Modelling and Managing Time in Database Systems

D. H. O. LING anDp D. A. BELL

Department of Information Systems, Institute of Informatics, University of Ulster at Jordanstown, Northern Ireland, BT37 0QB

This paper describes a new architecture for a system to handle temporal data, called Temporal Data Management
System, TDMS. TDMS represents an approach to the modelling of temporal semantics which is pragmatic because it
takes into account practical issues such as the time[space trade-offs. We consider the technical aspects of the system
i.e. how time domain data is managed in TDMS. The design of temporal databases is not addressed here.

We introduce a conceptual framework which permits issues such as handling schema anomalies due to updates, query
validation and correct semantics modelling to be handled in a consistent and usable manner. It incorporates the time
values of each of three ‘data constructs’ organised in a hierarchy. This is combined at the implementation level with a
well-established multi-database architecture to give a comprehensive and efficient temporal model which overcomes
several weaknesses of current temporal models. Modest extensions to the SQL syntax to handle time are proposed and

have been implemented.

Both tuple-stamping and value-stamping are provided by the integration of TDMS and the relational data model.
TDMS has been prototyped under the UNIX operating system using the C programming language. Presently,

TDMS interfaces with the Ingres DBMS.

Received October 1989, revised March 1992

1. INTRODUCTION

This paper describes a new architecture for temporal
data systems — where the time-varying nature of reality is
correctly and appropriately modelled — called Temporal
Data Management System, TDMS. TDMS represents a
pragmatic approach to the modelling and handling of
time-dependent data values taking into account the
time/space trade-offs.

Most of the current data models maintain only the
concept of ‘current view’ data; an existing data value is
overwritten by a new incoming value during the process
of an update. Thus information about past data can no
longer be made available. Attributes whose values are
taken from the time domain effectively add an additional
dimension to the conventional data models.?® This
demands a new concept of modelling to cope with such
temporal data. Furthermore data management systems
are also required to provide the functionalities to support
temporal data.

The layout of this paper is as follows:

TDMS is introduced and its modelling aspects are
described in Section 2. The architecture of TDMS, which
uses the multi-database technique for managing temporal
data and handling schema anomalies, is discussed in
Section 3. Section 4 studies the operational aspects of
TDMS — what new operations should the query sub-
system provide for handling time? The ‘landmark’
approach for efficient selective retrieval of historical data
is the subject of section 5, and concluding remarks are
presented in Section 6.

2. THE CONCEPTUAL FRAMEWORK OF
TDMS

Basically TDMS can be thought of as a system which
contains a collection of views containing data values
‘current’ at particular points over some period of time.?
Corresponding values belonging to the same object are
chained or linked together along the time axis. Data
values normally possess a step-wise time function; i.e. the

persistence of a data object value is assumed from the
first time of its validity until the time when it is superseded
by another value. Therefore the existing value is made an
appendage to the new current value and time-stamped
(physical time) only when a change of state in the
‘reality’ being modelled occurs.

It is important to make a distinction between updates
to data which are carried out because of the change in the
state in the real world (referred to as progressive updates
in this paper) and those which are carried out because an
error in the existing data has been detected (referred to
as corrective updates). One of the main features in most
current temporal models (e.g. see Refs. 29 and .10) is that
they keep a record of progressive update operations only
and ignore the recording of corrective update operations.
Thus information about corrections which are salient to
future references are lost.

Consider a patient attending a clinic, who was
diagnosed as having an eczema and treated with steroids
on Monday. A few days later his condition was worse.
Upon careful examination it was confirmed that he
should have been diagnosed as having tinea, and should
have been treated with antifungal agents all the time.
Now if a progressive update is performed on this
database record then the historical data in the updated
database is semantically inconsistent. It wrongly indicates
that the condition of the patient has progressed from
eczema to tinea. However if a corrective update is
performed by overwriting the old value with the new
corrected value this creates inconsistency in the database
too. Here the database wrongly indicates that the
condition was tinea all along and was being treated with
antifungal agents. These misrepresentations could be
important from some subsequent legal enquiry, for
example. This shows that the correct modelling of
temporal semantics is important. To be sound, the
system should reflect to the user that the patient was
being wrongly diagnosed (at his first visit to the clinic) as
having eczema and was treated with steroids, where in
fact he should have been diagnosed as having tinea and
been treated with antifungal agents all along.

332 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

MODELLING AND MANAGING TIME IN DATABASE SYSTEMS

<25k, correctl,
(\!12, \'p2)>

<27k, correctl,
(vlp, vp3)>

<304, update

<10k, insert, <15k update <26k, update i3, ¥
' : 13.¥p6)>
(vlg, vpo)> iy, vp1)> (vly, vpa)> 3.VP6
<48k, correct2, (vl3, vp5)>
vlg, vly ... logical time of the salary

vp, vp] --- physical time of the salary

Fig. 1. A complete history of Tom’s salary.

The conceptual framework presented below is rather
elaborate, having been designed primarily for correctness
in situations such as that above — its practical usability
will be considered later. This complexity is unavoidable
if the time modelling is to be useful, as has been
discovered by many other researchers (e.g. see Ref. 32).

Temporal data in TDMS is represented by elementary
data constucts which capture both the semantics and the
data values of an object with respect to time. These
elementary data constructs can be easily integrated with
the relational data model. In this paper, we present a
three-level hierarchy of data constructs for capturing
temporal data using the relational data model. The
highest level of construct in the hierarchy is called the
relation level where the construct is used to identify a
given database relation and its lifespan. The second level
of the construct is the surrogate or tuple level which is
used to identify a specific tuple. A time period is stored
in this construct to indicate the time-wise validity of the
tuple. The lowest level of construct is the value level
which consists of attribute values for a given tuple, a
status kind field (explained in detail later) and a time field
which shows the time when the values become effective.

