up+ 1] an efficient version of the insertion sort
can be used. It is called by:

insert stopper-tnax(p, lo, up);

2.3 Running time

The expected running time of bucketing methods has
been analysed in ref. 2 (see also ref. 5). If an O(n2)
algorithm is applied to the buckets and the keys xt,x2,
...,xn are from a distribution with the density / , the
expected running time of the distributive algorithm is
O(n) for all bounded distributions. (See ref. 5, Theorem
1 for a very general class of distributions giving linear
expected time.) On the other hand, Devroye and Klincsek
showed that a necessary condition for the linearity is that
/has a compact support (i.e. there exists a finite K such
that P(\X\ > K) = 0, where X has the density / ) . This
result implies that all densities with an infinite tail, for
example normal, gamma and chi-square densities, yield
an over-linear running time. However, the keys can be
modified using a non-linear order-preserving transform-
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ation so that the effect of the long tail is removed and the
linearity is again reached. In order for this to be practical
we should have information about the type of /so that
we do not make the resulting density very skew. This
feature has been omitted from Dsort.

In cases where the bucketing fails to distribute the
keys into subsets of about the same size, the expected
O(n log n) running time of quicksort is dominant. Still,
the 0(n2)-worst case is possible in extremely special
cases.15

3. 1/S0/JJ AND TWO-LEVEL BUCKET SORT

Usort is a variant of Dsort in which the link fields are
stored explicitly in an array of n integers.37 This results
in more straightforward code and avoids the expensive
calculation of the bucket number for each element twice.
The distributive phase and the reorganisation of the p
array are done as follows:

{distributive phase)
for / := 0 to m-\ do lhead[i]:= 0;
for i:= lo to up do

begin
j:= trunc(p[i\.keyfield*a + b); link[i\:= lhead[j\;
lhead[j\: = i; s[i\:= p[i];

end;
{dump linked lists back to p}

i:=lo-\;
for j:= 0 to m— 1 do
if lhead\J] < > 0 then

begin
next: = lhead\J\; i: = i+ 1; j \ : = i; p[i]: = s[next];
while link[next] < > 0 do

begin
next: = link[next]; i: = i + 1; p[i\: = s[we.x7]

end;
partial-quicks (p, j \ , i)

end;

To get an understanding of the actual running time of
Dsort in comparison with other bucket sort methods we
implemented also the two-level bucket sort DDP by
Noga and Allison.13 Their nice algorithm uses 2 arrays of
ca. n/100 integers and 2 arrays of around «/100 real
numbers for collecting the statistics about the dis-
tribution. Of these, we can eliminate half by using the
same memory area properly for several purposes.
However, we must be careful in applying this overlay
strategy, especially because the indexes in the original
implementation are restricted to the range \..n. In
addition, an array of n/2 integers is needed to store the
list heads, an array of n integers to serve as cursors in the
lists and an array of n records to store temporarily the
keys to be sorted.

DDP is not directly comparable to Dsort in its original
form: the O(n2) worst case occurs in DDP when all keys
hit a single bucket. This happens when the distribution
has a strong peak5 or every /th element (/ is the distance
from one sample item to another) is the same. In
addition, the method relies on the assumption of a
predetermined sentinel element. Further, some
complications occur in the determination of the
coefficient for the mapping function when the keys are
equal. Therefore we implemented two different versions:

the first one, DDP, is gathered from the code fragments
of ref. 13 and the second, DDP-n \ogn, which

1. recognises the case when samplemin equals to
samplemax and in this case uses quicksort for the
whole array;

2. sorts large buckets with partial quicksort and the
whole array with the insertion sort;

3. determines a sentinel element for the insertion sort
from the insJevel elements of the last subfile.

(Note 3. If samplemin = samplemax, then we could
also set t = \ and resample the items. If after this
samplemin still equals samplemax the sorting is done.
Otherwise the processing is continued in a normal way.

Note 4. We could intertwine the grouping of the
bucket elements and insertion sort in the original
algorithm of Noga and Allison. This is 'safe', i.e. no
large buckets are to be expected because of the double
distribution. This was not implemented in DDP-nlogn,
however, because then the algorithm would not be
guaranteed to run in O(n logn) expected time any more.)

Complete program codes of Dsort, Usort and
DDP-tilogn are available from the authors.

