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Many retrieval models have been proposed as the basis of text retrieval systems. The three main classes that have been
investigated are the exact-match, vector space and probabilistic models. The retrieval effectiveness of strategies based
on these models has been evaluated experimentally, but there has been little in the way of comparison in terms of their
formal properties. In this paper we introduce a recent form of the probabilistic model based on inference networks, and
show how the vector space and exact-match models can be described in this framework. Differences between these
models can be explained as differences in the estimation of probabilities, both in the initial search and during relevance

feedback.
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1. INTRODUCTION

Information Retrieval (IR) is concerned with identifying
documents in a collection that best match a description
of a user’s information need. Research in this field spans
many subdisciplines of computer and information sci-
ence, but central to any effective retrieval system is the
identification and representation of document content,
the acquisition and representation of the information
need, and the specification of a matching function that
selects relevant documents based on these representations.
A retrieval model specifies the details of the document
representation, the query representation, and the
matching function.

A number of retrieval models have been proposed
since the mid-1960s. They have evolved from ad hoc
models intended for use with small, highly structured
document surrogates (e.g. bibliographic records con-
taining title, author and subject codes) to current
generation models that have strong theoretical bases and
which are intended to accommodate a variety of full text
document types. Current models handle documents with
complex internal structure and most incorporate a
learning or ‘relevance feedback’ component that can
improve performance when presented with sample
relevant documents.

Three main classes of retrieval models are in current
use: exact match models which form the basis of most
commercial retrieval systems, vector space models which
view documents and queries as vectors in a high-
dimension vector space and use distance as a measure of
similarity, and probabilistic models which view retrieval
as a problem of estimating the probability that a
document representation matches or satisfies a query.
The vector space and probabilistic models have been
shown experimentally to offer significant improvements
in retrieval performance over exact-match models,* but
have only recently been used in commercial products.

The underlying theory is different for each of these
model types and each has different performance
characteristics, both in terms of retrieval effectiveness
and computational requirements. At the same time, all of

* The most common measures of retrieval performance are precision
and recall. Precision is the proportion of a retrieved set of documents
that is relevant to the query. Recall is the proportion of all documents
in the collection that are relevant to a query that is actually retrieved.

these models have striking similarities. In this paper we
show how the differences between these models can be
viewed as differences in the way probabilities are
estimated and combined in a probabilistic model. In
doing so we show that the estimation problems for the
probabilistic and vector space models are essentially
equivalent, and that exact-match models simply restrict
the range of probability values to be considered. The
important question is not whether we view these estimates
as weights or probabilities, but what sources of evidence
about document and query content can be used to
improve the estimates and retrieval performance.

In what follows we will describe retrieval models and
introduce a probabilistic model based on inference
networks. We then show how exact match and vector
space retrieval can be represented within the inference
network model, and conclude with a comparison of
relevance feedback techniques.

2. RETRIEVAL MODELS

Every information system has, either explicitly or
implicitly, an associated theory of information access
and a set of assumptions that underlie that theory. We
use the term theory here in the mathematical or logical
sense in which a theory refers to a set of axioms and
inference rules that allow derivation of new theorems. A
model is an embodiment of the theory in which we define
the set of objects about which assertions can be made
and restrict the ways in which classes of objects can
interact. Models allow us to compare different
approaches to information access and make predictions
about system performance that can be evaluated.

In the case of IR, a retrieval model specifies the
representations used for documents and information
needs, and how they are compared. For example, many
retrieval models have assumed representations based on
binary or weighted index terms, and comparison based
on a similarity measure. There has been, in the past, less
emphasis on models that specify how representations
should be extracted from document and query texts, and
which representations produce the best performance.
Research on retrieval models incorporating probabilistic
indexing®3? and machine learning'® explicitly address
this issue.

The vector space model and the probabilistic model
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have been studied and used for some time by IR
researchers and are quite well understood. Even so, only
certain aspects of the underlying theories are clearly
defined, whereas others, especially those dealing with the
user, remain somewhat vague. For example, papers
describing various forms of these models usually state
what independence assumptions are being made (for
example, Ref. 35), but are less clear when it comes to
defining ‘relevance’. The vector space model*® does not
attempt to define anything to do with the external
realities of users and information needs, and instead
could be regarded as a mathematical description of one
component of an IR system, rather than the IR process
as a whole.! The models of Robertson et al.,?° Fuhr® and
Turtle and Croft?* are somewhat more comprehensive
but still leave a number of questions unanswered, such as
how different types of information needs and goals are
represented in a retrieval theory.

Some common assumptions made in retrieval models
are:

e the objects being retrieved are primarily textual;

e the retrieval of an object is independent of whether
other objects are retrieved (although this is not true
for cluster-based retrieval);

e retrieval is based on representations of textual content
and information needs;

e both text and information need representations are
uncertain.

These assumptions have led to retrieval techniques that
emphasise ranked retrieval, iterative query formulation,
relevance feedback, and analysis of simple natural-
language queries.

Other types of information systems have different
theories and assumptions associated with them. The area
of database systems is particularly important and includes
theories associated with relational database systems,
deductive database systems and object-oriented
systems.?® Typical database systems represent more types
of object than typical IR systems, but the objects usually
have very well-defined content. Issues involving un-
certainty in query specification or object representation
have largely been ignored in the database field (with a
few exceptions).’*''* Making these more restrictive
assumptions has allowed significant progress in areas
such as query optimisation. The same justification cannot
be made for many commercial IR systems that also
ignore retrieval models based on uncertainty. In this
case, the unrealistic assumptions underlying these systems
result in poor retrieval performance.

In this paper, we will concentrate on using a retrieval
model based on inference nets to compare different
approaches to building IR systems. We do this by
showing how the vector space model and the Boolean
model, which are system-oriented models, can be
described using the inference net framework. This has
the benefit of showing how weighting techniques and
Boolean query formulations can be explained in terms of
a retrieval model that describes the processes of
representing documents and information needs. It also
suggests that, rather than being one of a set of alternative
retrieval models, the probabilistic approach is the current
best theory for information retrieval.

