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The well-known probabilistic model for information retrieval based on Bayesian conditioning of probability functions is
examined. It is extended to allow conditioning based on evidence derived from the 'passage of experience' which may
be non-propositional in nature. This latter form of conditioning is derived from Jeffrey's work on probability kinematics
and it is compared with the Dempster-Shafer approach to revising belief functions whilst motivating its appropriateness
for adaptive information retrieval. This new form of conditioning is combined with a non-classical logic to define a new
probabilistic model for information retrieval.
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1. INTRODUCTION
There are at least two different ways of viewing
probability: the first is as a measure of the chance of an
event, the second is as a measure of the degree of belief
in a proposition. Each has its advantages and dis-
advantages, neither can be defined without paradox.
When we define probability in terms of chance we often
appear to be using circular definitions (e.g. equally
probable cases), or appealing to a knowledge of infinite
sets (e.g. a frequency value in the limit). In the case of
degrees of belief, the definition seems to suffer from a
lack of objectivity because it is based on a subjective
opinion (e.g. the odds of a fair bet for you, the judge). In
information retrieval we have never taken a strong
position on the kind of probability that is appropriate for
our work. However, when implementations are involved,
the probabilities tend to be estimated as measures of
chance events. This has led to a number of IR models
that are difficult to generalise.

The need to measure uncertainty by, say, probability
arises in IR in a natural way. This can best be seen by
comparing IR with databases or question-answering
systems. In the database context one seeks facts that
satisfy a query; in question-answering one seeks specific
answers to specific questions. In IR one seeks a
'document' that is likely to contain the information that
the user seeks.

Let us take a simple example. Suppose amongst a set
of documents we have a document about the Chernobyl
disaster. A database query would seek answers to: Who
wrote the document? Does it contain the string 's'? Does
it cite a paper by Einstein? A question-answering system
would respond to: Did the reporter photograph the
scene of the disaster? But, an IR system does not seek
answers but documents that are about expressed needs.
So for example, an information retrieval system would
react to: 'Give me a document concerned with the
radioactive fallout during the Chernobyl disaster.'

A user will express the need for information about a
topic, subject, or proposition. An IR system tries to
locate a document that is likely to satisfy this need.
Documents satisfying the need or the expressed need
tend to be called relevant. At this stage we have started
to use three interestingly undefined notions: 'aboutness',
' information' and' relevance'. They are of course related.
If a document contains information about X then it is
likely to be relevant to X.

The process of locating relevant documents is in-
herently uncertain; it is also highly context dependent.
The uncertainty enters in a number of ways. First
through the' aboutness' as it is only possible to determine
that a document is about something to a degree. Secondly,
whether a document is relevant to an expressed need is
also a matter of degree. Finally, if a document is about
X with probability a, it may or may not contain the
information that X.

The way we express the uncertainty discussed above is
by a belief function Be\(R,q,d) which measures the
degree of belief that d is relevant in context q. The
parameter R is normally assumed to have two values,
relevant and non-relevant. The document d is assumed to
have some kind of representation, it might be a set of
index terms, a set of noun phrases, or a set of
propositions. The context q in its simplest form is an
expression of the user need, thus it is often in the form of
a simple proposition, or a set of index terms.

Probably the most thoroughly researched belief func-
tion to capture the degree of belief in relevance is the
conditional probability PQ(R\d) within the Bayesian
updating framework. The purpose of this essay is to
show that there are other better approaches. Before
discussing the other belief revision methods we need to
look again at the Bayesian one for IR.

2. BAYESIAN BELIEF REVISION

The basis for Bayesian belief revision is of course the
celebrated Bayes' Theorem:

P(H\e)ocP(e\H)P(H)
i P(e\H)P(H)

or

since

P{e)
ZP(H\e)=\.

The usual interpretation of the symbols is that H is a
hypothesis (one of several) which is supported (or
otherwise) by some evidence e. P(H \ e) is interpreted as
the probability that H is true given certain evidence e.
The reason Bayes' Theorem is a form of belief revision is
that P(e | H), P(H), and P{e) are probabilities associated
with propositions (or events) before e is actually observed.
P(H\ e) is the probability of H after e has been observed.
The notation used to express this is especially opaque
because the same P( •) is used for the prior and posterior
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probabilities. In fact P{H\e) would be better written as
P£H) indicating that we now have a new probability
function Pe. A further difficulty with this approach is that
the evidence e has to be certain at observation, that is,
cannot be disputed once it is observed, which implies that
pe(e) = 1. The fact that in general a conditional prob-
ability can only take into account an exact and certain
proposition, or event, as its basis for revising the
probability in the light of observation, is a source of
some difficulty. In IR we use the Bayesian approach by
calculating Pg(R\d) through P(R\x) where x is some
representation of the document assumed to be certain.
This means that the description x is assumed to be true
of the document, or in the document, depending on one's
point of view. In many cases this is not fully appropriate,
as the description, or representation x may be subject to
uncertainty itself at the time of observation.