For clarity we start our discussion by considering a
general data construct for capturing the semantics of any
object, identified by a surrogate, s, and described by just
one attribute.

(Note that when referring to a specific atomic object or
value, the parameters in the data constructs are repres-
ented in lower-case letters. Upper-case letters are used to
denote a collection of the atomic objects or values. This
convention is adopted throughout this paper.)

This basic data construct is a 3-tuple in the form

s, {f},01).

s is the surrogate of an object (i.e. a unique identifier),
and ot shows logical (of) value and physical (op) value
time-pairs for both start and end of the object’s life (4
values). f shows the history of the attribute using a 3-
tuple, possibly repeating (denoted by {}), in the form
{v,k,vty where v is the attribute value, k is the status-
kind (e.g. INSERT or UPDATE as described below),

and vt = logical (v/) and physical (vp) values time-pair of
the attribute.

<S, vi:- kia (U[;, Up;), (Olz" 0p1)>’

with ol, = (vl,,vp,) for all i and op, = (vl,,vp,) for all i

This data construct can be considered at two levels;
i.e. at the attribute level characterised by parameter f,
and at the surrogate/tuple level. These two levels are
explained in sections 2.1 and 2.2 below. Section 2.3
extends the hierarchy to the relation level.

l<i<n

2.1 Data construct for attribute value level

A general data construct for the attribute value level is
represented as f=<V,K,VT) where Ve{v,,v,,0,...,
0.}, Ketky, ko, ks, ..., k., and VT e{(vh,vp,), (v, vp,),
(vl5,0py), ..., (1, 0p,)}

As a simple example of how each of the 3-value tuples
in F is used, consider the history of the salary of
employee, Tom. A visual representation of this history is
given in Fig. 1. We still consider just one attribute. In fact
according to this basic model each attribute for an object
s will have a similar construct.

Tom was first employed at (logical) time v/, and his
salary (value) was 10k. This information is recorded at
(physical) time vp,. This is represented in Fig. [by the
tuple {10k, insert, (vl,, vp,)). There are five (basic) poss-
ible values (i.e. INSERT, DELETE, UPDATE, COR-
RECTI1, CORRECT?2) one of which must be assigned to
the status-kind field. When the value of an object is first
created its status-kind is INSERT. When a value of an
object is changed to another state its status-kind becomes
UPDATE. When the object has terminated then its
status-kind is DELETE. There are two possible types of
corrective updates (Type 1 and Type 2) made to the
database.

Type 1 correction (coded CORRECTI) is used to
describe an error due to the inconsistency between the
value stored in the computer and that of the reality. This
may arise due to the mis-entry of data. A Type 2
correction (coded CORRECT?) is different from Type 1
in that the value stored in the computer and that of

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 333

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

D. LING AND D. A. BELL

the reality are identical but a mistake is made due to
some wrong conclusion or decision in the real world.

In Fig. 1 the horizontal axis represents the event states
having status of either INSERT, DELETE, or UPDATE.
Type 1 corrections are represented by the upper half of
the vertical axis, whereas the lower half of the vertical
axis is used for recording Type 2 corrections. In order to
improve the visual representations straight lines are
drawn to link the event states together.

The progressive updates are presented on the hori-
zontal axis.

Fig. 2 gives an illustration of the process of performing
TYPE 1| correction in TDMS.

<15k, update,

Wiy, vp1)> <25k, update,

(vly, vp2)>

(a) Before Correction is Made

<25k, correctl, (vip, vpp)>

<15k, update,
Wiy, vp1)>

<27k update,
iy, vp3)>

(b) After Correction is Made

Fig. 2. Process of type 1 correction.

A question arises when examining Fig. 1 closely. What
happens if there is a Type 1 correction detected at the
first record having status of INSERT which marks the
beginning of the object’s lifetime? If its status field is
overwritten by CORRECT] then the event state having
INSERT is no longer in existence. Given such an event
state how could the system know if a given state is the
beginning of the history under consideration? This
problem is overcome by using the information stored in
the data construct for the surrogate level. When an
object is first created or inserted, a surrogate is uniquely
assigned to the object. The logical and physical times of
the first value stored for an attribute are identical to the
start time of the surrogate which represents the object.
Therefore checking an event state is done by comparing

<_id, s}, re>

<sl, {f1}, o>
<vy, ky, vep> <y, Ky V>
P A —
o~ “es -~

value of slover interval vty vi,

the logical and physical time-pairs between the surrogate
and that given event state (i.e. as o/, = (v/,, vp,) holds for
all i with 1 <i<nonlyop,: = (vl,,vp,) = (vl,,vp,) has to
be tested).

2.2 Data construct for surrogate/tuple level

The data construct for surrogate/tuple level is rep-
resented as {S,{F},OT), as before, where {F} is a
collection of value states for object of surrogate S over
time period OT. The time period OT gives the lifespan of
the object. There are four time values stored in parameter
OT; its first two time values are called the starting time
points and its last two values are called the ending time
points. The starting time points of the logical and the
physical times are identical to the first event state stored.
Similarly, the ending time points of the logical and the
physical times are identical to the entry of the latest event
state. This parameter OT has implications for temporal
query validation and schema anomalies treatment. These
issues will be further discussed later.

2.3 Data construct for relation level

In order to incorporate TDMS into the relational model
using the value stamping method (Ref. 27) a new level of
the data construct is introduced (data construct for the
relation level) and is added onto the hierarchy of the
basic data constructs.