3. INFERENCE NETWORK MODEL

The inference network retrieval model description we
give here focuses on the details necessary to show how
exact-match and vector space operations can be
accommodated. The model is described more fully in
Refs 31 and 32. In this model, retrieval is viewed as an
evidential reasoning process in which multiple sources of
evidence about document and query content are
combined to estimate the probability that a given
document matches a query.

An inference network or causal network is a directed,
acyclic dependency graph in which nodes represent
propositional variables or constants, and edges represent
dependence relations between propositions.'®?” If a
proposition represented by a node p ‘causes’ or implies
the proposition represented by node ¢, we draw a
directed edge from p to ¢g. The node ¢ contains a link
matrix that specifies P(g|p) for all possible values of the
two variables. When a node has multiple parents, the
matrix specifies the dependence of that node on the set of
parents (r,) and characterises the dependence relation-
ship between that node and all nodes representing its
potential causes. Given a set of prior probabilities for the
roots of the DAG, these networks can be used to
compute the probability or degree of belief associated
with all remaining nodes.

The inference network shown in Fig. 1 consists of two
component networks: a document network and a query
network. The document network represents the docu-
ment collection and may incorporate numerous docu-
ment representation schemes. The document network is
built once for a given collection and its structure does not
change during query processing. The query network
consists of a single node which represents the user’s
information need, and one or more query representations
which express that information need. A query network is
built for each information need and is modified during
query processing as existing queries are refined or new
queries are added in an attempt to better characterise the
information need. The document and query networks are
joined by links between representation concepts and
query concepts. All nodes in the inference network are
binary-valued.

e

4

Document
network

Query
network

Figure 1. Basic document inference network.
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3.1 Document network

The document network consists of document nodes (4,s),
text representation nodes (z;s), and concept represent-
ation nodes (r.s). Each document node represents an
actual document in the collection. A document node
corresponds to the fact that a specific document has been
observed. The form of the document represented depends
on the collection and its intended use, but we shall
assume that a document is a well-defined object and will
focus on traditional document types (e.g. monographs,
journal articles, office documents).

Document nodes correspond to abstract documents
rather than their physical representations. A text repre-
sentation node or text node corresponds to a specific
text representation of a document. We shall focus here
on traditional document texts, but one can easily imagine
other content types for documents (e.g. figures), and
multi-media documents might have several content
representations (e.g. audio or video). In these cases a
single document might have many physical repre-
sentations. Similarly, a single text content might be
shared by more than one document. While this sharing is
rare (an example would be a journal article that appears
in both a serial issue and a reprint collection) and is not
generally represented in current retrieval models, it is
common in hypertext systems. For clarity, we will only
consider text representations and will assume a one-to-
one correspondence between documents and texts. The
dependence of a text upon the document is represented in
the network by an arc from the document node to the
text node.

The content representation nodes or representation
nodes can be divided into several subsets, each cor-
responding to a single representation technique that has
been applied to the document texts. For example, if a
collection has been indexed using automatic phrase
extraction and manually assigned index terms, the set of
representation nodes will consist of two distinct subsets
or content representation types with disjoint domains.
Thus, if the phrase ‘information retrieval’ has been
extracted and ‘information retrieval’ has been manually
assigned as an index term, two representation nodes with
distinct meanings will be created. One corresponds to the
event that ‘information retrieval’ has been automatically
assigned to a subset of the collection, the second
corresponds to the event that ‘information retrieval’ has
been manually assigned to a (presumably distinct) subset
of the collection. We represent the assignment of a
specific representation concept to a document by a
directed arc to the representation node from each text
node corresponding to a document to which the concept
has been assigned.

The basic document network shown in Fig. 1 is a
simple three-level directed acyclic graph (DAG) in which
document nodes are roots, text nodes are interior nodes,
and representation nodes are leaves. Document nodes
have exactly one text node as a child, and each text node
has one or more representation nodes as children.

Each document node has a prior probability associated
with it that describes the probability of observing that
document; this prior probability will generally be set to
1/(collection size) and will be small for reasonable
collection sizes. Each text node contains a specification
of its dependence upon its parent; by assumption, this

dependence is complete, a text node is observed (;, =
true) exactly when its parent document is observed (d; =
true).

Each representation node contains a specification of
the conditional probability associated with the node,
given its set of parent text nodes. While, in principle, this
would require O(2") space for a node with n parents, in
practice we shall generally use canonical representations
that will allow us to compute the required conditional
probabilities when needed. These canonical schemes are
described in Section 3.4 and require O(n) space if we need
to weight the contribution of each parent, or O(1) space
if parents are to be treated uniformly.

3.2 Query network

The query network is an ‘inverted” DAG with a single
leaf that corresponds to the event that an information
need is met, and multiple roots that correspond to the
concepts that express the information need. As shown in
Fig. 1, a set of intermediate query nodes may also be used
in cases where multiple query representations are used to
express the information need. These nodes are a
representation convenience; it is always possible to
eliminate them by increasing the complexity of the
distribution specified at the node representing the
information need.

In general, the user’s information need is internal to
the user and is not precisely understood. We attempt to
make the meaning of an information need explicit by
expressing it in the form of one or more queries that have
a formal interpretation. It is unlikely that any of these
queries will correspond precisely to the information
need, but some will better characterise the information
need than others, and several query representations
taken together may be a better representation of the
information need than any of the individual queries.

The roots of the query network are query concepts, the
primitive concepts used to express the information need.
A single query concept node may have several repre-
sentation concept nodes as parents. A query concept
node contains a specification of the probabilistic de-
pendence of the query concept on its set of parent
representation concepts. The query concept nodes define
the mapping between the concepts used to represent the
document collection and the concepts that make up the
queries. In the simplest case, the query concepts are
constrained to be the same as the representation concepts,
and each query concept has exactly one parent repre-
sentation node. In a slightly more complex example,
the query concept ‘information retrieval’ may have as
parents both the node corresponding to ‘information
retrieval’ as a phrase and the node corresponding to
‘information retrieval® as a manually assigned term.