Let us examine the calculation of P(R | x) in a little
more detail: let x be a set of independent variables xx,...,
xn, then

P(R\x) P(x\R)P(R)
P(R\x)~ P(x\R)P(R)

P(R) = l-

and

P(R\x)

where P(x | R) = py{.xx)p2(x2). ..pn(xn),
P(x | R) = qx(xx) q2{x2)... qn(xn).

Thinking now of the values of the individual variables x,
as applied to a particular document as bits of evidence in
support of R or R, the support will rise or fall as

l 0 g (x)

increments or decrements the overall support. Remember
that pi and qt have to be estimated; they are not given ab
initio. The interpretation of one of the evidential weights,
e-g.

log
P,(xt = 1)

is not entirely obvious. pj(xi = 1) decodes to: if the
document d were relevant, pt is the probability that xt

would be true, or present. We are calculating the
probability because we are observing a document with x(

true. There is room for confusion, xt is true and yet we
ask for the probability that xi is true. It is like observing
a ' 6 ' on a dice and asking what was the probability
governing that chance event happening. But R is a
hypothetical event, since if we knew R and observed x, to
be true then P(xt = 11R) would be trivially 1.

This raises the question as to whether P(x\R) is a
conditional probability or should be modelled by the
probability of a (subjunctive) conditional. More about
this later.

In addition it is very likely that the observation itself
is uncertain. In IR we assign index terms with a degree of
certainty. So for example, a component of a document
representation, x(, might only be true of, apply to, the

document with a certain probability. This way of viewing
indexing was explored earlier by Maron and Kuhns.1

Adopting such a view makes the application of Bayes'
Theorem less obvious, one should not identify the
probability of relevance with P(R | x() since xt is now not
certain, and its degree of uncertainty needs to be taken
into account. Therefore other ways of conditionalising
must be found.

3. PROBABILITY KINEMATICS

The problem of how to revise a probability measure in
the light of uncertain evidence or observation was treated
comprehensively by R. C. Jeffrey in his book The Logic
of Decision.2 Earlier similar discussions can be traced
back to Donkin,3 Boole4 and Keynes.5 Jeffrey introduced
his method of conditionalisation through a now famous
example. Imagine one inspects a piece of cloth by
candlelight and one gets the impression that it is green,
although it might be blue, or even violet. If, G, B, and V
are the propositions involved, then the outcome of the
observation might be that the degrees of belief in G, B or
V are 0.7, 0.25 and 0.05, whereas before observation the
degrees of belief were 0.3, 0.3, 0.4. In symbols we would
write

P{G) = 0.3, P(B) = 0.3, P(V) = 0.4
P*(G) = 0J, P*(B) = 0.25, P*(V)=0.05

Here P is a measure of the degree of belief before
observation, and P* the measure after observation. As
Jeffrey puts it, the ' passage of experience' has led P to be
revised to P*. In Bayesian terms P*(x) = P(x | e) where e
is a proposition, but Jeffrey rightly claims that it is not
always possible to express the passage of experience as a
proposition [see refs 6 (p. 46) and 7]. (Pearl has gone to
some length to demonstrate that a Bayesian net
formalism can make Bayesian conditionalisation ap-
propriate so that Jeffrey's approach is not needed.
Indeed, Turtle and Croft (see this issue) have imple-
mented a version of Pearl's approach. It is the author's
opinion that Pearl's presupposition of virtual evidence
leads to infinite regress and that it is better to assume
from the beginning that some evidence is based on the
passage of experience leading to a direct revision of the
probability functions.) Given that one has changed one's
degree of belief in some propositions G, B, and V as
shown above, how are these changes to be propagated
over the rest of the structure of one's beliefs? For
example, suppose saleability A of the cloth depends on
the colour inspection in the following way:

P{A\G) = 0.4 P(A\B) = 0.4 P(A \ V) = 0.8.

Prior to inspection

P(A) = P(A | G) P(G) + P(A | B) P(B) + P(A \ V) P( V)
= 0.4 x 0.3 + 0.4 x 0.3 + 0.8 x 0.4 = 0.56.