The notion of Functional Dependency (FD) in TDMS
can be expressed in the same way as in for conventional
relational theory except that the conditions for FDs hold
only when they are time-wise valid. Inference rules must
take account of this (e.g. see Ref. 34). Also, the ‘natural’
key of a tuple (i.e. a minimal set of attributes that
uniquely identify an entity in the usual sense) must be
concatenated with its physical time values if it is to be
referenced.

The data construct for the relation level is used to link
together all the surrogates which belong to the same
logical relation and it is represented as a 3-value tuples;
(r_id, {s}, rt> where r_id = relation identity, {s} is a set of
surrogates of the same logical relation and rz = logical
and physical lifespan of the relation. The hierarchy of the
data constructs of the relational TDMS is shown in Fig.

- Relation level

fan-outs
<sn, {fa), or > — Tuple level
— Value level

Fig. 3. Hierarchy of data constructs (value stamping).

334 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

MODELLING AND MANAGING TIME IN DATABASE SYSTEMS

<R _id, {5}, rt>

<sl, {fl}, ot>

<vly, vmy, vi;>

o <Veoovmy, k, VI >

- Relation level

— Tuple level

<sn, {fn}, ot >

~— Value level

S

P
<

multi-attribute tuple over viy, viy
time intervals

ot

Fig. 4. Hierarchy of data constructs (tuple-stamping).

3. In Fig. 3 the fan-outs of {s} are instances of data
constructs for the surrogate level. Similarly, for example,
the fan-outs of {f1} are the set of data values belonging
to surrogate sl over time interval vt,,vt,.

This concept is similar to the time model found in Ref.
29 and is referred to as value stamping. It is suitable for
relations with at most two attributes, though this time-
stamping method can be efficient for retrieving the entire
historical instances of a given object or surrogate, and is
particularly useful for objects with high hit-rates.

The value stamping method found in Ref. 29 is limited.

to a key with at most one other attribute per relation.
However a normal logical relation would consist of
tuples with more than two attributes. In TDMS when a
surrogate is taken to define a unique tuple which consists
of multiple attributes then the parameter of {f} in
{s,{f}, oty data construct contains a set of tuples defined
over the time interval ot. A data construct at the relation
level is needed to link together all the tuples of the same
relation.

This hierarchy of data constructs is shown in Fig. 4.
Physically the links between the data constructs can be
accomplished by assigning pointers between them. This
method of time-stamping is called tuple-stamping (Ref.
13).

In order to make tuple-stamping possible for TDMS,
a new prefix value called ‘PARTIAL_’ is extended to the
status-kind set. Semantically, this means that some values
in the tuples have been modified. Therefore we can have
(s-id,ay, ay, a,,...,a,,k,vt) where s_id = surrogate id of
the tuple, a,,a,,a,, ..., a,, = the order values in the tuple
{with m attributes), k = status-kind field (its values are
INSERT, PARTIAL_UPDATE, PARTIAL_COR-
RECTI!, PARTIAL_CORRECT2, and DELETE), and
vt = logical and physical values time-pair of the
surrogate. The underlying concept of TDMS clearly
remains unchanged — the UPDATE, CORRECT]I, and
CORRECT? values are merely prefixed by ‘PARTIAL_".
With this extension TDMS model allows ‘ heterogeneous’
time-stamping. Thus this leads to greater freedom in
choosing efficient storage and performance trade-offs at
the physical implementation design. This issue is dis-
cussed in section 5.

This hierarchical organisation of data constructs
(either tuple or value stamping) can be directly mapped
onto the system architecture of TDMS discussed below.
The data construct for the attribute value level contains
temporal data and hence is stored in the database. The
other two higher data constructs are stored, managed
and maintained by the management module(s) of the
TDMS.

3. THE ARCHITECTURE OF TDMS

The use of the multi-database (MDB) concept for the
architecture of the temporal model is introduced in this
section. This architecture provides a neat way of dealing
with temporal data handling and schema anomalies.

Global time Management
Module (GTMM)

_—

Historical Current Auxiliary Future
Management Management Management Management
Module Module (AMM) (FMM)

(HMM) (CMM)
|
Local
DBMS
Historical Auxiliary DB Future DB
DB (HDB) (ADB) (FDB)
Current DB
(CDB)

Fig. 5. The architecture of TDMS.

The architecture of TDMS shown in Fig. 5 is based on
multi-database technique (see Refs. 3, 12 and 17). In a
multi-database system, a global module is used to co-
ordinate the sending/concatenating of the intermediate
results to/from different underlying databases situated at
different geographical sites. TDMS uses the same concept
but treats underlying databases as data pertinent to
different time periods. There are five main functional
modules and three database types in TDMS. The local

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 335

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

D. LING AND D. A. BELL

DBMS and the current database are not part of TDMS
but are included to provide a better understanding of the
architecture. The local DBMS can be replaced by a flat
file system, or it can be based on the relational or other
data model. This local DBMS has the full responsibility
of managing the ‘current view’ data. Note that in Fig. 5
separate databases (DBs) are used for storing the
historical, auxiliary (Ref. 12) and future data. This
approach improves efficiency of retrieval ; each module is
tailored to perform a specific function — thereby making
temporal DBs easier to implement. Furthermore one
could use different storage devices for different DBs. For
example optical disks could be appropriate for storing
non-volatile historical data, whereas auxiliary and future
DBs can be retained on hard disks. The reasons for
partitioning the HDB, CDB, FDB like this is as
follows:

1. to relieve the schema anomalies problem — each of
the 3 DBs could be governed by different DBMSs,
and the MDB approach solves the potential
problem of maintaining and integrating different
schemas for different DBMSs;

2. to alleviate the integrity constraints problems —
constraints on relations may vary over time and the
MDB approach again handles this;

3. to reduce overall complexity — the general temporal
functions are provided at the main control module
and the underlying modules are dedicated to
perform specific functions; and

4. to provide a distributed capability — placement of
temporal data need not be confined to any dedicated
computing facilities and hence overall computing
costs can be optimised.

