
Short Notes

Retrospective Update: Data As It Was Believed
To Be

Received April 1989, revised August 1991

1. Introduction

This paper describes the approach taken
within the Department of Social Security
(DSS) by the Local Office Project (LOP), in
the design of the computer system for Income
Support now operational.

The approach was developed over several
months by a combined team of civil servants
and design consultants. This paper, however,
is the responsibility of the author alone, who
is indebted to the Department for permission
to publish it, and to the many colleagues, too
numerous to mention individually, who con-
tributed to the technical solution adopted.

A cautionary remark needs to be made
concerning the word 'adjudication': within
the DSS this has a specific legal connotation.
In this paper, however, it is used in a restricted
technical sense, to denote an irreversible
change of state of data, significant to the
database design.

A key user requirement of the Income
Support system is the ability to make retro-
spective updates to claimant data, without
destroying the original values of the data: a
reminder that data is not ' real ' in itself, but is
simply a representation of what the real world
is believed to be at a given point of time. (See1

for an articulate expression of this point.) In
other words, data is nothing more than an
assertion about reality, which may only tem-
porarily remain ' true' .

Many authors have drawn attention to the
problems of modelling time satisfactorily in a
database design. Examples are:2 the Change
Log described by Rosemary Rock-Evans ;3 the
time-ordered database modelling facility in-
trinsic to LEGOL 2.0; and4 the temporally-
oriented data model (TODM) developed by
Gad Ariav (New York University). What
complicates the DSS requirement is the need
to retain in the database multiple versions of
the same data 'as it was believed to be ' at
different points in a time continuum.

TODM regards a database as a sequence of
'slices' taken across a time axis, where each
slice is in some respect 'different' to its
adjacent slices. What our requirement seems
to mandate is not one time axis but two: one
representing the 'real ' time, and the other the
' reference' time. It is of course rare, in practice,
for the same data to be retrospectively updated
more than once. But modelling time as two
axes rather than one supports the most general
case, allowing an item of data to be retro-
spectively updated more than once, if necess-
ary.

2. Background

In the case of the so-called 'retrospective
change-of-circumstance' a claimant notifies
the Department retrospectively of illness or of
temporary employment that occurred during
a period for which a payment of benefit has
already been made. Stored data must be
'corrected' and entitlement to benefit re-
assessed, but the physical update must be non-

PERSON ADJUDICATION

EVID. EV1D. EVID. EVID.
HOUSING EMPLOYMT SAVINGS DEPENDANT

EVLINK
DEPENDANT

EVLINK
SAVINGS

EVLINK
EMPLOYMT

EVLINK
HOUSING

Figure 1. Simplified logical data model.

AWARD

AWARD
,COMPONENT

destructive in order that the personal cir-
cumstances on which the original payment
was based remain in the database for the
period required to satisfy enquiries and audit
requirements.

A second aspect to this is that enquiries on
claimant data specify both a 'real' time (the
time that the data-assertion refers to), and a
'reference' time (a time at which the data-
assertion was believed to be true). A sample
query might be ' regardless of what we are now
told his savings were on 1st April last year,
what did we believe them to be when we last
assessed his entitlement on 30 September?'. In
this example, the 'real ' time is 1/4/88, and the
'reference' time is 30/9/88.

The entitlement of a claimant to an award
of Income Support is based on a wide range of
information about family conditions, housing
situation, previous employment, savings, and
so on, all of which the claimant furnishes on a
single multi-part claim form. In the supporting
logical (entity-relationship) data model, a
range of corresponding 'evidence' entity-types
is defined, each linked in a conditional one-to-
many relationship from PERSON (the claim-
ant) and each through a 'linking' entity to one
or more award-components of one or more
awards. Figure 1 shows an illustrative struc-
ture of just four evidence-types: the Full LOP
data model contains many more evidence-
types, not included here.

An important feature of the logical data-
model is the many-to-many relationship be-
tween EVIDENCE and AWARD: an award
is based upon evidences of various types, and
a given piece of evidence may be 'used', over
time, in a succession of different awards.

Note that the relationships from PERSON
to EVIDENCE are of a generic nature,
accommodating each of the following:

(a) multiple concurrent instances of the
same evidence (for example, a claimant with
more than one savings account);

(6) non-overlapping instances of the same
evidence (for example, history of previous
housing circumstances);

(c) multiple instances of the same evidence,

overlapping in time and contradicting each
other (as occurs, for example, following a
retrospective update).

During the data collection phase (which
may extend over more than one database
success-unit) destructive update must be per-
mitted, in order to allow the keyboard op-
erator to correct any input errors. But once an
entitlement to benefit has been assessed, and
an award stored that 'uses' this evidence, any
alteration to existing evidence must be non-
destructive, and treated as a retrospective
change.