After inspection Jeffrey proposes:

P*(A) = P(A | G) P*(G) + P(A | B) P*(B) + P{A | V)
P*(V),

= 0.4x0.7 + 0.4x0.25 + 0.8x0.05 = 0.0485.

known as Jeffrey's rule of conditioning.
It is valid whenever P*(A | E() = P(A | Et) where Et is a

partition of the sample space (although it can be
generalised; see Williams8). This differs from Bayesian
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conditioning which would use P*(G) = 1, or P*(B) = 1,
or P*(V) = 1 and so revise P(A) to P*(A) = P(A\X)
when X = G, B, or V. Thus Bayesian conditioning can be
seen as a special case of Jeffrey conditioning.

Let us now try and interpret Jeffrey conditioning in
terms of IR. Let A be the property of relevance and let
us consider the effect of observing an index term (x(),
which is either present (x, = 1) or absent (x, = 0). Then,

/'•(Relevance) = /^Rellx, = \)P*(xt = 1)

(abbreviating ' Relevance' to ' Rel') which measures the
probability of relevance for a particular document (we
will come to the problem of observing further index
terms later). We interpret the probabilities involved in
the expression for /""(Relevance) as follows: P(Re\ | x, =
1) is the probability of the current document being
judged relevant to an arbitrary query containing term x(
(commonly known as the probabilistic index term
weight). Of course this conditional probability may also
be estimated through the standard Bayesian inversion.
Now consider P*(xt = 1). This is a user estimate of the
probability of xi = 1 (cf. the user estimate of the
probability of colour in the candlelight example). There
need be no explicit expression of the evidence leading to
P*(x( = 1). The prior user estimate P(x, = 1) can be
given by collection statistics, although what is important
is the current value of P*(xt = 1). Rewriting
slightly we get

/'•(Rel) = P(x( = 1

P(xt = 01 Rel)

showing how the change in P to P* enters into the
computation. It is important to keep in mind that the
probability P* is user generated based on the ' passage of
experience'. Also we have assumed that

/>(Rel | xt = 1) = /'•(Rel | xt = 1),

/'(Rel | x( = 0) = /'•(Rel | xt = 0),

which I think are reasonable (but see, Ref. 6).
Although I have presented the formulation in terms of

variables that are easily related to the classical probability
retrieval models,19"11 I will now show how easy it is to
generalise the computation of /'•(Rel) to more general
forms of evidence. Given the general expression

/"(Rel) = /'(Rel | Ex) (X)
... + (P(Rel | En)P*(En),

where Et is the conditioning event, or proposition, the
examples are:

(1) Et = (x, = \),j = 1,2 and (x, = 1) is a proposition
indicating absence/presence of index term /, i.e. Ex
= E2. (This is the example above repeated for
convenient comparison.)

(2) Ef = (x, = j) j = 0,..., k where j is the frequency
with which term / occurs.

(3) £, = (*(= A/)) j = 0,...,k, this time xt is a
transformation of j perhaps through some expon-
ential function / (see later).

(4) E, = (F -»• q), where f -»• q is a conditional state-
ment, F a set describing the current document and
q the query, j = 1,2, and E2 = Ev

Expressing the last example in more detail

/"(Rel) = /'(Rel \T->q) P*(T -+ q)

To evaluate this probability we need to evaluate P* (T -*•
q), which is precisely the problem addressed in several
earlier papers.1113 For example, P*(T->q) could be
calculated by the process of imaging1314 which uses
information in other documents to calculate P*(T -> q).
Two common retrieval models are special cases of this
new model. In one case we could adopt a simpler
expression for conditioning, e.g. n(T n q), the extent to
which the document shares terms with the query. Boolean
retrieval is reached by a further simplification through
conditioning on q only, that is,

P*(Rel) = I q) P l | q) P*{q).

In the classical case P*(q) = 1 implies /'•(Rel) = /'(Rel |
q) whereas P*(q) = 1 implies /"(Rel) = P(Rel | q).
Boolean retrieval would judge that

P*{q) = 1 =>P*(Rt\\q) = /"(Rel) = 1,
P*(q) = 0 => /'•(Rel | q) = /'•(Rel) = 0.