A temporal query is always posed to the Global Time
Management Module (GTMM). The GTMM validates
(if necessary), decomposes and optimises the temporal
query into a set of equivalent subqueries for its underlying
modules using conventional distributed database query
handling techniques (e.g. Refs 5 and 4). Each underlying
module will retrieve relevant data to form an in-
termediate result. In the particular case of the current
management module (CMM) the subquery received
from the GTMM may be further decomposed and
optimised and translated into the local query language
for the local DBMS. When data are required from both
the current and the auxiliary DBs the sub-results have to
be concatenated by the CMM. The intermediate results
sent from all the underlying modules are concatenated in
the GTMM to form a final result. This final result is then
presented to the user.

The Current Management Module (CMM) is re-
sponsible for handling the ‘current view’ (i.e. the data
here is a conventional database under a conventional
DBMS, simply handling time as a normal attribute)
temporal data which is beyond the capability of the local
DBMS. For example, is easy to see that it would be very
difficult to carry out required time period comparison in
some DBMSs. In this case the ‘current view’ temporal
data managed by the CMM is stored in the auxiliary
database. For this reason only part of the CMM is
dependent on the existing local data model. This
approach makes TDMS flexible because current view
data are not restricted to the local DBMS functions. The
effort required to change only the dependent components

of CMM is less than that to develop a full temporal
model to be incorporated into the local existing DBMS.
Normally the current commercially available DBMSs
such as INGRES,?® SQL/DS,® and DB2® allow some
basic operations (such as comparisons) to be performed
on temporal attributes. Therefore the dependent com-
ponents of CMM for these DBMSs should be fairly
small. In contrast, the PRECI_C prototype,?® for
example, handles dates as character strings. Here more
effortis required to implement the dependent components
of the CMM.

All historical data is transferred at the appropriate
time from the current and/or auxiliary DBs into the
Historical Database (HDB) and it is managed by the
Historical Management Module (HMM). In this module
tuples with the same surrogate are grouped together and
are linked together. Operations given in the status—kind
parameter are allowed to be applied to the HMM. This
approach is described in section 2.1.

Similarly the Future Database stores the ‘future view’
temporal data and is managed by the Future Man-
agement Module (FMM). The Future DB contains all
the future (logical time) data. Operations such as delete,
insert, correct and update can be applied to the FMM.
These operations follow the corresponding concepts
given in section 2.1. When the future logical time of a
value has in due course become current then this value
and its associated data (e.g. correction(s) may have been
made to this value before) are transferred to the CMM
either by a Database Administrator (DBA) or auto-
matically by the system. Details of FDB and its
metamorphosis into a CDB are beyond the scope of this
paper. '

The Auxiliary DataBase (ADB) contains data which
are not strictly under HMM or FMM components but
are deemed necessary to the correct answering of queries.
In general the ADB contains data for solving difficult
problems such as null value treatment (Refs. 12 and 15)
and database conflict (Ref. 31).

For example, in the medical world, hypotheses
suggested during the diagnostic process often need to be
retained and maintained by the system. The Auxiliary
Management Module (AMM), is provided to facilitate
this required kind of information processing.

When a temporal query involves retrieval of both
historical and current data, the GTMM first of all
validates the query and decomposes it into a set of
equivalent temporal queries for the CMM and HMM.
On receipt of its intermediate results from the underlying
DBs, the GTMM integrates or concatenates these
results, if appropriate, to form a final result.

The validity of the time period specified in a user query
is established by checking against the OT and RT time
values of the data constructs stored in the GTMM. A
multi-database management system normally associates
schema(s) with different geographical site(s) as nodes. In
an analogous manner TDMS manages the data con-
structs and associates them with different temporal DBs
as nodes. Using this approach user queries can be
validated before any data access is made.

Schema update is not an uncommon phenomenon
within the relational DB environment. An important
question here is how to maintain consistency between the
old and the new schema. The only research done on this
area is found in Ref. 19. They proposed the following:

336 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

MODELLING AND MANAGING TIME IN DATABASE SYSTEMS

1. extend the two schemas each with a time-stamp to
mark the validity of their time periods;

2. extend the SQL syntax to provide the facility of
retrieving the previous schemas Ref. 19 by adding
the PREV operator;

3. code extra SQL statements to merge the new and
old schemas together (i.e. define a mapping between
the old and new schemas);

4. embed these SQL statements into the system to be
called up when needed.

This approach while sound seems to be somewhat naive
and overly complicated. For example, the system has to
maintain not only the schema differences but also the
mapping between them using the SQL statements. If
there are n schema versions then the query evaluation
needs to navigate to the first version by specifying a
‘PREV(1), PREV(2),...,PREV(n-1) current-schema-
name’ command.