The attachment of the query concept nodes to the
document network has no effect on the basic structure of
the document network. None of the existing links needs
change and none of the conditional probability
specifications stored in the nodes is modified.

A query node represents a distinct query representation
and contains a specification of the dependence of the
query on the query concepts it contains. Multiple query
representations can be obtained from many sources. It is
possible that the user might provide more than one form
(e.g. a natural language description and a sample
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document), but it is more likely that additional forms will
be generated automatically based on the original natural-
language query or using information obtained by an
intelligent interface. In cases where a search intermediary
is used, we may have multiple human-generated query
representations.

The single leaf representing the information need
corresponds to the event that an information need is met.
In general, we cannot predict with certainty whether a
user’s information need will be met by an arbitrary
document collection. The query network is intended to
capture the way in which meeting the user’s information
need depends on documents and their representations.
Moreover, the query network is intended to allow us to
combine information from multiple document
representations and to combine queries of different types
to form a single, formally justified estimate of the
probability that thé user’s information need is met.

We will often use a simplified form of the basic model
of Fig. | in which we assume a one-to-one correspondence
between document nodes and text nodes and between
representation concept and query concept nodes. Under
these assumptions, the network of Fig. 1 can be reduced
to the network shown in Fig. 2.

Figure 2. Simplified inference network.

3.3 Use of the inference network

The inference network we have described is intended to
capture all of the significant probabilistic dependencies
among the variables represented by nodes in the
document and query networks. The network, taken as a
whole, represents the dependence of a user’s information
need on the documents in a collection where the
dependence is mediated by document and query
representations. When the query network is first built
and attached to the document network we compute the
belief associated with each node in the query network.
The initial value at the node representing the information
need is the probability that the information need is met,
given that no specific document in the collection has been
observed and all documents are equally likely (or
unlikely). If we now observe a single document d, and
attach evidence to the network asserting d, = true with
all remaining document nodes set to false (referred to as
instantiating d,), we can compute a new belief for every
node in the network given d, = true. In particular, we can
compute the probability that the information need is met
given that d, has been observed in the collection. We can
now remove this evidence and instead assert that some d,,

i # jhas been observed. By repeating this process we can
compute the probability that the information need is
met, given each document in the collection, and rank the
documents accordingly.

In principle, we need not consider each document in
isolation, but could look for the subset of documents
which produce the highest probability that the in-
formation need is met. While a general solution to this
best-subset problem is intractable, in some cases good
heuristic approximations are possible. Best-subset
rankings have been considered in IR*3° and similar
problems arise in pattern recognition, medical diagnosis
and truth-maintenance systems. See Ref. 17 for a
discussion of the best-subset or belief revision problem in
inference networks.

3.4 Link matrix forms

For all non-root nodes in the inference network we must
estimate the probability that a node takes on a value,
given any set of values for its parent nodes. If a node a
has a set of parents n, = {p,, ..., p,}, we must estimate
P(alp,, ..., p,)- Since we are dealing with binary-valued
propositions, this estimate can be represented by a
matrix of size O(2") for a node with n parents and
specifies the probability that a takes the value true or
false for all combinations of parent values. The update
procedures for inference networks then use the
probabilities provided by the set of parents to condition
over the link matrix values to compute our belief in a
(bel(a) or P(a = true)). Encoding our estimates in link
matrix form is practical only for nodes with a small set
of parents, so our estimation task has two parts: how do
we estimate the dependence of a node on its set of
parents, and how do we encode these estimates in a
compact form?

In this section we shall define canonical link matrix
forms that are useful for retrieval networks. By a
cononical form we mean that, given an ordering on a set
of n parents, we can compute the link matrix value
L[, ], ie{0,1},0 <j < 2" which corresponds to an
assignment of truth values to parent variables. When
writing a link matrix we use the row number to index
values assumed by the child node, and use a binary
representation of the column number to index the values
of the parents. We use the high-order bit of the column
number to index the first parent’s values, the second
most high order for the second parent, and so on. The
three-parent example below illustrates this notation.

We shall describe five canonical link matrix forms.
Three of these forms implement the Boolean operators
and, or and not; the remaining two forms implement
weighted sums that are used for probabilistic retrieval. A
number of other forms are possible.

For illustration, we shall assume that a node Q has
three parents 4, B and C and that

P(A = true) = a
P(B=true)=>
P(C = true) = c.

For and-combinations, Q is true only when 4, B, and
C are all true, and we have a matrix of the form

L_11111110)
ad =10 00 0 00 0 1)
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Conditioning over the set of parents we have
P(Q = true) = abc, H

which is the familiar rule for conjunctive combinations of
events.

For or-combinations, Q will be true when any of 4, B
or Cis true, and false only when A4, B and C are all false.
This gives a link matrix of the form

L_10000000
o~ 11 1 1 11 1)

Again conditioning over the set of parents, we have

PO =1true)=(1—-a)y(1-b)c+(1—a)b(l1—c)+(1—a)
bc )
+a(1-=b)(1—c)+a(l —b)
c+ab(l—c)+abc
=a+b+c—(ab+bc+ac)+abc

=1-(1-a)(1-b)(1-0), ©))

which is the familiar rule for disjunctive combinations of
events that are not known to be mutually exclusive.

The not operator is defined only for unary propositions
or nodes with a single parent. If Q has the single parent
A, Q = true exactly when A4 = false, which gives a link
matrix of the form

0 1
Lnot = (1 0)

P(Q = true) = 1 —a. 4)

If we restrict the parent nodes for any of the logic
operators to values 0 or 1, Q must also have a value of
0 or 1. If we allow parents to take on probabilities in the
range [0, 1] these inference networks provide a natural
probabilistic interpretation of the Boolean operators.
The use of these canonical forms to simulate Boolean
retrieval is discussed in Section 4.1.