4. SUCCESSIVE UPDATE OR COMBINING
EVIDENCE

We are all familiar with the process of updating a
probability function under the Bayesian regime, i.e. P{A
| xr) oc /'(xj | A)P(A), so that conditioning on .r1 leads to
a new probability function P*(A), this in turn can be
conditioned on x2 giving P*(A \x2) = P**(A), etc. More-
over, the order of conditioning is irrelevant so that
P**(A) = P(A | xlt x2) = P(A | x2, Xj). But in general Bay-
esian conditioning is not reversible. That is if P*(A) =
P{A | xx) and we wish to condition P* on y so that P*(A
| y) = P(A) we cannot do it except in the trivial case when
/'(xj) = 1. To see this consider P*(x1\y) = />(x1|x1,_y) =
1, therefore if P*(xl\y) = P(xJ it forces P(xJ = 1. I can
foresee that irreversibility could cause problems in IR
applications. Jeffrey conditionalisation does not surfer
from this particular problem.

To see how Jeffrey's conditionals fare under successive
updating it is best to take an example. Let a, b, c, d be
documents:

a
b
c
d

1
1
0
0

1
0
1
0

Let P represent the prior probability of relevance, i.e.
P(a) = P(b) = P(c) = P{d) = f We have no reason to
favour any particular document over another for
relevance. Now consider two separate pieces of evidence,
x, and x2 which will affect the relevance of documents.
Firstly xx, let the user specify that the relevant document
sought will have xx with probability 0.8, i.e.

p*(Xl = 1) = 0.8, P*(xx = 0) = 0.2.
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In the light of this, a revised probability of relevance of
each document is constructed by Jeffrey's rule, thus:

P*{a) = P{a\x, = \)P*{x, = l) + P(a\Xl = 0)P*(Xl = 0)
= ix0.8 + 0 = 0.4,

P*(b) = 0.4, P*(c) = 0.1, P*{d) = 0.1.

A further revision based on x2 when

F**(x2 = l) = 0.7, P**(x2 = 0) = 0.3

gives
P**(a) = P*(a\x2 = \)P**(x2 = 1)

because

= 0.8x0.7 + 0x0.3 =0.56,

P*(a \ x2 = 1) = 0.4/0.5 = 0.8,

P**(b) = 0.24, P**(c) = 0.14, P**(d) = 0.06.

So the ranking in the first iteration is a = b, c = d, in the
second iteration: a, b, c, d. It should be noted immediately
that in general it does matter in what order the evidence
is presented (in this particular example it did not matter).
Also, we have used a simple model for relevance and
have calculated the conditional probabilities by counting.

There is a weak form of independence that will guaran-
tee commutativity with respect to the update evidence. To
explain this we need to consider the problem in slightly
more general terms. Let the two sets of evidence with
their associated probabilities be:

E={Ei,pl)U and F= {F^}^.

The general case requires that / > 2 andy > 2. If P is the
probability to be updated and PB stands for update with
regard to the Ef, PF with regard to the F}, and PEF or PFF
stand for successive updates. The weak form of in-
dependence referred to above occurs when PE(Fj) =
P(E) and PF(E() = P(Et). (Diaconis & Zabell call this /-
independence15.) /-independence is necessary and suf-
ficient for commutativity of evidence updating. Classical
independence (let us call it ^-independence) namely, P{Et
| E) = P{E() and P(F}\ Et) = P(F^ is stronger in the sense
that P-independence implies /-independence but not vice
versa. It must be noted that if either E or F is binary, then
/-independence for any pair of probability measures p(
and qt will imply /"-independence and hence /-inde-
pendence for all measures pi and qt; that is / - and P-
independence are equivalent (see Ref. 15). It would seem
that this weaker form of independence could be used to
describe independence between multi-state variables
describing within document frequencies.

The updating procedure just described is very sequen-
tial in nature; it may well be appropriate for such
application as relevance feedback in IR. In moving away
from evidence which is considered all at once and
simultaneously, we may also wish to take pieces of
evidence sequentially for the purpose of allowing a user
to change her mind about the strength of the evidence.
Also, under the Jeffrey procedure, a revision is reversible
so that a user can change her mind about the significance
of each piece of evidence pointing to relevance, as each
revision step can be undone.

There are other theoretical properties of Jeffrey
conditioning which need not concern us here, but one
property is of interest as it bears on recent information

theoretic considerations which have once again attracted
attention.