The point at which evidence data switches
to a non-destructible state corresponds exactly
to the event which the current clerical system
describes as ' adjudication'. In the terminology
of the department, adjudication is performed
on a claim, and the 'adjudicated' status is
passed on to all the evidence data that is
linked to the awards (one or more) resulting
from the adjudication.

Since evidence can 'carry forward' from
one assessment to the next, and even from one
claim to the next, it is frequently necessary
that an evidence record be 're-adjudicated'.
The reason for a re-assessment need not
necessarily be a reported change-of-circum-
stance: it could arise equally from a change in
benefit rules and/or rates. The re-adjudication
may involve the termination of evidence
previously open-ended, or in some cases the
'amendment' of an evidence, for example by
the correction of an amount, a period, or a
start- or end-date. It could also involve the
insertion or removal of evidence, for example
the evidence of a dependent child.

3. Design solution: the standard evidence-
header

In order to preserve a simple mapping from
'logical' to 'physical' design, a Cobol record
has been defined corresponding to each of the
EVIDENCE entity-types.

The design solution employs a standard
header-group common to each of the EVI-
DENCE record-types (see below). At the time

184 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/184/360288 by guest on 10 April 2024



SHORT NOTES

of initial data-capture, the two dates EVID-
STRT-DT and EVID-CPTD-DT are always
stored, and supplemented at the point of
adjudication by EVID-ADJU-DT.

Depending on evidence-type, the remaining
data-portions of the evidence records vary in
length, from a single field of 6 bytes in one
case to some 20 fields totalling 160 bytes in
another. A change to one or more of the fields
within an adjudicated evidence-record requires
a new record of the same type to be stored,
with unaltered fields copied forward from the
old record to the new. At the same time, the
field EVID-END-DT is set on the standard
header-group of the old record: this indicates
that the evidence ceased to be valid on this
date.

Where the change is retrospective, then a
different control-field is set, namely EVID-
AMDD-DT. In this situation, EVID-END-
DT may or may not already be set: either way,
it is left unchanged. Whether or not the
change is retrospective, the general interpret-
ation is that the data-content of the record is
'believed to be true' up to the date signalled
by EVID-AMDD-DT.

It may appear wasteful, at first sight, that
unchanged fields from the ' old' record have to
be duplicated in the 'new' one. However, this
process is not as costly as it might first appear,
since volatility is low, and once adjudicated,
any given evidence-record is not likely to
require amendment more than once in its life.

For ease of processing, the date-fields in the
header-group are supplemented by a status
field EVID-STAT-TP, carrying the range of
values indicated below. Non-mandatory date-
fields are ascribed the default value 999999:
this default value would be used, for example,
as the end-date of any 'ongoing' evidence,
such as data about a person's savings.

The items of the header-group are as
follows:

->• Adjudicated-

EVID-NO
EVID-STRT-DT

EVID-END-DT

EVID-ADJU-DT

EVID-RECD-DT

EVID-AMDD-DT

EVID-STAT-TP

EVID-VFD-FG

EVID-CPTD-DT

(internal use only).
date from which this evi-
dence is valid.

last date on which this
evidence is valid.

date this evidence first
adjudicated.

date of notification to the
DSS.

date on which this evi-
dence was terminated or
amended by the creation
of other evidence of the
same type.

status of this record (see
table).

(certain evid. types only)
verification status.

date of creation of this
record.

Range of values for EVID-STAT-TP

0 Evidence has been adjudicated.
1 Previously adjudicated, now pending re-

adjudication in an unchanged state.
2 New evidence, not yet adjudicated.
3 Evidence that has been superseded.

The life-cycle is illustrated in Fig. 2, and the
sub-sections that follow outline the alterations
that may be applied to the items within the
evidence-header during the stored life of an
evidence record.

INITIAL
STATE

Evidence
captured or
corrected

Re-adjudicated
unchanged

Validity terminated
• (change-of-circumstances) -

RETROSPECTIVELY NON-RETROSPECTIVELY

FINAL-2
STATE

Today used as
EVID-AMDD-DT

Today used as
EVID-END-DT

Subsequent
retrospective change •*

FINAL-1
STATE

Figure 2. Life-cycle of an evidence record.

3.1. Creation and correction
(pre-adjudication)

When data has been collected from a terminal
and is to be stored prior to adjudication,
EVID-STAT-TP is set to 2. This setting allows
any of the date fields in the record to be
updated 'in-situ' (i.e. destructively), typically
to correct validation failures. The other header
items that are mandatory at this state are
EVID-STRT-DT and EVID-CPTD-DT.
Where an end-date for the validity of the
evidence is known, this will be recorded in
EVID-END-DT. Otherwise EVID-END-DT
carries the default 'open-ended' value of
999999.