4. EXPERIMENTS FOR ARRAYS

The running time of distributive sorting algorithms
depends on k( = n/m), the average number of records in
the buckets. The closer the bucket sizes are to the average
size, the shorter is the time for sorting the buckets. Most
of the buckets are sorted by insertion sort but large
buckets which result in partitioning steps in Quicks
become more probable as k increases. On the other hand,
a small k (say k = 1) is not necessarily the best choice.
Each bucket is to be initialised and empty buckets are
checked at the bucket sort phase. Further, a complicating
factor is the sensitivity of the expected running time on
the distribution of the key values. To determine a
reasonable bucket size we experimented with the various
algorithms by using small fc-values (k = 1,2,..., 10) when
sorting random keys from the interval [0,1). The best
observed running times for Dsort and Usort were with
k = 5 and for DDP and DDP_nlogn with k = 2.
The results were not very sensitive to minor variations in
k. In the tests to follow these k values have been used.

Table 1 shows the running times for Dsort, Usort,
DDP, Quicks (= partial_quicks followed by insert
_stopper_max), DDP_nlogn and Linear probing sort.19

The last one runs in an O(n) expected time for uniformly
distributed points, has a very simple code and has been
fast in computer runs with random keys (see ref. 8, table
4.5). From Table 1 is seen that the value of the two-
level distribution becomes evident when the distribution
is non-uniform. Still, excluding linear probing sort Usort
outperforms all other methods even with the logarithmic
distribution. Procedure DDP degenerates (given O(n2)
running time), if the sample fails to give a reasonable
approximation of the distribution function (see cases 7
and 8). In the same cases DDP-nlogn acts as a quicksort
preceded by an unsuccessful distribution phase. Linear
probing sort degenerates in several common cases.

Table 2 shows the duration of different phases of
Dsort, Usort, DDP and DDP-nlogn. Here 1000 random
keys in the range [0,1) were sorted. The first three rows
show clearly the power of sampling: DDP and
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Table 1. Comparison of Dsort, Usort, DDP^nlogn, DDP, Linear probing sort and Quicks

1. Random keys
2. Normal distribution
3. Logarithmic distribution
4. Equal keys
5. Increasing order
6. Decreasing order
7. Random, but each kth key is 0.5
8. Random, but each kth key is 0.5,

the first key is 0.51
9. Random, with one exceptional key

Dsort

5.81
6.36
6.94
0.47
5.10
6.25
6.52
6.62

11.40

Usort

5.01
5.62
5.94
0.62
5.72
4.17
5.90
5.87

10.50

DDP-nlogn

6.86
6.61
6.69
7.15
6.90
6.23
6.92
9.63

6.77

DDP

6.87
6.55
6.67
degen.
6.72
6.22
degen.
degen.

6.77

Iprobingsort

4.01
degen.
degen.
0.50
3.59
3.51
degen.
degen.

degen.

Quicks

7.04
6.83
6.87
7.05
3.80
4.50
6.81
6.62

6.85

Running times are in seconds for 16K records in MicroVAX-H. Results are averages from 25 test runs with distributions 1-3 and
from 1 run in other cases. ' Degen.' denotes a stack space overflow or excessive time usage.

DDP-nlogn need on average only 5.9 s for sampling,
determining the histogram and calculation of the
mapping function whereas Dsort consumes 24.7 s for
corresponding tasks (including a transfer of the records
to another array). On the other hand the two former
methods contain a more involved distribution phase
which takes more than twice the time in Dsort. In
addition DDP and DDP-nlogn perform linked list
operations and the move of the result from a temporary
array back to the original one (timings on rows 4 and 5).

Table 2. Components of the running time in sec, n = 1000 for
Macintosh Plus Pascal, averages from ten runs. Random keys

Dsort Usort DDP DDP-nlogn

Determine min and 8.0 7.6 2.1
max

Determine histogram 16.7 — 3.5
Calculate the mapping 0.0 0.0 0.3
function

Distribute the records 18.3 18.4 38.2
Reorganise according 4.7 12.6 9.2
to the linked lists
and/or quicksort

Insertion sort 18.4 18.6 12.4
Dump the result to — — 2.7
the original array
Total

2.1

3.5
0.3

38.2
11.3

12.1
2.7

66.1 57.2 68.4 70.2

8
7
6
5
4
3
2
1

Average running time
D Quicks
o Dsort
• Usort

xlOOO

Figure 1. The observed running time for Usort, Dsort and
Quicks. Uniformly distributed random points, MicroVAX-II.
25 repetitions.