A fourth link matrix form arises when our belief in Q
depends only on the number of parents that are true. If
jcorresponds to a link matrix column number for which
m parents are true (in which m bits = 1), then

and results in

m
l’sum[1 ’.]] = .;l_

n—m
L,.[0,/] =

Thus, for our three-parent example

1 0
Lsum = <0 l)

Evaluation of this sum link matrix results in
P(Q = true) = Y(1—a)y(1-b)c+ X1 —a)
b(1—c)+¥1—a)bc
+3a(1-b)(1 —c)+2a(1 -b)
c+2ab(1 —c)+abc
_atb+c
T3

W= Wi
LU
wlts o=
W= ol
PUTOIT
WIrO Al

In this matrix form all parents are weighted equally; if
all parents are observed to be true then P(Q = true) is
three times greater than if one parent is observed. A

number of other weightings are possible. For example,
we can choose weights so that @ is true when any m
parents are true to implement an ‘m-of-n’ operator, or
we can choose weights so that the first parent observed
has the most influence on our belief in Q and the second
and third parents have less influence on our belief
(essentially, the or-combination is an extreme case in
which only the first parent influences our belief).
Similarly, we can choose weights so that the first parent
observed has little or no influence on our belief in Q and
the second and third parents determine our belief.

The final link matrix form we will discuss is a
generalisation of the sum matrix in which each parent has
a weight associated with it, as does the child. In this
weighted-sum (wtd_sum) matrix, our belief in Q depends
on the specific parents that are true — parents with larger
weights have more influence on our belief. The weight at
Q acts to set the maximum belief that can be achieved at
Q. If we let w,, w,, and w, be the parent weights, 0 < w,
<1 be the weight at Q, and ¢t = w_+w,+w,_ for our
example, then we have a link matrix of the form

| 1M %" 1___(w,,+wc)wq
t t t
0 W W, W, (W, +ww,
t ! t
AL 1_(w,,+ W W, 1_(w,,+wb)wq 1—w,
t t t )
W, W, (W, +ww, (W, +w,)w, W,
t t t
Evaluation of this link matrix form results in
P(Q = true) = e "(l—a)(l—b)c+ "(l—a)
b(1—c¢)
(Wb+w) Wo T Ve () —g) be+2ela g1 —b)
(1 —)
+ (wa +twc)wq a(l _ b) c+ (wa + wb) wq
ab(1 —c)+wabc
b
_watwbt+w.w, ©)

t

The sum matrix is a special case of wtd_sum where all
weights are 1.

In the network model, the distinction between the
Boolean operators and the probabilistic sum operators
begins to blur. The operators are, after all, only
specialised link matrix forms, and the model allows
Boolean and probabilistic operators to be freely mixed in
expressions. The ability to mix operator types is required
to allow us to combine query forms and is useful in
representing phrases and for developing relevance
feedback strategies.

While these five canonical forms are sufficient for the
retrieval inference networks described here, many others
are possible. Further, when n is small (say, less than 5
or 6) we can use the full link matrix if the dependence
of a node on its parents is known not to fit a canonical
form.
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3.5 Estimating the probabilities

In the network of Fig. 2 the values of the root nodes are
fixed during instantiation, but the conditional
probabilities at the remaining nodes must be estimated.
Estimates are required at representation and query
concept nodes and at the information need.

The estimates used in the query network are either
fixed by the operator type (Boolean or sum) or require
estimation of the relative contribution of the parent
nodes (weighted sum). When a weighted sum is used at a
query node, the contribution of the parent concepts is
based on the frequency of the parent concept in the
query. A sum estimate is used most often for the
information need, although a weighted sum can be used
if we have externally supplied information about the
importance or quality of individual queries.

The estimates at the representation concept nodes also
make use of a weighted sum, but setting the parent
weights is somewhat more involved. A number of term-
weighting techniques that have been developed in
previous IR research can be adapted for use here, but
consistently good results are obtained if we assume that
our belief in a representation concept depends upon two
factors: the frequency with which the concept occurs in
an instantiated document and the ‘surprise’ associated
with observing that concept assigned to a randomly
selected document. These two factors, when combined,
provide a good estimate of the term weight in Equation
(5). If the probability that concept ¢ is assigned to a
randomly selected document is

_number of documents containing ¢
" number of documents in the collection

P

the surprise?? associated with observing ¢ in a randomly
selected document is

s, = —logp,.

This surprise factor is equivalent to the familiar inverse
document frequency (idf) measure®® used in the vector
space model.

These estimates are subjective in that they are not
based solely on the frequency of events in representative
samples. The Boolean and sum functions are based on
the properties of the underlying operators and make no
assumption about the collection distribution. The
estimates used with the weighted-sum function are based
on an expected distribution of features in a collection
and can often be improved using sample data. For
example, the relevance feedback techniques described in
Section 6 use a sample of relevant documents to improve
the estimates at the query node that were originally based
on the frequency of terms in the query.

It has been suggested that probabilistic models require
samples of relevant documents to be useful,?® but this
claim is based on a narrow view of the nature of
probability in which only frequency-based estimates are
allowed. Estimates based on representative samples are
preferred when they are available, but in many cases
representative samples are not available, and techniques
similar to those described above are required.

4. EXACT-MATCH MODELS

Exact-match retrieval models use matching functions
that, given a query, partition the document collection
into two sets, those that match the query and those that
do not. Documents in the matching set are generally not
ranked, although they may be ordered by date,
alphabetically, or by some other criterion. Exact-match
models are generally simple and efficient and form the
basis of most commercial retrieval packages.

By far the most common exact-match model is the
Boolean model. It is important to distinguish here
between the use of Boolean operators in queries (which
does not imply an exact-match model) and the use of
Boolean logic as the interpretation of those operators. As
we shall see, a Boolean query can be interpreted using
Boolean logic under an exact-match model, using the
probability operators of the last section, or using a
distance function that is described in Section 5.1.

4.1 Boolean retrieval

In the Boolean model we have a set of binary-valued
variables which correspond to features that can be
assigned to documents. These features include text terms
extracted from documents, but more complex features
(e.g. dates, phrases, personal names or manually assigned
descriptors) are sometimes used. A document is an
assignment of truth values to the set of feature variables;
all features which are ‘correct’ descriptions of document
content are assigned true and all others are assigned
false.

