
SHORT NOTES

REAL
TIME

PERIOD

PERSON REFERENCE
TIME

PERIOD

EVID. ' EVID. •* EVID. * EVID.
HOUSING EMPLOYMT SAVINGS DEPENDANT

EVLINK
DEPENDANT

EVLINK
SAVINGS

EVLINK
EMPLOYMT

EVLINK
HOUSING

ADJUDICATION

1
AWARD

AWARD
COMPONENT

Figure 3. Extended logical data model.

later than the reference-date, or that has an
EVID-AMDD-DT that is not 999999, but is
later than the reference-date.

5. Conclusions

The design solution outlined in this paper
evolved only slowly, after several false starts.
Enlightenment occurred with the realisation

that the clerical function of 'adjudication'
corresponded precisely to 'freezing' all items
of a record other than those contained in the
standard evidence-header.

Consideration was given to providing
REAL-TIME-PERIOD and REFERENCE-
TIME-PERIOD as record-types in the physi-
cal database structure, to which every evidence
record would be physically linked. Our con-

clusion was, however, that this would lead to
unacceptable performance overheads arising
from the additional database navigation when-
ever an evidence record was to be updated. So
in the final system, evidence records are
chained only to the owning PERSON record,
and common routines have been developed
that perform the necessary date-matching
against candidate records.

The requirement to retain multiple con-
flicting versions of the 'same' data, as it was
believed to be at different points in the past,
cannot be unique to the DSS. The design
solution described here is now well-proven
and is published in the belief that it could be of
value to a wider audience.

I. SHEARER

References

1. T. B. Steel, Report on ISO activity in
database standardisation. In Proceedings,
International Conference on Databases,
Aberdeen, July 1980, edited S. M. Deen
and P. Hammersley. Heyden, London
(1980).

2. R. Rock-Evans, Analysis within the
Systems Development Life-Cycle Vol. 1.
Pergamon-Infotech, Maidenhead (1987).

3. S. Jones and P. Mason, Handling the time
dimension in a database. In S. M. Deen
and P. Hammersley (see 1 above).

4. Gad Ariav, A temporally oriented data
model. ACM Transactions on Database
Systems 11 (4) (1986).

The Reve's Puzzle: An iterative solution pro-
duced by transformation

An iterative solution to the Reve's puzzle is
produced by largely automatic program trans-
formation from a recursive solution. The result
compares favourably with published, manually
produced iterative algorithms, both in terms of
comprehensibility in its own right, and
efficiency.

Received November 1990

1. Introduction

The Reve's Puzzle is an extension of the
Towers of Hanoi problem by Dudeney1

(1907).* The puzzle is posed in terms of 4
stools and a number of cheeses of diminishing
size. The rules are identical to those for the
Towers of Hanoi.

2. Prologue

Rohl and Gedeon' presented a programming
solution to the Towers of Hanoi problem with
4 pegs (unaware at the time of Dudeney's
book) which used the standard 3 peg solution
as a sub-routine as follows:

* Edouard Lucas (1889) mentions a version
of Hanoi with 4 or 5 pegs, however, the precise
rules are not given. The illustration shows 5
pegs arranged as on a die, with a tower of 16
alternating coloured discs on the central peg,
while the text indicates 4 colours for discs and
pegs. For clarity, it seems best to retain the
name Reve's Puzzle for the 'standard' 4 peg
case, being the earliest unequivocal reference.

procedure Hanoi4(n:ndiscs; pi, p2, p3,
p4:pegs);
begin
if n > 0 then

begin
Hanoi4(n —F(n), pi, p4, p3, p2);
Hanoi3(F(n), pi, p2, p3);
Hanoi4(n-F(n), p4, p2, p3, pi)
end

end

The function F = trunc((sqrl(l + 8*n)-l)/2)
determined how many discs to move using all
4 pegs, and how many with only 3. The
function calculated the ordinal number of the
triangular number less than or equal to n.

This function is clearly not invertible, as it
performs a many to one mapping, so the
parameter n would need to be stacked in an
iterative version. Rohl and Gedeon also made
the observation that the procedure Hanoii is
called with values which decrease by one for
each level of the tree of procedure calls of
Hanoi4, excepting that for a non-triangular
number of discs n initially, on one level only
the same value is used as the previous one.
This level varies on n in sequence; after all the
levels have been 'doubled up' in this fashion,
the next triangular number is encountered,
after which the cycle starts anew. Table 1
shows the values of n for each call to Hanoi3
from Hanoi4.