Let us begin by defining the information in P relative
to P° as

where p° is the prior probability of theyth event, and we
make the usual assumptions about the asymptotic
properties of /. Fundamental is the property /(P, P°) >
0, with equality iff P = P°. A version of the principle of
minimum information now goes as follows:

Given the prior distribution P°, the probability dis-
tribution P appropriate to a new state of information is
one that minimises I{P, P°) subject to whatever constrains
the new information imposes.8

There are two cases to consider when revising probability
functions, first when P(E) = 1, and second P(E) < 1.
The first case, through the use of the principle, leads to
Bayes' rule. Let E be the evidence in the domain of P°
and let P°(£) * 0 whilst P(E) = 1 then I(P, P°) = I(PE,
P%)-\og P°(E). This function is minimised when PE is
equal to P°E, the posterior probability given by Bayes'
rule of conditioning. A similar argument shows that
when the evidence does not reach certainty, i.e. P(E) =
q then P(F) = P°(F\E)q + P0(F\E) (l-q) is the mini-
mum information solution. Williams8 extends these
results to the more general situation where we have
Ex,...,En as evidence whose probability is affected by the
passage of experience and where the Et are not necessarily
mutually exclusive. There are other measures of closeness
that could be used subject to constraints to express the
closest probability function to a given one. One such is
the Information Radius which was discussed by the
author in 1979 in the context of IR.1116 However, it is
likely that all measures of closeness will attain their
minima on the same conditional functions. Van Fraassen7

has shown how this notion of constraint, if accepted as
reasonable for a probabilistic belief revision, will de-
termine Jeffrey conditionalisation for a plausible class of
constraints.

Let us briefly summarise the situation. Given that one
has a sequence of pieces of evidence pointing to relevance,
then the ' sensible' way of incorporating that evidence
into the probability of relevance is either in terms of
Bayesian conditioning for certain evidence or Jeffrey
conditioning for uncertain evidence. Furthermore, the
Bayesian approach is a special case of the Jeffrey
approach. There is a third way of conditioning based on
Dempster-Shafer theory to which we now turn.

5. DEMPSTER-SHAFER THEORY OF
EVIDENCE
In 1976 Shafer published an influential book.17 It
contained a mathematical development and modification
of earlier work by Dempster. In the book Shafer gives a
detailed account of how to construct Belief functions
based on an accumulation of evidence. In his later papers
Shafer has gone to some trouble to establish what he
calls 'canonical' examples to act as analogues for the
evidential situation under consideration. In standard
probability calculations such a canonical example would
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be the throw of a dice. In the latter case, the truth of an
event is generated by chance. The Shafer theory takes a
different approach and uses canonical examples where
the meaning of an event depends on chance.

Mathematically the Dempster-Shafer belief functions
are quite simple. We have a belief function Bel defined on
all subsets of a frame 0 (which can be assumed finite).

Bel is denned by:

Bel (A) = 2 m (B) [or = 2 m(B)],
B<=A B-*A

where m (B) are non-negative numbers satisfying

m(<p) = 0 and £ m (B) = 1.

Every Bayesian probability distribution is a belief
function. But not every belief function is a Bayesian
probability distribution. To quote Shafer: 'The theory of
belief functions is based on a way of comparing our
evidence to the scale of chances that is quite different
from that of the Bayesian theory. Instead of comparing
our evidence to a scale of examples where the truth is
generated according to known chances, we compare it to
a scale of examples where the reliability and meaning of
a message [see below] depends on known chances. '18

The canonical example goes as follows: Suppose
someone chooses a code at random from a list of codes,
uses the chosen code to encode a message, and then sends
us the result. Let cu..., cn be the list of codes and pt the
probability of choosing c(. We decode the encoded
message using each of the codes and find that this always
produces a message of the form ' the truth is in A' for
some subset A of 0 . Let At denote the subset we get when
we decode using c(, and set

for each A <= 0. The m{A) can be interpreted as the total
chance that the true message was A. And Bel (A), given
by 1*B_Am(B), is the total chance that the true message
implies A.

We are expected to realise that this is only an analogue
example for generating an appropriate interpretation of
Bel and m. Through this analogue example the famous
Dempster rule of combination can be generated.

A simple illustration showing how the analogue could
represent a retrieval example when one relevant document
is sought is as follows: Let clt..., cn be the n codes for the
n documents in the system. The code is very simple and
decodes to 'the relevant document is indexed by *'. Then
mz(A) = 2,{p(\xedt} and pt the probability of dt being
chosen. A subsequent index term y would generate my
based on probabilities qt. The p( and q( could depend on
the distributional characteristics of x and y. The
Dempster rule of combination would lead to mxy, which
would combine the evidence due to x and y. Without at
this stage defining the rule of combination, it assigns an
m value proportional to the product mxmy for the
intersection A n B = C. One can see that each subsequent
index term in the query provides a further clue to the
relevant document. It is useful to notice that within the
representation chosen, any query can be handled by
considering the subqueries that imply it, because

Bel(/1)= £ m(B);

that is, the m are summed over the events B that imply A.
(There is scope here for specifying the semantics of '-»•'.)