A query is a Boolean expression involving feature
variables and the operators and, or and noz.* The matching
function is defined by the normal rules of Boolean logic.
Any document that represents an assignment of truth
values that satisfies the query expression is said to match
the query, and all others fail to match.

If we restrict estimates for P(r|d) to {0, 1} the inference
networks can be used to simulate Boolean retrieval
precisely. If we allow probability estimates in the range
[0..1] they provide a natural interpretation of the
semantics of Boolean operations in probabilistic terms.
We first show how Boolean retrieval can be simulated
and then how the probabilistic interpretation of the
Boolean operations can be relaxed to produce document
rankings.

Using the canonical link matrix forms of Section 3.4
we can simulate Boolean retrieval as follows. For clarity,
we assume that the query and representation vocabularies
are identical, so we can omit query concepts from the
network.

(1) Use a canonical or matrix at each representation
node. When a document is instantiated, all representation
concepts to which it has been attached will have bel(r,)
= 1. All remaining representation concepts have bel(r,)
=0.

(2) Build an expression tree for the query. The root of
the tree is the query, and all arcs in the tree are directed
towards the root. The leaves of this tree will be
representation concepts and the interior nodes will
correspond to expression operators. At each operator

* In nearly all commercial implementations, not is really an and not
operator. Unary not and or not are rarely supported.
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node use the canonical link matrix form for that operator.
Attach this tree to the document network. A simple
example for the query

(information and retrieval) or not satellite

is shown in Fig. 3.

C information ) ( retrieval ) ( satellite )

G

Figure 3. Inference network for (Information A retrieval)
v ~satellite.

(3) Using the evaluation procedure described in
Section 3.3, instantiate each document in turn and record
the belief in the query node. Any document for which
bel(Q) = 1 satisfies the query, any document for which
bel(Q) = 0 does not.

Under the assumptions above and using binary indexing,
bel(Q) can only have values 0 or 1, and the inference
network simulates conventional Boolean retrieval
exactly.

The same probabilistic interpretation of the Boolean
operators applies equally well to weighted indexing.
Using the approach described in Section 3.5 we can
incorporate indexing weights by replacing the or link
matrix in the representation concept nodes with a
wtd_sum matrix incorporating the appropriate weights.
In this case, when a document is instantiated, all
representation nodes to which it is attached take on the
term weight for that term/document pair and all
remaining representation nodes take on a node-specific
default belief. These weights are then combined using the
closed-form expressions of Section 3.4. In short, the term
weights are interpreted as probabilities and are combined
using the normal rules for negation and for disjunctive or
conjunctive combination of sets in an event space. As a
result, the inference network model provides a natural
probabilistic interpretation of the Boolean operators and
of indexing weights.

4.2 Extensions to the Boolean model

Boolean logic, by itself, is too weak for large full-text
collections. Some linguistic structures that searchers find
natural are represented awkwardly in the Boolean model
(e.g. morphological variants) or cannot be represented at
all (e.g. phrases). As a result, most commercial retrieval
packages provide proximity operators and techniques
for combining related word forms. Both of these
extensions can be modelled naturally in an inference
network.

Proximity operators are used most often to represent
phrases and occasionally to represent higher-order

structure (e.g. two phrases in the same paragraph). As an
example, requiring that the terms information and
retrieval occur within two words of each other is likely to
find a better (smaller) set of documents dealing with
information retrieval than would be obtained with the
Boolean query ‘information and retrieval’ which simply
requires that the two terms occur in the same document.
In terms of the inference network model, proximity
operators create new representation concept nodes that
are added to the network in response to the query. Most
of these ‘virtual’ concepts are not created when the
document network is built, but the underlying repre-
sentation contains the information necessary to create
them when needed. As a result, these proximity or phrase
operators are fundamentally different from the canonical
operators we described earlier, since they alter the
structure of the inference network. See Ref. 7 for a more
complete discussion of phrase representation in the
inference network model.

The two principal techniques for handling morpho-
logical variants are stemming, in which variant forms are
algorithmically mapped to a single form when the
collection is built, and the use of ‘wildcards’, which
allow users to specify query terms that will match several
different document terms. Root forms that are produced
by stemming can be built into the network as documents
are added. Wildcards are handled much like phrases, and
result in the creation of a virtual representation concept
that exists only for the duration of query evaluation.

5. VECTOR SPACE MODEL

In the vector space model, documents and queries are
represented as vectors in a k-dimension hyperspace
where each dimension corresponds to a possible docu-
ment feature. Vector elements may be binary-valued,
but they are generally taken to be weights that describe
the degree to which the corresponding feature describes
the document or query. A weight of 0 is taken to mean
that the corresponding feature does not describe a
document or query, with weights greater than O
representing the degree to which the feature describes the
document. These weights are constrained to lie in some
fixed interval, say [0. . 1], so that documents and queries
represent points in a k-dimension hypercube. The
matching function is then a distance metric that operates
on the document and query vectors.

Bookstein? showed that the vector space model can be
described in probabilistic terms. Croft* compared the
vector space model with a probabilistic model and
showed that under certain conditions they are equivalent.
The inference network framework allows us to clarify the
relationship between these two approaches to retrieval.

The most common distance metric used in the vector
space model is the cosine of the angle between the
document and query vectors, given by

K
) Was wdu

sim(Q,D,) = 21— , (6)
JEnzm)

Twi X

-1 f=1
where w,, is the weight assigned to feature j in the query
vector and w, is the weight assigned to feature j for the
ith document D, The numerator of this matching
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function is the inner product of the query and document
vector elements, and the denominator is essentially a
normalisation for document and query lengths.

The cosine matching function of Equation (6) is quite
similar to the weighted-sum combining function of
Equation (5). If the document weights are interpreted as
probabilities, the functions are equivalent except for the
normalisation employed. In the inference network model
the normalisation is probabilistically motivated and
results from conditioning over the set of query concepts.
The inference network normalisation is independent of
the specific document that is instantiated. In the vector
space model the normalisation arises from the cosine
definition and is dependent on the characteristics of each
document. The cosine matching function could be
simulated in the network model if we let the query weight
of Equation (5) be

t
w, = 3 3 >
2 2
«/(2 Vo 2 wd")
j=1 j=1

which would effectively incorporate a length normal-
isation in the link matrix at the query node. While this
kind of normalisation is certainly possible, it would
violate our assumption that documents can influence
belief in queries only through influence on representation
concepts. It is conceptually and computationally simpler
to build normalisations that depend on document length
into our belief estimates for the representation concept
nodes, and to build normalisations that depend on query
length into the query node.