This is a subtle consequence of the property
shown by Roth9, that the number of moves
required for larger towers increases by a
number of moves equal to a power of two, a
number of times equal to the exponent plus 1.
That is, A is 7 once, 2 twice, 4 three times, and
2*'k+l' times.

Table 1. The first number indicates the
value of n in calls to Hanoi4, while the list of
numbers shows the values of n in initial calls
to HanoU.

1
2
3
4
5
6
7
8
9

10

1
1, 1
2, 1
2, 1, 1
2,2, 1
3, 2, 1
3, 2, 1, 1
3, 2, 2, 1
3, 3, 2, 1
4, 3, 2, 1

We can also see that the number of times for
which A is 2mn) is repeated is also the same
as the depth within the recursive descent on
Hanoi4 that the 'doubling' occurs.

3. The Reve's Puzzle

The above observations lead to the following
procedure:

procedure (Reve(n: ncheeses);
var position, discontinuity:natural;

procedure R4(position, skip: natural; si, s2,
s3, s4:stools);
begin
if position > 0 then

begin
R4(position— 1, skip, si, s4, s3, s2);
if position > skip then

Hanoi(position — 1, si, s2, s3)

186 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/186/360295 by guest on 09 April 2024



SHORT NOTES

else
Hanoi(position, si, s2, s3);

R4(position-1, skip, s4, s2, s3, si)
end

end { R4 };
begin { Reve }
position: = trunc((sqrt(l + 8*n) -1)/2);
discontinuity := n —position*(position+ 1)
div2;
R4(position+ 1, discontinuity, 1, 2, 3, 4)
end { Reve };

Note that the procedure has also been recast
as per Dudeney, using the name Reve, and in
terms of cheeses and stools. We can therefore
revert to using just Hanoi for the name of the
standard 3 peg problem. A two-level solution
has been used to localise initialisations. The
variable position is now set once, unlike
the function F which was re-calculated
repeatedly.

Analysing the nature of the recursion, we
can see that none of the parameters of R4
need to be stacked.

The variable position is modified by the
subtraction of 1 at each call, this is invertible,
the inverse being +1.

Similarly, the stool parameters are only
modified in swaps which are their own inverse.

The variable skip does not require stacking,
as its value is not altered throughout the
traversal. Its use as a parameter is good
programming practice from a structured view-
point is not using a global variable, and
maintaining a well controlled interface to the
rest of the program. The cost of this better
structure is a loss of efficiency, due to the
allocation and assignment to a local copy at
every call to the procedure. This cost is of
course recoverable when we eliminate the
recursion, which we will do by using the
IMP program transformation system by
Gedeon.2

Briefly, the IMP program transformation
system eliminates recursion by the automatic
generation of recursive and non-recursive
schema pairs. The recursive schema is derived
from the recursive procedure by abstraction,
while the non-recursive schema is generated
from the recursive schema by using an ex-
tension of Rohl8 method of substitution, being
a symbolic evaluation of the order of execution
of the substantive statements of the recursive
version.

In this case, the Reve procedure performs a
complete tree of procedure calls, allowing a
specialised non-recursive schema to be
generated, similar to those of Partsch and
Pepper.6 A complete tree of procedure calls
allows us to consider the symbolic evaluation
in terms of traversing the leaves along the
bottom of the tree, from left to right rather
than climbing up each branch and then back
down at each step. This allows us to collect
together the recursive ascent and descent
simulating code.

The non-recursive result produced for the
Reve procedure (by IMP) is shown below:

begin
if odd(position +1) then

swap(s4, s2);
for S:= 1 to Power2(position+1)—1 do

begin
Decompose2(S, level);
if odd(level) then

swap(sl, s4);
swap(s2, s4);
if 1+level > skip then

Hanoi(level, si, s2, s3)
else

Hanoi(l + level, si, s2, s3);
swap(s4, si);
if odd(level) then

swap(s4, s2)
end

end

The for loop on S traverses the leaves, the
procedure Decompose2 discovers how far up
the tree the next substantive statement is, and
which recursive call it is 'in'. The parameter
position controls the recursive descent and is
largely subsumed by the schema variable level,
which is extracted from 5 as needed.

