
Correspondence

To The Editor:
The recent article by J. Paakki1 contains
controversial statements that are not suffi-
ciently well documented and that might easily
be misinterpreted. We think that the readers
deserve a few additional comments.

One of Paakki's principal conclusions is
that parsers written in Prolog (more exactly:
in the DCG formalism2-3) are too inefficient.
He supports his claim primarily by noting the
inefficiency of his own parser, which he
attributes mostly to the fact that the standard
DCG implementation we employed yields
unavoidably a nondeterministic parser.

It is not clear that this is indeed the principal
reason. In Paakki's table 3 the execution time
for the prolog parser grows more or less
linearly with program size, until it explodes at
some point. Curiously, the explosion occurs
much earlier in the interpreted parser: ac-
cording to Paakki's data, it becomes grossly
inefficient for source programs of more than
60 and less than 300 lines. The compiled
parser blows up on programs of more than
900 lines. The disparity strongly suggests that
the enormous slowdown is related to memory
management, for example to garbage col-
lection. (A similar phenomenon can be
observed in Paakki's scanner execution times.)

It is true that naive DCG grammars are
converted to backtracking top-down parsers
whose execution time may grow exponentially
with the size of the parsed string. However,
programming languages for which it is cus-
tomary to build top-down parsers (for example
the Pascal family of languages4-56) allow
deterministic parsing. In particular, a DCG
for such a language can easily be constructed
in a way that allows deterministic execution.
If a language is described by an LL(1)
grammar, a deterministic DCG parser can
even be derived automatically7 from a higher
level formulation such as an EBNF grammar.8

We have experimented with such an auto-
matically derived parser for the language
Pascal-S9 (definitely not a toy language). The
parser builds a parse tree and has adequate
error detection, although it does not attempt
to recover from errors; the error detection is
implemented rather inefficiently and accounts
for about 80% of the time.7 The Prolog
system we used was Sicstus prolog (a good
portable implementation of Prolog, but not
the fastest), running on a SUN SparcStation
1. The timings do not include the cost of
reading the list of tokens, nor do they include
time spent in garbage collection, which was
always smaller than the pure processing time.
The following table lists the translation times
for seven Pascal-S programs:

lines
325
606
888
1452
2580
4835
7635

tokens
1313
2620
3927
6541
11769
22225
35295

CPU msec
1339
2329
3599
5929
10759
20540
33830

Over a wide range of program sizes, the
speed is almost constant (about 0.9 of a CPU
millisecond per token). The Prolog system (as
installed) ran out of memory for a program of

9000 lines and over 40000 tokens, and the
speed is certainly not breathtaking, but in our
opinion these results contradict Paakki's thesis
that the DCG formalism might be good
enough for small toy examples but its con-
ventional implementation is absolutely too
naive for larger or more practical cases.

It is worth noting that a grammar need not
be strictly LL(1) for top-down parsing to be
deterministic. The context-free grammar of
Oberon is even ambiguous, but the ambiguity
is easily resolved - and the parser is wholly
deterministic - if semantic analysis is carried
out simultaneously with syntactic analysis.
The DCG formalism is singularly convenient
for expressing such combined analysers.

Admittedly, some languages are more sui-
table for bottom-up parsing. It is possible to
implement a DCG as a bottom-up parser,10

but in our opinion this is not really worthwhile:
since we lose the ability to use inherited
attributes, we might as well use one of the
conventional parser generators.11

We will now turn to another point. Paakki
says that implementing the symbol table as a
Prolog term makes it awkward to handle
details arising from block structuring. He also
claims that it would lead to gross inefficiency
(as large data structures they would consume
too much space when passed as parameters
through the analyzer — a strange thing to say,
since the parameters are really pointers to the
data structures, not their copies). He accord-
ingly implements the symbol table in the
internal Prolog database, even though such a
representation is also inconvenient for block
structuring and makes it difficult to perform
updates in a clean way.