The difference in the insertion sort times is due to the
different average number of records in the buckets.

Fig. 1 shows the actual observed running times for
Dsort, Usort and Quicks. The data sets constituted
uniformly distributed random numbers. For DDP and
DDP-nlogn the running times were slightly smaller than
that of Quicks for n > 8000. For smaller values of n these
procedures consumed more time than Dsort and Quicks.
For files smaller than 2048 quicksort outperformed
Dsort. Thus the large-file parameter value can be 2000 in
our implementation (for the uniform distribution of the
key values).

5. DSORT WITH LINKED LISTS

The top level logic of the stable linked list version of
Dsort, named Ldsort, is closely related to that of Dsort,
but we give it here to express the differences in the
implementation of the substeps:

procedure ldsort(\ar ptr-to-first; nodepointer);
begin

find-parameters{n,ptr-toJast,min,max));
if number _of-items < large-file
then

partial-trisort(ptr-tO-first,ptr_tO-last,ri)
else
if min < > max then
begin

distribute-records(ptr-to-first,min,max,m,bucket-
heads,bucketrears,

items-inJbuckets);
for i:= 1 to m do

if items-in-buckets[i\ > insertion-level
then partiaLtrisort(bucketheads[i\,bucketrears[i\,
items-in-buckets[i\);

join-the-buckets(ptr_to^first,m,bucketheads,
bucketrears);

end;
insertionsort-usingsentinel(ptr-to-first);

end;

The nodepointer points to an entity which has the
record type and a pointer of the nodepointer type as its
components. All elements of the list from the node
pointed by ptr-W-first to the one containing a nil-pointer
in the link field are sorted.

The sort is initialised by determining the number of
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records, the pointer to the last node of the list, and the
minimum and the maximum key values. The two former
data are needed for the application of partial-trisort and
the two latter ones to calculate the bucket boundaries.

If the number of records is small, then Trisort, a linked
list variant17 of quicksort is applied. Trisort is designed to
handle efficiently key sets which contain identical keys:
the records having a key value identical to the pivot are
gathered together in the partition phase and excluded
from the sequent recursive cells. The original procedure
has been modified to avoid the stack space overflow by
a standard technique where the sizes of the subfiles
resulting from the partition guide the recursion. In
addition, the recursion is stopped as soon as the subfiles
become smaller than a predetermined threshold value
insertion-level. Note that the best value of insJevel
(9-10) in array based methods differs from the cor-
responding insertion-level (17-20) for linked lists. How-
ever, the actual value used does not affect significantly
the running times due to the minor role of the Trisort in
the distributive method. The median-of-three technique
for choosing the pivot cannot be used because no direct
access to the middle element of the list exists. The key of
the last node is selected for the pivot17 and thus, e.g.
inputs with increasing or decreasing key sequences yield
quadratic running times. The order of the items has been
reversed in partial-trisort in order to apply the list based
insertion sort flexibly.

For large arrays the processing is analogous to that in
Dsort except that
- pointers to the rear (and front) of each bucket list are

maintained,
- partial-trisort sorts the buckets in descending order,

and
- the buckets are chained together starting from the one

containing the largest key values.
The last two actions are needed for the application of the
insertion sort.

(Note 5. The removal of the remaining disorder inside
the buckets as the final step gives the possibility to relax
the index calculation: it is not of primary importance to
find the final bucket for each item in the distribution
phase if it is guaranteed that they fall near it.)

Let us finally consider the stability of the method. The
records are moved in the following operations:

(a) Distribute ..records. The bucket lists are
maintained by using front and rear pointers. The
new item is always inserted to the rear of the list to
preserve the stability.

(b) Join-theJbuckets. Concatenation of the bucket
lists is clearly stable.

(c) Insertionsort-usingsentinel. Insertion sort is
stable.

We implemented also a linked list version, LDDP,
of the double distributive partition sort, DDP. Here
the rewriting was done greatly in the same way as
above.