In contrast, in TDMS such schema anomalies can be
handled by duplicating the data construct at the relation-
level (with the same r_id) and link the schemas (and
databases) together using the multi-database concept.
The old and new constructs each have valid lifespans and
no additional attributes are needed to augment them.
But TDMS requires that the old and new schemas have
to be defined to let the system know where they are
physically stored. A new special relation is also needed to
define the old and new attributes of the relation shown in
Fig. 6. Basically, it is a relation which contains two
ordered tuples; the first tuple gives the information of the
old relation and second gives the information of the
current relational schema. An attribute column con-
taining ‘_null’ means that this attribute is not applicable.
Corresponding attributes are appended under the same
columns. This approach is simple and yet efficient for
temporal query processing because no mapping language
is needed and it requires minimum human intervention.
For example a temporal query may request the retrieval
of data under the old and current schemas. TDMS first
performs the usual query validity checks. If there exist
two data constructs for the same relation identifier (r_id)
then appropriate subqueries can be formulated by
looking up the special relation shown in Fig. 6. If a
relation new_rel with NA1, OA3 and NA3 asits relational
scheme (see Fig. 6) and if a global query in SQL form is

SELECT NAI, OA3
FROM new_rel
SINCE 13;

If both are located in different underlying DBs then
further decomposition of the query by node would be
required. The query decomposer module in a multi-
database such as the EDDS prototype (Ref. 3) is suitable
for temporal query decomposition but a slight extension
to the module is required to handle the schema anomalies
as mentioned above.

4. OPERATIONAL MODEL OF TDMS

The Operational Model provides a specification of the
valid operations to be applied on the data constructs
mentioned in the section 2. These operations facilitate
access to and manipulation of the DB contents. In this
paper, we aim only to outline these facilities.

The basic specification of an operation in TDMS has
three generic parts directly corresponding to the three
dimensions of the data construct (i.e. {object, attribute,
value, time)). The syntactic form of TDMS SQL is based
on X/OPEN SQL?* with necessary extensions for the
specification of the temporal queries. These extensions
are carefully formulated to ensure that no infringement
can be made to the normal semantics and syntax of the
SQL statements. The full extensions to the X/OPEN
SQL syntax and more complex examples of the temporal
queries are found in Ref. 16.

We shall describe how some of the temporal operations
and query manipulation work by using some query
examples.

To simplify the explanation in the following examples
we require the following three assumptions

1. The granularity of time unit is one, and ¢1,¢2,...,tn
are time units with (1 < 2,12 < 13, and so on;

2. The logical time column in a relation is considered
as a special attribute in the semantic sense, though
values are entered by an authorised user. Retrieval
of the logical time column values must be specified
in the query;

3. All tuples in the following two relations result from
progressive updates:

Example 1

Salary relation

where the SINCE clause has an obvious meaning LOGICAL
(explained later) then this query is decomposed (by a EMP AMOUNT from to
decomposer module in the GTMM) into an equivalent
query such as John 10k 12, 6
John 11k 16, now
SELECT old_rel.OAl, old_rel. OA3, new_rel. NAI Lee 8k 3. ‘5
new_rel.OA3 Lee 9k 5, 17
FROM old_rel, new_rel Ken 12k i1, now
SINCE 13; = -
Logical Physical
Relation Att_l Att_2 At 3 Att_4 time time
old_rel OAl OA2 OA3 _null tl, 15 t
new_rel NAI —null OA3 NA3 t5, now ty

Fig. 6. Special relation for handling schema anomalies.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 337

22

CPJ 35

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

D. LING AND D. A. BELL

Example 1 (cont.)

Department relation

LOGICAL
EMP DEPT from to
John shoes 14, 18
John books 18, 110
Lee shoes 13, t6
Lee books 16, t7
Ken shoes tl, now

Result:
LOGICAL
EMP AMOUNT from to
John 10k 13, 16
John 11k 16, 19

This query is processed by two operators, namely, select
and temporal select. The select retrieves all tuples in
relation Salary belonging to John giving:

Query: retrieve every employee’s salary and department
for his/her different assignments.
SQL: SELECT*

FROM s Salary, d Department
WHERE (s.EMP = d. EMP) SINCE START OF

d.EMP;
Result:

LOGICAL
EMP AMOUNT DEPT from to
John 10k shoes 14, t6
John 11k shoes 16, 8
John 11k books 18, t10
Lee 8k shoes 13, t5
Lee 9%k shoes 15, 6
Lee 9% books 16, {7
Ken 12k shoes t1, now

The SINCE START OF statement is necessary in order
to distinguish the temporal query from the normal SQL
query. To compute this result, a temporal join operator is
used. It is quite similar to the relational join operator
except that when the join involves two logical time
attributes the tuples in each relation belonging to the
same surrogate are, first of all, “harmonised’ time-wise
between the two logical times. For example, the logical
time intervals for John in relation Salary are 12-16-now
whereas the time intervals in relation Department are
t4-18-110, where 110 < now. These time intervals can be
considered as value ranges and harmonisation involves
selecting the intersection of the two ranges. In this case
the harmonised ranges are t4—t6—:8-¢10 which gives rise
to three new tuples. Any tuples (from either of the
participating relations) of the same surrogate (e.g. John)
whose logical time intervals include any of the three
harmonised intervals will be appended to the result. The
logic of the algorithm to carry out this harmonisation is
similar to that for harmonising ‘pieces’ in the piecewise
uniform method used in estimation of join sizes in
distributed query optimisation (Ref. 4).

Example 2
Query: Retrieve John’s salary in the interval ¢3, 9.

SQL: SELECT AMOUNT, LOGICAL_TIME
FROM Salary
WHERE (EMP = John) DURING (3-19);

LOGICAL
EMP AMOUNT from to
John 10k 12, 6
John 11k 16, now

Logical deduction on the user’s part is now required in
this case to get an explicit answer to this query (given
directly above).

The temporal select is then applied to this intermediate
result - to change the starting and/or ending point of all
the tuples which have ‘lives’ outside the time intervals
specified in the query. This gives the final result as shown
above.