My aim in the remainder of this section is to show how
Dempster-Shafer theory can be used to establish the
conditioning procedure due to Jeffrey as a special case of
belief revision in terms of Bel and m. To do this we need
to introduce some further machinery.

A simple support function focused on E is

!

0 ifAj>E
s ifA=>E but A + 0
1 if A = 0

and m(E) = s and m(&) = \—s. A subset E of 0 for
which m(E) > 0 is called a focal element of Bel. Bel is
carried by a partition E1,...,En if and only if Bel's focal
elements are all unions of the E(. Given Belj and Bel2
with w-values mY and m2, Dempster's rule of combination
gives m:

m(C) = B = C},
where K is a normalising constant. The belief function
resulting from m is called the orthogonal sum of Be^ and
Bel2 denoted Be^ © Bel2.

We are now in a position to define a form of
conditioning based on belief functions. Let

BdE(A) =
0 if A$E
1 if A => E.

This belief function is used to represent evidence whose
effect is to establish that the truth is in E. If Bel is a belief
function satisfying Bel (E) < 1, then Bel © BelB exists
and it is natural to call Bel © BelB the result of
conditioning Bel on E.

If Bel happens to be an additive probability distribution
P, then the above reduces to

P(E)

This shows that Dempster-Shafer conditioning is a
generalisation of Bayesian conditioning. The relationship
between Dempster-Shafer belief functions and Jeffrey
conditioning depends on the notion of weight of evidence.
This notion has a long history, see for example Keynes5

and Cohen.19 Within the Dempster-Shafer theory, it is
defined for simple support functions. If Be^ and Bel2 are
simple support functions focused on E with degrees of
belief st and s2 for E, the Belx © Bel2 is a simple support
function focused on E with degree of belief s given by

The reader should consult Shafer's book17 for a
derivation of this result; essentially it ensures that the
weight of evidence underlying the orthogonal sum of Bel!
and Bel2 will be wl + w2. Shafer, in 1981,20 goes on to
show that an additive probability distribution P com-
bined with a simple support Bel focused on E with weight
w is given by

CP©Bel)(0) =
if
if

OeE,
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where K is the usual normalising constant. This general-
ises to combining P with a number of belief functions
Beli,..., Belm where Bt is focused on Ft with finite weight
wr The result is

(/>©Bel1©Bel2.. .©BelJ(0)
= Kexp[Z,{wj\deFj}]P(6).

The combined belief functions thus obtained are additive
probability distributions. We can now show how Jeffrey's
rule of conditioning follows from Dempster's rule of
combination. First a couple of lemmas (taken directly
from Shafer20):

Lemma 1. Suppose the belief function Bel over 0 is
carried by a partition Elt..., En. If Bel © Bel£( exists then

Bel © Bel£( = Bel£j.

Lemma 2. When we combine a belief function Bel with
another belief function that is carried by a partition, we
do not change the conditional values of Bel given
elements of that partition. If Bel1 is the second belief
function carried by the partition Ex,...,En, then

(Bel © Bel1) {A \ Et) = Bel {A \ E().

The main result is now a Theorem due to Shafer.20

Theorem. Consider an additive probability distribution P
and a belief function Bel defined in the same frame 0.
Suppose Ex,•••,En is a partition such that Bel is carried
by the Et and P(E,) > 0 for all i. Denote the orthogonal
sum of P and Bel by Q = P © Bel, and denote Q(E() by
q(. Then

for all A c 0 .

Proof. Since Q is an additive probability distribution

Lemma 2 tells us that Q(A \ E() = P(A | £,), which proves
the theorem.

Notice that the Q(Et) are constructed by combing P
and Bel, where Bel is carried by £1, ...,£„. For n = 2 this
means

Q{A) = P(A | E) Q (E) + P{A | E) Q (£)

and we assign m values to E and E giving rise to Bel
which combined with P gives Q. This is to be contrasted
with the original Jeffrey approach which left the
mechanism modelling the assignment of Q(E{) un-
specified.

The construction of a Bel carried by E1,...,En given
that P and Q are related by Jeffrey's rule is also possible,
although not unique. The analysis is enlightening from
an IR point of view. This time I shall do the constructing
only for El and E2 (but see Shafer20 for the general case).