6. PERFORMANCE OF THE LINKED LIST
ALGORITHMS
The main advantage of the linked list representation over
the array based one is that the copying of the records
can be avoided. Its importance can be seen from the

Table 3. A comparison of the list and array versions of Dsort
and DDP. Ten test runs with random data, MicroVax-II

Number of
records to

(K)

1
2
4
8

16

Average running time

Ldsor

0.18
0.37
0.75
1.51
3.03

t LDDP Trisort

0.31
0.63
1.26
2.63
5.25

0.25
0.58
1.23
2.67
6.18

(s) of the algorithm

Dsort

0.35
0.71
1.40
2.85
5.70

DDP

0.41
0.81
1.63
3.29
6.67

Quicks

0.32
0.69
1.49
3.20
6.94

Table 3, which shows for uniformly distributed random
keys the running times of LDDP and Ldsort and
compares them with the corresponding array variants.
List and array implementations of Quicksort are also
included in the table.

Tests with normal and logarithmic distributions gave
very similar results, showing that the one-level dis-
tribution of Ldsort is sufficient for' smooth' distributions.
Only in an exceptional case where one very large key
value was included in the random key set, did the Quicks
outperform the other methods.

Insertion sort works slower on linked lists than on
arrays. Still, the difference is not very dramatic, if
compared to the advantage gained when avoiding the
moving of records between arrays. The role of the
copying becomes even more critical when the record size
grows.

The main reason for the weaker performance of
LDDP as compared to Ldsort is the determination of the
bucket boundaries which requires two traversals through
the input list. This suggests that it is inappropriate to
implement the original ideas of the double distributive
partitioning sort with linked lists. A variety of possibilities
for improving the performance could be devised, e.g. the
sample could be collected into an array or into a sample
list (a separate list which is extracted during the first
scan). Furthermore, there is no reason to look for sample
minimum and maximum because the whole list is scanned
and the true values can be determined. This implies that
the distribution becomes more straightforward. How-
ever, experiments showed that these changes do not
improve the running time of LDDP: the work removed
from the distribution is now done in the search of the
extreme values.

For random keys Ldsort used only about half of
the time of Trisort. In the original Trisort recursion is
continued for subfiles until they contain equal keys. A
modification where a threshold value is used to control
the stopping of the recursion was implemented. As soon
as the size of the subfile falls under the threshold, it is left
unsorted. The insertion sort is applied as a final step to
take care of the possible disorder which is still left. This
modification did not, however, improve the times of the
original Trisort noticeably (the improvement was of the
order of 4%). Also an attempt to make Ldsort more
elegant by omitting the insertion sort and Trisorting all
buckets resulted in a weaker performance.

When comparing the running times of Quicks and
Trisort, one must bear in mind that the latter does not
contain a sophisticated pivot selection (e.g. the median-
of-three).
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The space requirements of the algorithms are de-
pendent on the environment where the sort routine is
applied: if the input file is given in an array, the space
demand does not decrease from that of Dsort (or DDP),
i.e. the list space created exceeds the space needed for an
auxiliary array. (In addition one still has to pay for the
time of constructing the linked list so that the application
of the method is hardly profitable in these cases.)
However, there is frequently an option to give the input
in either form, for example when the records are extracted
from a larger data file as a preprocessing step. The linked
representation manages without an extra space for a
copy of the records. Thus the space savings may be
considerable, although space for n additional links plus
2m additional pointers for maintaining the buckets
during the distribution process must be reserved.

5. CONCLUDING REMARKS
Dsort and Ldsort are general-purpose sorting algorithms
which are based on the distributive sorting technique.
For smooth distributions of the key values their expected
running time depends linearly on the number of the
records to be sorted. The procedures were compared to
three other bucket sort algorithms along with efficient
implementations of quicksort.

Dsort has the following characteristics:
(a) It needs less memory than the other array based

bucket sort algorithms tested in this paper. All these
(including Usort) need an extra array to hold the n
records temporarily. This feature makes them less
attractive than the 'conventional' comparison based
methods, if space is a critical resource.

(b) It runs very fast for smooth distributions. When the
distribution has a strong peak, the strength of the double
distribution of DDP becomes evident.

All in all, Dsort is a 'compromise': it needs more space
than quicksort but less than other bucket sort methods.
On the other hand, it runs faster than quicksort but
slower than, at least, Usort.

The results for Ldsort are still more encouraging. It
was noticed that if we do not have any constraints on the
choice of the data structure, the linked list should be
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