Example 3

Query: Find the number of employees ever employed by
the company.
SQL: SELECT COUNT_UNIQUE(EMP)

FROM Salary

SINCE START OF EMP;

Result:

COUNT_UNIQUE(EMP)

3

This is a simple statistical query and is evaluated by
projecting over EMP attribute then counting the number
of rows existing. This number is the final result.

We complete our examples by giving a simple example
of how corrective updates could effect the final result of
a query. It should be pointed out that they do not affect
any of the actual result’s contents but rather provide the
user with fuller information. Consider the following
relation:

EM PiREL relation

LOGICAL
name salary from to status
Tom 10k tl, 16 INSERT
Tom 12k 16, t10 CORRECTI
Tom 1k 16, now UPDATE
Alex 13k 2, 8 INSERT
Alex 12k 18, t10 CORRECT2
Alex 14k 18, now UPDATE

Question: Find the histories of all employees.

SQL: SELECT * FROM EMP_REL
SINCE START OF name;

3383 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

MODELLING AND MANAGING TIME IN DATABASE SYSTEMS

Result:

LOGICAL
name salary from to
Tom 10k tl, 16
Tom 12k *1 16, t10
Tom 11k 16, now
Alex 13k *2 12, 18
Alex 12k 18, t10
Alex 14k 18, now

foot-note: *1 — tuple(s) incorrectly entered with logical-time =
(26, 110);
*2 - external domain related error with logical-
time = (18, 110);

The query processing is consistent with other normal
temporal queries except that an indicator is tagged to the
attribute value and an explanation of the indicator is
displayed as a foot-note to the user. This may be helpful
for ending some serious dispute over whether the mistake
lies in the mis-entry or lies in the conclusion made in
reality. This is obviously important to, for example, a
computer-based hospital information system where the
drug given to a patient (resulting in fatality) on a given
date is due to mis-entry into the computer or wrongly
prescribed by the medical doctor.

5. PHYSICAL MODEL OF TDMS

Time and memory are inseparable concepts. Storage and
retrieval of temporal data are therefore important
considerations in temporal databases. The behaviour of
historical data growth can be categorised according to
the frequency of the hit-rate and its corresponding
update-rate. The hit-rate of a given attribute is said to be
high if the attribute values are frequency accessed and
retrieved. Similarly, if the update-rate of a given attribute
is high then its attribute values are volatile and undergo
frequent changes. In TDMS the storage structures for
temporal data are determined by the hit-rate and update-
rate profile.

Ideally, for retrieval performance reasons, we aim to
store every complete instance of DB relation with respect
to time — this allows duplicates of data to be stored. In
contrast, for space efficiency reasons, we aim to store
only the differential data between instances. Hence we
seek to develop a satisfactory solution to accomplish these
two antagonistic objectives.

We believe that most previous researchers have not
been pragmatic in that they have not distinguished
between high and low hit-rate data objects when
considering storage strategies for handling time-related
data. In practice often only a small percentage (e.g.
according to a PARETO distribution — the 80-20 rule,
say) of the tuples/attributes account for a very high
proportion of the accesses. TDMS takes account of this
phenomena in its storage strategies.

The frequency of the hit-rate to the relation is normally
established or estimated at the system analysis and
design stages. Therefore, assuming that current DB
instances are more frequently accessed than the older ones
the physical storage structure is determined in TDMS by

the following two default criteria (the DBA gives the
details in local cases):

RULE 1: If the hit-rate of at least 50% of the
attributes/tuples in a relation is high (- these are
called volatile attributes/tuples) then store every
DB relation as a complete instance;

RULE 2: Otherwise provided that the relation hit-rate
is high the logical relation is sub-divided into two
special relations; one for the key and static
attributes/tuples (only differential of data between
DB instances are stored) and one for the key and
volatile attributes/tuples (these DB attribute values
will be stored as a complete DB instance).

Rule 1 is straightforward in that every complete
instance of the logical relation is stored and this may
imply some duplication of the data values between
instances. Rule 2 gives a hybrid solution to reconcile the
two extreme hit-rates. Therefore when a complete tuple
is required, a ‘time-merge’ in the instance from both
special relations of both hit-rates has to be performed.
For example, a relation R with attributes A1, A2, A3 and
Ad, contains 3 instances (snapshots) of historical data.
Attribute Al is the key and A2 has a high hit-rate and
high update-rate but A3 and A4 have a low hit-rate and
low update-rate. Physically this relation has been divided
into two special relations as depicted in Fig. 7 below.

Al A2 A3 A4
X al cl dl

Y a2 c2 d2
V4 a3 3 a3
time = 10

Al A2 A3 A4
X a4 cl dl

Y as c2 a2
V4 a6 c3 a3
time = ¢l

Al A2 A3 Ad
X al cl dl

Y ad c2 a2

V4 al c3 a3

time = 12

(a) Logical Instances of Relation R

special relationl
(low hit-rate relation)

Al A3 A4 Time

X cl dl t1, 2
Y c2 a2 10, 1?2
V4 c3 a3 10, 2

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 339

222

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

D. LING AND D. A. BELL

special relation2
(high hit-rate relation)

Al A2 Time
X al 10
Y a2 10
Z a3 t0
X a4 tl
Y as t1
Z ab tl
X al 12
Y ad 2
Z al n

(b) Physical Instances of Relation R

Fig. 7. Logical Vs physical instances of relation R.

The partition of such a relation would ensure the
efficiency of storage and performance yet it is consistent
with the logical data constructs of the model — as the
data construct allows both the tuple and value time-
stamping. The higher level data constructs themselves
are indexed according to the primary tuple surrogates
and a secondary index for object surrogates is maintained
in the time sequence using a normal b*-tree structure
(which is used by typical DBMSs). The underlying
files/records can now be indexed or hashed for efficient
searching.