Given two additive probability distributions P and Q
that are related by Jeffrey's rule relative to E1 and E2, can
we find a Bel such that Q = P © Bel? Let p( = P(E,) and
qt = Q(E(), i = 1,2 and Q(A) = qy P(A \ EJ + q2 P(A \ E2).
Remember that pf are the degrees of belief before
observations, and that the direct effect of observation is
to change those to q(. Also the observation is assumed to

leave the probabilities conditional on Et unchanged, i.e.
P(A | Et) = Q(A | Et). Without loss of generality we can
assume

*5 !

Pi Pi

which means that the evidence from the observation
favours E2 over E1. In IR parlance this means that if El
= (x = 1) for index term x, then E2 = (x = 0), which in
turn means that

Q(x = 1) < Q(x = 0)
P(x = 1) "- P(x = 0)

The appropriate Bel function carried by Ev E2 such that
P © Bel = Q is constructed as follows: Choose Bel as the
simple support function focused on E2 with weight of
evidence

P2 Pi

Earlier we showed how to combine a simple support
function with an additive probability distribution, giving

(P© Bel) (6>) = K ^
Pt<li

i=\,2,
0eE(.

Thus

(P® Bel) (E() = K ^
PV

(P © Bel) (Ex) + (P © Bel) (E2) = 1,

which implies that

= —, or i Bel) (Et) = qt.

By construction Bel is carried by E1 and E2, therefore
P © Bel has the same conditional probabilities given Et
as P does. Hence P © Bel must be the same as Q.

A construction like this is not unique. Instead of
focusing Bel on E2 with weight w, Bel could have been
made up of Belj © Bel2 each a simple support function
with weight, wl and w2 such that the combined weight
was

Pi Pi

The construction of Bel to modify the probability
distribution P generalises to multi-state evidence E^...,
En. The belief function Bel is made up of Bel,, each Bel,
focused o n a i ) constructed out of the E1,...,En with
weights chosen similarly to the binary case.

The construction of Bel leading to Q = P © Bel is a
convenience. It allows us to view the modification of P in
the light of user specified weights w in a straight forward
way. In the original formulation of the Jeffrey rule, the
change from P(Et) to g(£() was left unexplained. The
observations were assumed to have a direct effect leading
to a change in P(E(). In the case of modification through
belief functions, the user is asked to specify a weight (or
weights) associated with simple support functions focused
on appropriate sets. It should not be assumed that the
choice of these sets is always obvious, although in IR a

296 THE COMPUTER JOURNAL, VOL. 35, NO. 3, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/3/291/525707 by guest on 10 April 2024



PROBABILISTIC RETRIEVAL REVISITED

natural choice is the set of documents indexed by a given
term. There is in general some guidance available for this
choice (see the excellent paper by van Fraassen7).

Shafer's analysis of the derivation of the q( is not the
only one. A closely related one is due to Field.21-22 It is
a simple matter to define Field's specification of the qx
now that we have Shafer's. Field insisted that in the
Jeffrey rule the qi should be derived from the pt by a
function dependent on a parameter a.' that represents the
effects that the sensory stimulation has by itself (in-
dependently of the value of p)', and then that q should be
represented as a function of a and p together.21 He chose

pe"
^ < * = !'°g;

q/p
\-p)e-"~ 2"°(l~q)/(\-pY

Jeffrey's rule now becomes for the binary case:

Q(A) = [e"P(A A E) + e~aP(A A

Notice that a needs to be estimated only once in a series
of revisions. So, in a feedback situation, a could be
established on the first round and then used in subsequent
feedback iterations, but see Garber22 for some counter-
intuitive results.

Apart from the factor of \, the Field weight a is the
same as the Shafer weight of evidence w. In both cases it
is:

W = lOL =

\-p

where O is odds.

6. IMAGING AND GENERALISED
CONDITION ALISATION

In the analysis of conditionals so far we have assumed a
simple conditioning even E enabling us to write

P*(A) = P(A | E) P*{E) + P(A | E) P*(E).

This is appropriate when we are dealing with simple
keyword or index term based retrieval, that is, when E =
(x = k) for k = 1 usually indicating absence or presence,
and P*(E) indicates the importance the user attaches to
£"s satisfaction. In some earlier papers, I have described
some tentative ways of dealing with conditional
events.12'13 For example, it is possible to view information
retrieval as a form of inference where it becomes necessary
to evaluate P(d-*q), the probability of a conditional
event, namely the event of the current document implying
the query. As is well known from experimental and
practical work, it is rare for a document to imply a
statement with certainty which leaves us with the problem
of evaluating P{d^- q). As argued in my earlier work, I
believe that the correct way to proceed is to specify a
semantics of the conditional '-»•' connecting arbitrary
propositions in a given language.