3.2. Adjudication

When an evidence-record is first used in an
adjudication, the EVID-STAT-TP is set to 0.
This setting 'freezes' the data-items of the
record to their current values, ensuring that
any retrospective update is accomplished only
by the creation of one or more replacement
records. At the same time, EVID-ADJU-DT
is set to today's date. In practice, the data
collection and adjudication processes are
normally collapsed into a single database
success-unit, and the majority of evidence
records are already adjudicated by the time
they are first committed to the data-base.

3.3 Pending re-adjudication

When an evidence-record, previously adjudi-
cated, is selected for re-use in a later ad-
judication, but adjudication is to be deferred,
EVID-STAT-TP is set to 1. While set to 1, the
record is not to be treated as 'adjudicated',
but as 'subject to review'. If the adjudication,
when it comes, accepts this record, then EVID-
STAT-TP reverts to 0. Otherwise (see 3.4

. below) EVID-STAT-TP will be switched to 3,
> indicating that the evidence is ' superseded'. In
either case, the value of EVID-ADJU-DT is
left unchanged.

3.4 Amendment to termination

A change-of-circumstances implies either: (a)
that an existing ' open-ended' evidence is to be
terminated, or (b) that some detail recorded
about an existing evidence is to be changed.
Additionally, or alternatively, it may be that

(c) a new evidence record is to be stored. If the
change-of-circumstances is retrospective, then
the re-adjudication requires that one or more
existing evidence records, with an 'adjudi-
cated' status, be marked as 'superseded', by
setting EVID-STAT-TP to 3, and EVID-
AMDD-DT to today's date (the date of the
re-adjudication).

In other words, there are two possible
'final' states for an evidence-record, the
normal one where it is simply superseded, and
the retrospective one where it is discovered to
have been invalid from some earlier date. It is
possible for a retrospective change-of-circum-
stance to affect an evidence already super-
seded.

4. Design solution: time-related data
selection

To answer a query of the kind 'what did we
believe the claimant's savings on 1/4/88 to be
when we assessed his entitlement on 30/9/88',
the logical data structure of Fig. 1 needs to be
extended by two 'time-period' entities. The
REAL-TIME-PERIOD is a period of time
bounded by the EVID-STRT-DT and EVID-
END-DT of the attached evidence. The
REFERENCE-TIME-PERIOD is the period
of time bounded by the EVID-ADJU-DT and
EVID-AMDD-DT of the attached evidence.
This takes account of the facts:

(1) that prior to EVID-ADJU-DT the
evidence was either not known, or not yet
adjudicated;

(2) that between EVID-ADJU-DT and
EVID-AMDD-DT the evidence was believed
to be 'true', and was used, possibly more than
once, in an adjudication;

(3) that from EVID-AMDD-DT onwards,
the evidence was irreversibly superseded.

Any access to stored evidence-data requires
two dates to be supplied - a ' real' date, for
matching against REAL-TIME-PERIOD,
and a 'reference' date, for matching against
REFERENCE-T1ME-PERIOD. A value of 3
in the item EVID-STAT-TP is sufficient to
reveal that the data was later (i.e. after the
reference-time) found to be in some respect
'untrue'.

The importance of the REFERENCE-
TIME-PERJOD is that in constructing a
picture of the evidence ' as it was believed to
be' at the reference-date, it is necessary to
exclude any record whose EVID-ADJU-DT is

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 185

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/184/360288 by guest on 10 April 2024



SHORT NOTES

REAL
TIME

PERIOD

PERSON REFERENCE
TIME

PERIOD

EVID. ' EVID. •* EVID. * EVID.
HOUSING EMPLOYMT SAVINGS DEPENDANT

EVLINK
DEPENDANT

EVLINK
SAVINGS

EVLINK
EMPLOYMT

EVLINK
HOUSING

ADJUDICATION

1
AWARD

AWARD
COMPONENT

Figure 3. Extended logical data model.

later than the reference-date, or that has an
EVID-AMDD-DT that is not 999999, but is
later than the reference-date.

5. Conclusions

The design solution outlined in this paper
evolved only slowly, after several false starts.
Enlightenment occurred with the realisation

that the clerical function of 'adjudication'
corresponded precisely to 'freezing' all items
of a record other than those contained in the
standard evidence-header.