In terms of the temporal architecture of TDMS, each
module maintains a subpart of the *-tree. For example,
the top (towards the tree root) two levels of the b*-tree
are used to link the relation and surrogate data constructs
and are maintained in the GTMM. The leaves of this
portion of the b*-tree are pointers which are set to point
to its underlying sub modules for relevant data from the
subtree. Physical access methods (e.g. using hash func-
tions or indexing or b*-tree) for the temporal data are
analysed in Ref. 23. Efficient access to data files are also
well presented elsewhere in the literature such as Refs 24,
2, and 11. However, each data access method has its
advantages and disadvantages and for detailed infor-
mation readers are referred to the above four references.

For access efficiency TDMS organises the data
file/records via indexing and hashing. When historical
data become large indexing and hashing, though helpful,
can be less efficient for certain frequently accessed
historical data. Direct indexing on particular high hit-
rate data can be organised using b*-trees — this is called
the land-mark approach. This approach by-passes the
normal hashing and indexing routes and the method is
tailored for specific high hit-rate historical queries. For
example, when less than 50% of the data in a relation
have high hit-rates and regardless of the frequency of the
update-rate, RULE 2 is applied which uses two special
relations to represent a logical relation. When some
portions of these special relations are very frequently
accessed by the end-users then the landmark approach,
using direct indexing to these frequently accessed portions
of the special relations, can be set up to facilitate fast and
efficient retrieval of temporal data. This landmark
approach is similar to Matsuo ez al’s work found in Ref.
18 except that they use it for retrieving very large
document DBs.

6. DISCUSSION AND CONCLUSION

The basic conceptual time model of TDMS is based on
value-stamping which is similar to that found in Ref. 26.
However the TDMS conceptual model overcomes the
weakness of that model in terms of semantic modelling.
The parameters in the data constructs are minimal but
are sufficient to model time comprehensively in an in-
formation system. The status-kind field in the data
constructs helps to capture the fundamental and essential
time semantics. The data construct provides both physical
and logical time values. The logical time is specified in
terms of a time period —i.e. a start point and an end time
point, which together signify the duration of validity of
an episode. The data construct requires that every value,
even the surrogate value, should be time-stamped because
a static attribute (e.g. employee name) does not remain in
the DB permanently. This is different from Clifford’s
model® where surrogate/key values are not time-stamped.
However temporal models such as in Refs. 1, 30, 7 and
26 do apply time-stamps on surrogate values.

It has also been shown that the data constructs of
TDMS can be incorporated into the relational model
(note that similar work has been done by Shoshani and
Kawagoe?®® but their model limits a given relation to have
only two attribute columns — which we consider to be
too restrictive in practice). In fact this extension allows
time-stamping to be applied to both tuple and attribute
value levels. This unique concept combines with the
multi-database architecture to give a comprehensive and
efficient temporal model which overcomes many weak-
nesses of currently developed temporal models. Issues
such as schema updates, query validation and correct
semantic modelling are neatly handled in a consistent
manner. Dynamic transmission of the historical data
between differing bases may not be as straightforward as
it looks (this is similar to the handling of objects in
active databases — e.g. Refs. 21 and 22). It involves time-
wise integrity and referential checkings, and a complex
triggering with locking mechanism to ensure that data
are handled in a consistent and valid manner. This issue
will be reported in our forthcoming paper.**

The modest extensions of the SQL syntax definitions
to include temporal operators are simple and consistent
with the temporal manipulation of the system using the
temporal operators.

The mapping between the conceptual and physical
models of TDMS are straightforward. The conceptual
data constructs are directly represented and indexed and
linked by the physical access methods. For performance
reasons, we have devised different file structures ac-
cording to the behaviour of the temporal data. Therefore
the physical model of TDMS is pragmatic — flexible, but
efficient in storage and at the same time efficient in
performance.

The conceptual, operational and physical aspects of
TDMS have been discussed in the light of other temporal
models. Though the model is simple, it has overcome
several outstanding problems faced by other temporal
models. The full capability of TDMS’s architecture can
be fully appreciated by incorporating it into a distributed
heterogeneous DBMS where different underlying pre-
existing temporal or non-temporal data models may be
used to represent data geographically distributed over a
computer network. Such an integrated system and its

340 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

MODELLING AND MANAGING TIME IN DATABASE SYSTEMS

distributed temporal query optimisation technique are
described in Ref. 16.

The modules of TDMS have been coded in the C
programming language and the system runs under Unix
operating system. Presently, it interfaces with the Ingres
DBMS. In future TDMS will be used to investigate
further problems such as temporal query optimisation,
transaction processing, concurrency control, and in-
tegrity constraint handling. We also intend to extend
TDMS for integrating with a heterogeneous distributed
DBMS. Investigation work has also begun to enhance

REFERENCES

1. G. Ariav, A temporally oriented data model. ACM
Transactions on Database Systems 11 (4), 499-527 (1986).

2. D. A. Bell and S. M. Deen, Key space compression and
hashing in PRECIL. Computer 25 (4) (1982).

3. D. A. Bell, J. B. Grimson and D. H. O. Ling, EDDS -a
system to harmonise access to heterogenous databases on
distributed micros and mainframes. Journal of Information
and Software Technology 29 (7), 362-370 (1987).

4. D. A. Bell, D.H.O. Ling and S.McClean, Pragmatic
estimation of join sizes and attribute correlations. Proc.
IEEE Int. Conf. on Data Engineering, LA, USA (Feb.
1989), pp. 76-84.