We think this was a wrong design decision.
The conventional method of implementing a
symbol table in Prolog is to keep it in an open
unbalanced binary search tree. (In an open
tree, where leaves are represented as Prolog
variables, insertions do not require the over-
head of copying that is usual for other
declarative languages.) A stack of such trees is
an elegant and convenient symbol table for a
block-structured language. The data structure
is very similar to what one would write in
Pascal, and it exhibits similar behaviour.

We performed an experiment in which
identifiers from a conventional compiler of
Pascal-S12 - 11 160 occurrences of 1147 names
-were found in (or inserted into) an un-
balanced binary tree. Programs written in C
and Pascal needed about 2 CPU seconds, and
the Prolog program needed 5 seconds (note
that Sicstus does not compile to native code).
A version that kept the symbol table in the
internal database was indeed faster: 1.2
seconds. When compared to the overall costs
of compiling such a large program, the
difference is certainly too small to justify a
markedly less convenient representation.

A final comment concerns scanning. As
Paakki correctly points out, Prolog is not very
suitable for writing scanners (and - we might
add - other programs that perform many very
simple operations). We timed three versions of
a program that just reads all the characters
from a file. For a file of one million characters
in 20000 lines, the CPU times were 1.9 sec. for
C, 4.5 sec. for Pascal, and 31 sec. for Sicstus

Prolog (timings for other file lengths show
strictly linear growth in all three cases). This is
hardly surprising: in the Prolog program each
character-reading operation is accompanied
by the overhead of a resolution step. Scanners
in Prolog will always be slower, but there is
really no need to use such a powerful language
for such a simple application.

FELIKS KLUZNIAK

Department of Computer Science,
Linkoping University,
S-581 83 Linkoping,
Sweden.
(On leave from Warsaw University)

STANISLAW SZPAKOWICZ

Department of Computer Science,
University of the Witwatersrand
P.O. Wits, Johannesburg 2050
South Africa.
(On leave from the University of Ottawa)

REFERENCES

1. J. Paakki. Prolog in practical compiler
writing. The Computer Journal, 34(1):
64-72 (1991).

2. A. Colmerauer. Metamorphosis
grammars. In Natural Language Com-
munication With Computers, edited
Leonard Bole, pp. 133-189. Springer-
Verlag, Berlin (1978). (Lecture Notes in
Computer Science 63).

3. F. C. N. Pereira and D. H. D. Warren.
Definite Clause Grammars for language
analysis - a survey of the formalism and a
comparison with Augmented Transition
Networks. Artificial Intelligence, 13 (3)
231-278 (1980).

4. K. Jensen and N. Wirth. Pascal User
Manual and Report. Springer-Verlag,
Berlin, second edition (1975).

5. N. Wirth, Programming in Modula-2.
Springer-Verlag, Berlin, third, corrected
edition (1985).

6. N. Wirth. The programming language
Oberon. Software - Practice and Experi-
ence, 18 (7) 671-690, (1988).

7. F. Kluzniak. Generating DCG parsers.
Technical report TR-90-10, Computer
Science Department, University of Bristol
(1990).

8. N. Wirth. What can we do about the
unnecessary diversity of notation for
syntactic definitions? Communications of
the ACM, 20 (11) 822-823 (1977).

9. N. Wirth. Pascal-S: A subset and its
implementation. In D. W. Barron, editor,
Pascal - The Language and its implemen-
tation, pp. 199-259. John Wiley & Sons,
Chichester (1981).

10. U. Nilsson. AID: An alternative imple-
mentation of DCGs. New Generation
Computing, 4 383-399 (1986).

11. S.C.Johnson. Yacc-yet another com-
piler compiler. Computing Science Tech-
nical Report 32, AT&T Bell Laboratories,
Murray Hill, NJ (1975).

12. M. Rees and D. Robson. Practical Com-
piling with Pascal-S. Addison-Wesley

THE COMPUTER JOURNAL, VOL. 35, NO. 3, 1992 313

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/3/313/525817 by guest on 09 April 2024