This can be simplified further within IMP,
with user guidance of the sequence and
application of transformations, which are
verified for correctness and applicability by
the system.

We will now skip directly to the simplified
version, which is now as follows:

procedure Reve(n:« cheeses);
type natural = O..maxint;
var position, discontinuity: natural;

si, s2, s4:nstools;
S, level, nap:integer;

begin
position: = trunc((sqrt(l + 8*n)—1)/2);
discontinuity := n-position*(position+ 1)
div2;
sl:= 1;
s2:=2;
s4:=4;
if odd(position +1) then

swap(s4, s2);
for S:= 1 to Power2(position + 1)—1 do

begin
Decompose2(S, level);
if 1 + level > discontinuity then

nap: = level
else

nap: = 1 + level;
if odd(level) then

Hanoi(nap, s4, si, 3)
else

Hanoi(nap, si, s4, 3);
rotate3(sl, s2, s4)
end

end { Reve };

Note that the procedure R4 is no longer
necessary being called only once. The variables
position and discontinuity used as actual
parameters are not otherwise used in Reve and
are substituted for their formal parameters in
the statements. Similarly, the stool parameters
are declared in Reve, except for s3, the use of
which does not vary, and is automatically
replaced by the actual parameter expression 3.

The solution still involves recursion, within
the calls to Hanoi, but only until we follow a
simpler and similar path of transformation
and also convert it to iterative form.

4. Conclusions

We have produced an iterative algorithm for
the Reve's puzzle which compares well with
previous versions. The algorithm is certainly
easier to understand, and has much lower
space requirements than Lu,4 and also has an
efficiency lead on that of the quite similar
algorithm by Hinz3 which requires the use of
exponentiation by powers other than 2, which
can not therefore be implemented by efficient
shift instructions on compilation.

Most importantly, we have produced the
above program automatically, the interactive
manipulations of the program are largely
cosmetic, the bulk of the work had already
been done by the IMP program transform-
ation system.

Finally, in this process we have also shown
by transformation some interesting properties
of the Reve's puzzle, properties which others
have assumed.

This iterative algorithm for the Reve's
puzzle is similar to the well known iterative
solution to the Towers of Hanoi problem, the
stools are arranged in a circle, and the towers
in alternate levels move in opposite directions.
It is surprising from a purely intuitive view-
point that the rotation is again of length 3
not 4. Also interesting is that stool 3 is always
the spare stool when moving discs using 3
stools; in retrospect this is also clear from the
original recursive version.

Acknowledgements

I would like to acknowledge the guidance and
encouragement of Jeff Rohl.
GEDEON, T. D.

Department of Computer Science, Brunei
University, Uxbridge, Middlesex, UB8 3PH.

References

1. H. E. Dudenay, The Canterbury Puzzles,
(4th Edition of 1919 reprinted, and
published by Dover 1958), Thomas
Nelson & Son, London (1907).

2. T. D. Gedeon, IMP: An Interactive Pro-
gram Transformation System, PhD Thesis,
The University of Western Australia
(1989).

3. A. M. Hinz, An iterative algorithm for
the tower of Hanoi with four pegs,
Computing 42, 133-140 (1989).

4. X.-M. Lu, An iterative solution for the 4-
peg Towers of Hanoi, The Computer
Journal, 32, (2), 187-188 (1989).

5. E. Lucas, Nouveaux Jeux Scientifiques,
La Nature 17, 301-303 (1889).

6. H. Partsch and P. Pepper, A Family of
Rules for Recursion Removal, Inf Proc
Utters, 5, (6), 174-177 (1976).

7. J. S. Rohl and T. D. Gedeon, Four Tower
Hanoi and beyond, Proceedings of 6th
Australian Computer Science Conference,
156-162, Sydney (1983).

8. J. S. Rohl, Recursion via Pascal,
Cambridge University Press, Cambridge
(1984).

9. T. Roth, The Tower of Brahma Revisited,
J. Recreational Mathematics, 1, (2),
116-119 (1974).

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 187

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/2/186/360295 by guest on 09 April 2024


