
R. MANNER AND O. STUCKY

ation of Multicomputers for Image Processing, edited L.
Uhr et al., pp. 239-278. Academic Press, Orlando, Florida
(1986).

10. R. L. Shoemaker, P. H. Bartels, H. Bartels, W. G. Gris-
wold, D. Hillman and R. Manner, Image-data-driven
dynamically-reconfigurable multiprocessor system in auto-
mated histopathology. In M. J. B. Duff et al. Eds.: Archi-
tectures and Algorithms for Digital Image Processing,
edited Proc. SPIE Conf 596, 190-198 (1986).

11. J. Bille, H. Scharfenberg and R. Manner, Biological do-
simetry by chromosome aberration scoring with parallel

image processing with the Heidelberg POLYP poly-
processor system. Comput. Biol. Med. 13 (1), 49-79 (1983).

12. R. Manner, B. Deluigi, W. Saaler, T. Sauer and P. v.
Walter, The POLYBUS-a flexible and fault-tolerant
multiprocessor interconnection. Interf. in Comp. 2 (1)
45-68 (1984).

13. Motorola: MC68020 32-Bit Microprocessor User's Manual.
Prentice-Hall, Englewood Cliffs, N.J. (1985).

14. Advanced Micro Devices: The Am2900 Family Data Book
(1979).

Book Reviews

P. B. ANDERSEN
A Theory of Computer Semiotics
Cambridge University Press, 1991, £30.00.
ISBN 0 521 39336 1

From the structuralist and functionalist view-
point, language is an instrument for action by
people in context. Andersen illustrates this
with a sample of language used by two
mechanics performing an intricate car-repair
task. Their linguistic fragments are totally
disjointed according to the generative and
logical paradigms, but, treated as part of a
structure incorporating the users, their mate-
rials, tools and task objectives, their language
is clearly well formed. Its purpose is to assist in
constructing solutions. The relationships be-
tween situation and purpose and the making
of meaning are more fully illustrated in the
major case he uses concerning operations
within the Postal Giro in Stockholm.

Among the important concepts for everyone
working in the computing field, Andersen
introduces the concept of a very specific form
of language that we need for systems design.
'A register is the language used in a particular
type of situation with the purpose of sup-
porting or changing its activites.' Thus the
expressions in a register can be given meanings
that are closely related to the actions per-
formed by the users in the given type of
situation.

The principal message that emerges in the
book is that we should use the register as the
definition of users' requirements when de-
signing a wide range of systems. Andersen
defines a computer-based register as' the union
of an interface and a work language'. He
outlines a method of analysis which focuses
upon the design of the signs at the interface,
and ensures that they have a 'real meaning'
defined by the task to be performed, leaving
their' formal meaning' in computational terms
to be implemented by the programmer. This
turns the program design inside-out. Instead
of thinking that the essence of a program is its
functionality, which the interface then reveals,
the semiotic designer will regard what happens
at the interface as the essential part, to be
enabled by the functionality. The challenge to
readers convinced by this argument is how to
make this new paradigm operational in the
normal practice of systems development.

I must add one small criticism. The rule of
good interface design should apply to the
printed page as well as to the flickering screen.
In this case we are shown too often how not to
apply them. The typography is a mess.

RONALD STAMPER
Twente, The Netherlands

W. A. HALANG and A. D. STOYENKO
Constructing Predictable Real-Time Systems
Kluwer Academic Publishers, Dordrecht,
1991. £49.75. ISBN 0-7923-9202-7.

This book is most welcome as it covers a
number of important topics and issues that
are not covered in other books on real-time
systems. Primarily the book describes, in
detail, two real-time programming languages:
Real-Time Euclid and PEARL. The real-time
extensions to Euclid include many specific
facilities that enable the temporal behaviour
of concurrent programs to be controlled.
Language primitives are defined that allow,
for example: periodic processes to be specified,
time bound to be placed on loops, deadline
overrun to be detected (and responded to),
and sporadic processes to be associated with
events. It is unique in supporting schedul-
ability analysis within a language framework.
Unfortunately, although Real-Time Euclid is
often described as the procedural language
which best supports real-time programming it
is only a research language. It has not been
used in an industrial environment and pro-
duction-quality compilers are not available.

By comparison PEARL is used in an
industry setting. It has a national standard (in
fact it has two: PEARL and Basic PEARL)
and it is used extensively in process control in
Germany. PEARL (Process and Experiment
Automation Realtime Language) was de-
signed in the early seventies and includes
constructs for time- and/or event-related
processing, suspension and termination, and
the direct manipulation of hardware. Most
previously published descriptions have been
written in German, and hence this book will
help to publicise PEARL.

In addition to discussing the two languages,
other interesting chapters address the issues of
scheduling and implementation. A language-
independent review of scheduling analysis is
given, which attempts to introduce the major
results in this field. Such a chapter will always
be difficult to write, as it is easy to fall into the
trap of providing no new material for the
informed reader but too much for the un-
initiated. In general the authors manage to
strike a reasonable balance. Further chapters
on hardware architecture, kernel design and
organisation provide much useful, and de-
tailed, information. Topics such as how to use
DMA without cycle stealing are covered; this
is an issue that has caused considerable
difficulty to other architectures. To partition
the work between application processing and
system support, a dual processor node is
advocated. One (simpler) processor under-

takes all the scheduling and interrupt hand-
ling; this leaves the main processor to be
dedicated to application processing. This dual
processor model is becoming a common
feature of real-time architectures.

One of the themes of the book is the
unification of Real-Time Euclid and PEARL
to form a language that is well endowed with
real-time features but which is standardised
and usable for industrial applications. The
proposed language, extended PEARL, is de-
scribed in detail and it is shown how it could
support precedence relations, graceful degra-
dation and transient overloads. Even software
diversity for tolerating design errors is
addressed. It is interesting to compare these
proposals with the current debate about
Ada9X; a number of similarities exist, for
example the introduction of a lock with non-
pre-emption for shared data is very close to
the protected record with ceiling priority in
Ada9X. The extensions to Ada have been
criticised for being too ambitious; it will be
interesting to see how the proposed changes to
PEARL are received.

My main reservation about the book is in its
analysis of other languages used in the real-
time domain. The authors have been involved
with Real-Time Euclid and PEARL for many
years, so their evaluation is understandably
based on the provision of these languages.
When comparing other languages with Real-
Time Euclid it is not surprising that Real-
Time Euclid wins first prize. They argue, for
example that real-time languages must prevent
the use of unbounded loops and recursion.
But it is equally valid to argue that a more
general-purpose language, such as Ada, can
be used for real-time applications if it is used
in a restricted way in that domain. Although
there is no scheduling analysis that can be
applied to arbitrary Ada programs, if Ada is
used in a suitably constrained way appropriate
scheduling theory does exist and can be
applied. The book did not need to include this
language evaluation; it is valuable in its own
right as an information source on two sig-
nificant languages and their implementations.

ALAN BURNS
York

368 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/368/348215 by guest on 10 April 2024