A wide variety of weights have been used for w, and
Wa,, in Equation (6) (see Ref. 26 for a comprehensive
review), which are generally based on information about
the frequency with which each term occurs in the
document and in the collection as a whole. Although the
justification for these weights differs for the two models,
the weights are computationally equivalent.

One of the most frequent criticisms of the vector space
model is the implicit assumption that the set of document
features (terms) forms an orthogonal basis for the vector
space within which documents and queries are
represented. For this assumption to hold we would
expect that the distance between two documents that are
identical except for a single term will be the same
regardless of the identity of that term. This is similar to
assuming the independence of terms in probabilistic
models, but the failure of the assumption is somewhat
more problematic for the vector space model — prob-
ability theory provides a rich set of tools for detecting
and dealing with dependencies, whereas it is difficult to
see how we would establish whether a set of terms does
or does not form a basis.*

The Generalised Vector Space Model (GVSM)?*®
replaces terms as the basic document features with a set
of “generalised’ terms, each of which is represented as a
Boolean expression that describes how the generalised
term should be recognised in documents. The GVSM
thus provides a mechanism for describing correlations

* The argument here is not whether the set of term vectors has the
desired mathematical properties. Clearly, the set of n unit vectors
spanning an n-dimension vector space forms an orthogonal basis. The
question is whether this model of distance matches our intuition.

between terms that is not possible in the basic vector
space model. Conceptually, these new document features
are equivalent to query concepts in the inference network
model. The Boolean expression specifies the set of parent
representation concepts and defines the form of the link
matrix to be used at the query concept node.

5.1 Extended Boolean model

The binary nature of the retrieval decision in Boolean
systems is frequently cited as a drawback.® 214
Intuitively, we would like a document containing all but
one term of an n-term and to be judged nearly as likely
to match the query as a document containing all n terms
and substantially more likely to match than a document
containing none of the terms.

One well-known model which supports weighted
Boolean retrieval is the extended Boolean or p-norm
model.?¢?® In this model, the similarity between a
document (represented as a vector D =(d,,d,,...,d,))
and aquery Q consisting of the conjunction or disjunction
of all terms in the vector is given by

(A—d)?+(1—=dy)*...+(1 —dn)z’]%
n

i (D, Q) = 1- |

d}’+d§’...+d,§’]%
il

sim(D,Q,) = [

These similarity functions represent a measure of the
distance between the document and a point corre-
sponding to the presence of all query terms (for and) or
the presence of no query terms (for or). Thus, for and, the
similarity is at a maximum for a document containing all
terms, and decreases with increasing distance. For or, the
similarity function is at a minimum for a document
containing none of the query terms, and increases with
increasing distance. The parameter p is an arbitrary
constant in the range 1 < p< oo. The best value is
determined empirically for a collection, but is generally
in therange 2 < p < S.

When document and query weights are restricted to 0
and 1 and p = o0 the p-norm model, like the inference
network model, simulates normal Boolean logic. For
p = 1, the p-norm model behaves much like the normal
vector space model. For intermediate values of
p, the p-norm model gives a ‘soft’ Boolean matching
function.

Experiments have shown that the inference network
model using the link matrix forms of Section 3.4 performs
at least as well as the p-norm model** and does not
require determination of any parameter values. However,
in order to clarify the relationship between the p-norm
and inference network models we shall describe link
matrix forms that give performance much like that of the
p-norm model.

The link matrix forms of Section 3.4 assert complete
certainty given the evidence available at a node, that is

P(Q,.q = truejall parents = true) = 1
P(Q,, = truelany parent = true) = 1
P(Q,,. = true|parent = true) = 0.

We can easily relax this interpretation of the probabilistic
semantics of the Boolean operators if we choose a value

286 THE COMPUTER JOURNAL, VOL. 35, NO. 3, 1992

¥202 Iudy 01 uo 1senb Aq L89GZG/6.2/S/GE /8101 e/|UlWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



A COMPARISON OF TEXT RETRIEVAL MODELS

n € ¢ € oo, where n is the number of parents at a given
node and interpret the and operator to mean

P(Q,., = true|n parents = true) = 1

, O<k<n

o | &

P(Q,.a = truelk parents = true) =

P(Q,,q = trueno parents = true) =0
and the or operator to mean

P(Q,,. = trueln parents = true) =1
P(Q,,. = truelk parents = true) = l—n;k,
O<k<n N

P(Q,, = truejno parents = true)

Under this interpretation, when ¢ = oo the operators
have their normal Boolean interpretation. As ¢ decreases,
our belief in Q depends increasingly on the number of
parents that are true. When ¢ = n the distinction between
and and or has disappeared, the link matrices for both
operators are the same, and both are equivalent to the
sum link matrix of Section 3.4. Since a node implementing
the not operator has exactly one parent, its interpretation
is unchanged. These interpretations for the Boolean
operators can be implemented as canonical link matrices
requiring O(1) space and operating in O(n) time.

When c¢=n, p=1 and d,e{0,1} the p-norm and
relaxed inference network models produce the same
results. For a conjunctive query containing r terms, m of
which are true, under the p-norm model we have

A=d)y*+(1—d,)*...+(1 —d,,)v]%
n

Sim (D’ Qand)p—l = 1 _[

m
== l<sm<n

and for the network model we have
m

P(Q,.q = tIm parents true) = —, l<m<n.
n

For a disjunctive query using the p-norm model we have

d;’+dg...+dg]%
n

Sim (D5 Qor)p-l = [

and using the network model we have

—m

P(Q,, = t|m parents true) = 1" ~

Similarly, when ¢ = p = c0 both models produce the
same results

sim (D9 Qand)p-oo =

1 ifm=
P(Qynq = tlm parents true) = (O ;tl"::rwi’;e

sim (D, Qo) -0 =

P, ifm =0

1 otherwise

t|m parents true) = [

For values n < ¢ < o0 and 1 < p < o0, both functions

are monotonic in the number of true parents (number of
non-zero vector elements) m, but they are not equivalent
since P(Q = ¢) is linear in m while sim (D, Q) is not. Note
that we could choose to redefine our probability function
to produce equivalent results. If, for example, we used

n—m
c= "7
n

for or operations, the models would produce results that
are equivalent in the sense that, for any value of p we can
find a corresponding value of ¢ that produces the same
values for bel (Q) and sim (D, Q). There is, however, no
theoretical basis for this redefinition.