Consideration was given to providing
REAL-TIME-PERIOD and REFERENCE-
TIME-PERIOD as record-types in the physi-
cal database structure, to which every evidence
record would be physically linked. Our con-

clusion was, however, that this would lead to
unacceptable performance overheads arising
from the additional database navigation when-
ever an evidence record was to be updated. So
in the final system, evidence records are
chained only to the owning PERSON record,
and common routines have been developed
that perform the necessary date-matching
against candidate records.

The requirement to retain multiple con-
flicting versions of the 'same' data, as it was
believed to be at different points in the past,
cannot be unique to the DSS. The design
solution described here is now well-proven
and is published in the belief that it could be of
value to a wider audience.

I. SHEARER

References

1. T. B. Steel, Report on ISO activity in
database standardisation. In Proceedings,
International Conference on Databases,
Aberdeen, July 1980, edited S. M. Deen
and P. Hammersley. Heyden, London
(1980).

2. R. Rock-Evans, Analysis within the
Systems Development Life-Cycle Vol. 1.
Pergamon-Infotech, Maidenhead (1987).

3. S. Jones and P. Mason, Handling the time
dimension in a database. In S. M. Deen
and P. Hammersley (see 1 above).

4. Gad Ariav, A temporally oriented data
model. ACM Transactions on Database
Systems 11 (4) (1986).

The Reve's Puzzle: An iterative solution pro-
duced by transformation

An iterative solution to the Reve's puzzle is
produced by largely automatic program trans-
formation from a recursive solution. The result
compares favourably with published, manually
produced iterative algorithms, both in terms of
comprehensibility in its own right, and
efficiency.

Received November 1990

1. Introduction

The Reve's Puzzle is an extension of the
Towers of Hanoi problem by Dudeney1

(1907).* The puzzle is posed in terms of 4
stools and a number of cheeses of diminishing
size. The rules are identical to those for the
Towers of Hanoi.

2. Prologue

Rohl and Gedeon' presented a programming
solution to the Towers of Hanoi problem with
4 pegs (unaware at the time of Dudeney's
book) which used the standard 3 peg solution
as a sub-routine as follows:

* Edouard Lucas (1889) mentions a version
of Hanoi with 4 or 5 pegs, however, the precise
rules are not given. The illustration shows 5
pegs arranged as on a die, with a tower of 16
alternating coloured discs on the central peg,
while the text indicates 4 colours for discs and
pegs. For clarity, it seems best to retain the
name Reve's Puzzle for the 'standard' 4 peg
case, being the earliest unequivocal reference.

procedure Hanoi4(n:ndiscs; pi, p2, p3,
p4:pegs);
begin
if n > 0 then

begin
Hanoi4(n —F(n), pi, p4, p3, p2);
Hanoi3(F(n), pi, p2, p3);
Hanoi4(n-F(n), p4, p2, p3, pi)
end

end

The function F = trunc((sqrl(l + 8*n)-l)/2)
determined how many discs to move using all
4 pegs, and how many with only 3. The
function calculated the ordinal number of the
triangular number less than or equal to n.

This function is clearly not invertible, as it
performs a many to one mapping, so the
parameter n would need to be stacked in an
iterative version. Rohl and Gedeon also made
the observation that the procedure Hanoii is
called with values which decrease by one for
each level of the tree of procedure calls of
Hanoi4, excepting that for a non-triangular
number of discs n initially, on one level only
the same value is used as the previous one.
This level varies on n in sequence; after all the
levels have been 'doubled up' in this fashion,
the next triangular number is encountered,
after which the cycle starts anew. Table 1
shows the values of n for each call to Hanoi3
from Hanoi4.

This is a subtle consequence of the property
shown by Roth9, that the number of moves
required for larger towers increases by a
number of moves equal to a power of two, a
number of times equal to the exponent plus 1.
That is, A is 7 once, 2 twice, 4 three times, and
2*'k+l' times.

Table 1. The first number indicates the
value of n in calls to Hanoi4, while the list of
numbers shows the values of n in initial calls
to HanoU.

1
2
3
4
5
6
7
8
9

10

1
1, 1
2, 1
2, 1, 1
2,2, 1
3, 2, 1
3, 2, 1, 1
3, 2, 2, 1
3, 3, 2, 1
4, 3, 2, 1

We can also see that the number of times for
which A is 2mn) is repeated is also the same
as the depth within the recursive descent on
Hanoi4 that the 'doubling' occurs.

3. The Reve's Puzzle

The above observations lead to the following
procedure:

procedure (Reve(n: ncheeses);
var position, discontinuity:natural;

procedure R4(position, skip: natural; si, s2,
s3, s4:stools);
begin
if position > 0 then

begin
R4(position— 1, skip, si, s4, s3, s2);
if position > skip then

Hanoi(position — 1, si, s2, s3)

186 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/184/360288 by guest on 10 April 2024