5. S. Ceri and G. Pelagatti, Distributed Databases. McGraw-
Hill, Maidenhead (1987).

6. J. Clifford, Towards an algebra of historical relational
databases. Proc. ACM-SIGMOD Int. Conf. on Manage-
ment of Data, Austin, USA (May 1985), pp. 247-265.

7. S. K. Gadia and J. H. Vaishnav, A query language for a
homogeneous temporal database. Proc. 4th ACM SIG-
ACT-SIGMOD Symposium on Principles of Database
Systems, Oregon, USA (Mar. 1985), pp. 51-56.

8. IBM, SQL/DS for VSE: a Relational Data System for
Application Development. 1BM Form No. G320-6590
(1981).

9. IBM, Special Issues on DB2. IBM System Journal 23 (2)
(1984).

10. S. Jones and P. J. Mason, Handling the time dimension in
a data base. Proc. Int. Conf. on Data Bases, Aberdeen, UK
(July 1980), pp. 65-83.

11. D. Knuth, The Art of Computer Programming. Vol. 3.
Addison-Wesley, Reading, MA, USA (1973).

12. T. Landers and R. L. Rosenberg, An overview of MULTI-
BASE. In Distributed Databases, edited H. J. Schneider,
pp. 154-183. North-Holland, Amsterdam (1982).

13. D. H. O. Ling, D. A. Bell and I. R. Young, Time domain
support for the medical information systems. Proc 7th Int.
Congress on Medical Informatics Europe, Rome (Sep. 1987),
pp. 545-551.

14. D. H. O. Ling and D. A. Bell, Dealing With Dynamic
Objects in Temporal Databases. Working paper (1989).

15. D. H. O. Ling, Null Value Handling In a Heterogeneous
Distributed Database System. University of Ulster at
Jordanstown, UK, Working paper R2.5/2/UU (Oct. 1986).

16. D. H. O. Ling, Query execution and temporal support in
distributed database systems. Ph.D. Thesis, Institute of
Informatics, University of Ulster, UK (July 1988).

17. W. Litwin, A logical model of a distributed database. Proc.
2nd Int. Seminar on Distributed Data Sharing Systems.
Amsterdam, North-Holland (1981).

18. F. Matsuo, S. Futamura and T. Shinohara, Efficient stor-

the temporal query processing by incorporating some
deductive capability. A possible solution is to extend the
Logic Query Language (LQL)* which is a combination
of functional and logic programming languages.

Acknowledgement

This research was carried out with the partial support of
European Economic Commission (EEC) Multi-Annual
Programme (grant 773B).

age and retrieval of very large document databases. Proc.
2nd Int. Conf. On Data Engineering, LA, USA (Feb. 1986),
pp. 456-463.

19. N. G. Martin, S. B. Navathe and R. Ahmed, Dealing with
temporal schema anomalies in history databases. Proc. of
13th Int. Cong. on Very Large Data Bases, Brighton, UK
(Sep. 1987), pp. 177-184.

20. Preci_C DBMS Manual. University of Aberdeen, UK
(1985).

21. T. Risch, Monitoring database objects. Proc. I15th Int.
Conf. on Very Large Data Bases, Amsterdam, Holland
(Aug. 1989), pp. 445-454.

22. A. Rosenthal, U.S. Chakravarthy, B. Blaustein and J.
Blakely, Situation monitoring for active database. Proc.
15th Int. Conf. on Very Large Data Bases, Amsterdam,
Holland (Aug. 1989), pp. 455-464.

23. D. Rotem and A. Segev, Physical organisation of temporal
data. Proc. 3rd Int. Conf. On Data Engineering, LA, USA
(Feb. 1989), pp. 547-553.

24. B. Salzberg, File Structures—an Analytic Approach.
Prentice-Hall, Englewood Cliffs, NJ, USA (1988).

25. J. Shao, D. A. Bell and M. E. C. Hull, LQL: a unified
language for deductive database systems. Proc. of Int.
Conf. on The Role of Artificial Intelligence in Databases and
Information Systems. North-Holland, Amsterdam (1988),
pp. 264-278.

26. A. Shoashani and K. Kawagoe, Temporal data manage-
ment. Proc. 12th Int. Conf. on Very Large Data Bases,
Kyoto, Japan (Aug. 1986), pp. 79-88.

27. R. Snodgrass and I. Ahn, A taxonomy of time in databases.
Proc. ACM-SIGMOD Int. Conf. on Management of Data,
Austin, USA (May 1985), pp. 236-246.

28. M. Stonebraker, E. Wong, P. Kreps and G. Held, The
design and implementation of INGRES. ACM Trans-
actions on Database Systems 1 (3), 189-222 (1976).

29. A. Segev and A. Shoshani, Logical modelling of temporal
data. Proc. ACM-SIGMOD Int. Conf. on Management of
Data, San Francisco (Dec. 1987), 16 (3), 454-466.

30. A. U. Tansel, An extension of relational algebra to handle
time in relational databases. Proc. ACM-SIGMOD Int.
Conf. on Management of Data, Austin, USA (May 1985),
pp. 247-265.

31. M. Taylor, Data integration and query decomposition in
DDBs. PhD Thesis, University of Aberdeen (1985).

32. D. C. Tsichritzis and F. H. Lochovsky, Data Models. Pren-
tice-Hall, Englewood Cliffs, NJ, USA (1982).

33. X/Open, X/open Portability Guide. Elsevier, Amsterdam

1987).

34. (Yang Chao-Chih, Relational Databases. Prentice-Hall,

Englewood Cliffs, NJ, USA (1986).

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 34]

¥202 Iudy 01 uo 1senb Ag 00Z81E/2EE/P/GE /eI |UlWoo/WOo0 dno-ojwapede//:sdiy woli papeojumoq