The inference network model handles weighted
indexing as a natural extension and is again equivalent to
the p-norm model for p = 1 and p = oo and is similar but
not equivalent for 1 < p < .

6. RELEVANCE FEEDBACK

Relevance feedback is the name given to a process where,
based on user feedback about documents retrieved in an
initial ranking, the system automatically modifies the
description of the information need (i.e. the query) and
produces a new document ranking. User feedback usually
takes the form of simple yes/no judgements on the
relevance of documents, although more detailed feedback
about concepts in those documents is also possible.® 12
Relevance feedback is a well-established and effective
technique in IR, and any discussion of retrieval models
would be incomplete without it.

Much of the original work on feedback was done in
the context of the vector space model,*”* so it is
appropriate to present it first in these terms. The general
method for producing a new query given an old query
and relevance judgements is as follows:

D,
D

D,

Qnew = Qold +ﬂ z |D4| ’

rel

-y 3

nonrel

®

where the summation is taken over the known relevant
and nonrelevant documents, and the D, represent
document vectors. A particularly common form of this
query modification is known as ‘dec hi’, where weighted
terms are added directly to the queries, and only one
nonrelevant document is used, i.e.

Qnew = Qold+z Dt_prnonrel' (9)
rel
In the vector space model, then, relevance feedback
involves changing weights associated with query terms
and adding new terms to the original query.

In the probabilistic model described by Robertson and
Sparck Jones®! and Van Rijsbergen,® relevance feedback
is described in different terms. In this model, documents
are ranked using a (generally) linear discriminant
function in which each term corresponds to a repre-
sentation concept in the collection. Typically, only the
representation concepts found in the query have non-
zero values, and the coefficients of these terms are
estimated using some model-specific function. A repre-
sentative function is

Py l—qt
(d)=2(lo +1lo —) 10
g { gl_p' g 7 (10)
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where p, is the probability that term i occurs in a relevant
document and g, is the probability that term i occurs in
a non-relevant document. The second term in the
summation is typically estimated using each term’s idf,
and the first term is based on the characteristics of the set
of known relevant documents. This term is initially
estimated using a fixed value (e.g. p, = 0.5) or a value
based on the frequency of the term in the query.

In relevance feedback, we are given a sample of
documents that have been judged relevant and we re-
estimate our linear discriminant function based on this
sample. This involves computing a new set of p, values
for Equation (10) based on the relevant sample and
adding the top » relevant document terms (according to
some measure) to the original query terms. Addition of
new terms from the relevant documents was not done in
early experiments with the probabilistic model, although
it has been investigated subsequently. The probabilistic
model does, in fact, indicate that the addition of these
terms, up to a point, should improve performance.
Comparisons of the effectiveness of relevance feedback
using the vector space and probabilistic models are
difficult to make due to the large number of parameters
involved, although Salton and Buckley? suggest that the
best vector space approaches have an advantage.

Although the inference net model is a probabilistic
model, there are differences from earlier models.?? In
particular, because this model does not use Bayesian
inversion, there are no probabilities that correspond
directly to p, and ¢;. This means that feedback in the
inference net model is not the same as in the model
described by Robertson and Sparck Jones. There are two
basic ways in which feedback can be incorporated in an
inference network model: adding evidence or altering the
dependencies represented in the network. The two
approaches are fundamentally different. Adding evidence
always leaves the probability distribution represented in
the network unchanged, but alters beliefs in the network
to be consistent with that distribution. Altering the
dependencies, either by changing the topology of the
network or by altering the link matrices, changes the
underlying probability distribution, which in turn alters
belief. The use of evidence is appropriate when we known
that the distribution is ‘correct’ (if, for example, the
topology is known and the link matrices have been
learned from a reliable sample). Evidential feedback is
appropriate in the document network, which is largely
determined by the characteristics of the collection. Frisse
and Cousins® use this approach to implement feedback in
a hierarchy of index terms associated with a hypertext
medical handbook.

Altering dependencies is appropriate when the initial
network is known to be an approximation to the correct
distribution and we obtain better information about the
nature of the true distribution. This is the approach we
use to change the query network in response to user
relevance judgements. It can also be used in document
space modification,'* 3 where we use a set of queries and
relevance judgements to learn the ‘correct’ distribution
for documents and representation concepts.

In the network model, queries are represented by links
between representation concept nodes, and the query-
node and query-term weights are represented using a
weighted-sum form of the link matrix at the query node
(Equation (5) in Section 3.4). The basic relevance

feedback strategy of adding terms to the query and
recalculating weights is implemented in the inference net
by adding links between the query node and the
representation concepts to be added, and re-estimating
the link matrix weights based on the sample of relevant
documents rather than on the query text. The fact that
we are explicitly modifying the query means that the
inference net model can accurately simulate the vector
space approach to feedback. Since this is a probabilistic
model, however, it should be possible to say what
probabilities are being re-estimated during feedback
instead of talking about changing weights. This issue is
clarified if we consider the canonical link matrix
associated with the weighted-sum operation, which is
what is used to simulate vector space feedback. The
weight associated with a query term (for example, w, in
Equation (5)) is used to estimate the probability that an
information need is satisfied given that a document is
represented by that term. Simple relevance feedback in
the inference net model, then, involves re-estimation of
that probability instead of the p, probability in earlier
models.