To make sense of the evaluation of the probability of
conditional statements, we have to move beyond re-
stricting our event space to Boolean Algebra. It is not at
all clear how this should be done (but see Ref. 23). The
intention is that we wish to introduce a new connective
' ->' into our language which somehow captures the kind
of inferences we accept, that is, the kind we make in

natural language. Or more to the point, which rejects
ones we do not accept, e.g. A~>B\=A & C^-B
(weakening).

We are attempting here to move meta-level reasoning
into the object-level. In a sense the Dempster-Shafer
theory does that when it interprets Bel {A) as the
probability that the proposition A is provable given the
evidence. Shafer is not alone in proposing that the
impact of evidence on a hypothesis be measured by the
probability of provability. Cohen24 in his early work
proposed a similar idea, one that probability statements
be evaluated in terms of their inferential soundness. This
proposal becomes especially attractive if the event space
is non-Boolean.

Let us now examine the impact of complex evidence
on conditionalisation. Consider, for example:

/>*(rel) = q)
+ P(rel |

)
q) P*{- (d-+ q))

If '-»•' is a connective in a non-standard logic, evaluation
of P*(d-*q) might prove difficult, the properties of '->'
would certainly play a role. Moreover, P(re\\d^q)
cannot now be interpreted as simple probabilistic
indexing weight.

However, it is possible to rewrite the equation so that
it can be evaluated. Let us take

P*(rel) = ^ q) -> rel) />*(</-> q)
+ (/>-. (d+q)-+ rel) P* (- (</-> q))

What we have just done is replaced the conditional
probability with the probability of the conditional. This
transformation will not work in general, that is it will not
work for any P and continue to allow arbitrary nesting
of arrows such that P{A -+ B) = P(A | B) (Stalnaker
Thesis) where A and B are now themselves conditional
statements. The triviality results of Lewis25 block the
transformation. However, Lewis also showed that if
Bayesian conditionalisation is replaced by imaging then
we can indeed introduce a connective '->' into our
language such that P{A^B) = PA{B) where PA is P
imaged on A. The semantics of '-»•' in this case is the one
for the Stalnaker conditional given in terms of possible
worlds in an earlier paper.13 Van Fraassen26 showed that
by assuming the Stalnaker Thesis with the usual definition
of P(A | B) and allowing a limited amount of nesting we
arrive at an underlying non-classical logic which rejects:

A-
A

B\-A A
>B,B

(weakening)
(transitivity)

but accepts the conditional excluded middle:

\-(A->B)v (A^-<E).

This logic is commonly called C2 and is conveniently
summarised in van Fraassen.26

I conjecture that this is the appropriate non-classical
logic for IR, and that the appropriate probabilistic
revision process is imaging. For, according to this logic
we can rewrite the last equation for P*(rel) as:

P*(rel) = P{(d^ q) -+ rel) P*(d-> q)
->q)-> rel) P*(d^ - q)

making use of the conditional excluded middle. To
compute P*(rel) one would now apply the process of
imaging to the probabilities in the equation. Potentially
a very powerful result.
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7. CONCLUSIONS
The theory developed in this paper is an attempt to
introduce an epistemic view of probability into IR. The
proposal is that Bayesian conditionalisation be replaced
by Jeffrey conditionalisation where appropriate, and that

we base our logic on C2. It is interesting that Wong and
Yao27 have been motivated to tackle probabilistic
inference for IR by similar considerations. The results in
my paper are entirely theoretical and need thorough
experimental exploration, but that is the next task!
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Correspondence

Sir,
The recent article1 describes a supposedly new
algorithm for finding elements that occur more
than n -s- k times in a bag of n items in time
O{nk) (for a given k). For the case k = 2,
the algorithm was first developed by Boyer
and Moore some ten years ago2. Two algor-
ithms for general k were published nine years
ago in Ref. 3, and the second of these two
algorithms is essentially the one appearing in
Ref. 1. Ref. 3 also shows that if the objects
in the bag are totally ordered, the time of
the algorithm can be reduced from O(nk) to
O(/i log k). The algorithm was also discussed
in Ref. 4.

Yours faithfully,

DAVID GRIES
Computer Science,
Cornell University,

and
J. MISRA
Computer Sciences,
University of Texas at Austin
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Author's comment

The article was developed from class members'
responses to an assignment given in a graduate
class on algorithms. Both authors appreciate
the bibliographical information, of which they
were unaware.
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