As an example, consider the ‘dec hi’ feedback strategy
used in the vector space model (Equation (9)). To
implement this strategy in the inference network, we
would first calculate the set of terms in the modified
query and the weights associated with those terms (as is
done in the vector space implementation). Conceptually,
any new terms are added as new parents of the query
node, and the link matrix is changed to reflect the
presence of these new terms and the new weights (using
the canonical form in Equation (5)). In practice, this
would mean that document rankings would be calculated
using Equation (5), the inverted lists associated with the
terms in the augmented query, and the new query-term
weights.3?

6.1 Feedback with structured queries

A number of models have been proposed for using
relevance feedback with Boolean retrieval
systems.!8:19-23.24 While some of these models have been
shown to improve performance significantly when com-
pared to conventional Boolean retrieval, they are not
attractive in the context of the network model. These
models generally adapt probabilistic relevance feedback
techniques to estimate weights for terms in very restricted
Boolean query forms (e.g. disjunctive normal form with
no negation and and terms containing at most three
representation concepts). Since these models do not
make use of any linguistic or domain knowledge, it is
unlikely that they will afford performance gairs that
cannot be achieved with normal probabilistic relevance
feedback.

The development of an effective relevance feedback
mechanism for Boolean and structured queries’ is a
potentially important area for further research. Encoding
feedback information in a structured query could
improve performance more than a simple query, since it is
possible to encode information in the structured query
that is not representable in the sum expression. A
feedback mechanism for structured queries could be
implemented with the following procedure.

(1) Identify important words and phrases in the sample
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of relevant documents. Important words can be identified
using the same techniques as for probabilistic feedback,
but phrases are a harder problem. Work on the
identification of syntactic or statistical phrases should be
of use here,” and it may be useful to ask the user about
the importance of candidate words and phrases.

(2) Identify words and phrases whose absence from
the set of relevant documents is important. This is a hard
problem, since the sample of relevant documents is
usually far too small to allow meaningful statistical
estimates. An expert system may be of use here if the
domain of interest is known, but for the near term the
user is probably the only reliable source of information
about concepts that should not be in the relevant set.

(3) Estimate weights for the concepts identified above,
probably using both statistical analysis and user input.

(4) Assemble a query. An obvious approach would be
to use and or a proximity operator to define phrases,” use
or to assemble sets of concepts that should and should
not be in relevant documents, and then use and not to
combine the two sets of concepts.

A number of variations are possible. In particular, initial
work suggests that the probabilistic sum operator might
be more appropriate than the or in step (4). This would
represent a hybrid approach, in which we start with the
basic relevance feedback query and selectively add
structure in the form of phrases and negation.

The main reason for considering the use of structured
expressions for feedback is to increase the expressive
power of the feedback query without incurring the
expense of learning a complete link matrix. Clearly, once
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Book Review

Eric DavALO and PATRICK NAM

Neural Networks

Macmillan Education Ltd, Houndmills,
Basingstoke, Hampshire RG21 2XS

£13.99. 0-333-549961

This is another book in the Macmillan
Computer Science Series, which sets out to
provide the reader with a basic understanding
of the subject — in this case neural networks —
and with one or two minor reservations it
achieves this.

The book is structured logically to provide
the reader with the background followed
by some basic principles, and finishes with
more detail on some common models and
applications.

Upon first reading, I had to ask myself
‘who is the target reader?’. There are many
books addressed at the neural network pro-
fessional with which this book does not
compete. There are, however, many more
readers to whom such a book would be
irrelevant and incomprehensible. I suspect the
target reader is a professional in the computer
or related fields who needs or wants to know
more about neural networks because he or she
has a problem to solve. It is also likely that
this book could form the basis of an under-
graduate course in neural networks.

The first chapter examines the biological
foundations for neural networks by describing
in simple terms the way the brain and its cells
are believed to function. This is followed by
an interesting description of the peculiarities
of the visual system of a frog and mammals.

Chapter 2 explains the historical basis and
basic principles of neural models, introducing

the Perceptron and the Hebbian learning rule.
This is followed by a discussion of multi-layer
neural networks and in particular the back-
propagation model. The authors consider the
use of this particular model and describe its
positive attributes and limitations. This is
adequately illustrated with descriptions of
applications for back-propagation including
the classical ‘XOR’ problem.

Two further models are described in some
detail; these are the Hopfield model and the
Kohonen model. The theory of the Hopfield
model is examined followed by examples of its
use, for example in the travelling salesman
problem. A further derivative of the Hopfield
model is introduced, namely the Boltzmann
machine, which utilises an analogy of anneal-
ing in metals called simulated annealing to
help the network find a ‘better’ solution. The
Kohonen model, although not as well known
as back-propagation and Hopfield, is con-
sidered in some detail, along with examples of
its use. B

Probably the most interesting chapters from
the practitioner’s point of view are the ones on
applications of neural networks and neural
computers. They look at the reasons for using
neural networks and their limitations, and the
characteristics of problems which would be
suitable for solving by using neural networks.
This is followed by descriptions of specific
application examples, with one examined in
more detail. The chapter on neural computers
only covers the area superficially, but does
provide an insight into how such computers
work.

The two appendices which describe the
back-propagation model and the Kohonen
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model were a disappointment, they just pro-
vide the barest minimum of the mathematical
basis for the models. Considering the book
appears to be aimed at the practitioner, the
engineer or the programmer who wants to use
and explore neural networks, I was disap-
pointed to find that there was no description
of the algorithms for these models which
could be used as the basis of exploration. It is
left to the practitioner to derive these or to
look elsewhere.

Despite the slight reservations, I would
have no hesitation in recommending this book
as the starting point for the computer (or
other) professional who feels the need to know
something about neural networks or who
wants to start using and exploring neural
networks.

M. A. TUREGA
Manchester

Erratum

We have been advised that there was a
typesetting error in the letter by P, A. Kalin-
chenko, 34 (6), 502 (1991). Within the
subroutine PPOLYN, in the third column,
line 15, the statement should read

IF (ISTART+1I) 9, 2, 9
and not
IF (ISTART+1) 9, 2, 9.

We apologise to the author, and readers, for
the error.
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