
Constructing Programs as Executable Attribute Grammars

R. A. FROST
School of Computer Science, University of Windsor, Windsor, Ontario N9B 3P4. Canada

Attribute grammars provide a formal yet intuitive notation for specifying the static semantics of programming
languages and consequently have been used in various compiler generation systems. Their use, however, need not be
limited to this. With a little change in perspective, many programs may be regarded as interpreters and constructed as
executable attribute grammars. The major advantage is that the resulting modular declarative structure facilitates
various aspects of the software development process.

In this paper, we show how the attribute grammar programming paradigm can be readily supported by adding four
combinators to the standard environment of a lazy functional programming language. We give examples of the use of
these combinators and discuss the advantages that derive from integration of the attribute grammar and functional
programming paradigms.

Received April 1989, revised December 1991

1. INTRODUCTION

Attribute grammars were introduced by Knuth2021 in
1968 as a notation for specifying the static semantics of
programming languages. In 1971 Knuth22 suggested that
the attribute grammar formalism might lead to viable
declarative programming languages, in which problems
are solved in terms of relevant structures.

Since their introduction, a good deal of theory has
been developed712 and attribute grammars have been
used in various language-processor generation systems.6'8

However, use of the attribute grammar formalism as a
general-purpose programming paradigm has received
attention from only a few researchers.91417193032

In this paper we show how the attribute grammar
programming paradigm can be readily provided by
adding four combinators (higher-order functions) to the
standard environment of a lazy, functional programming
language. We present a number of examples of the use of
these combinators to illustrate various features of the
style of programming that they support.

We discuss the advantages and disadvantages of a
functional implementation of the attribute grammar
paradigm. In particular, we consider the advantages that
derive from lazy evaluation and from the higher-order
nature of the host language.

We conclude with a brief overview of related work and
suggestions for future research.

2. THE ATTRIBUTE GRAMMAR
FORMALISM AND ITS USE IN
SOFTWARE ENGINEERING

An attribute grammar is a context-free grammar, each
production of which is augmented with a set of semantic
rules. Each semantic rule states how the value of an
attribute associated with a syntactic construct in the
production is derived by applying a semantic function to
values of attributes associated with other syntactic
constructs in the production.

The set of attributes associated with a particular
syntactic construct can be partitioned into two disjoint
sets: synthesised attributes and inherited attributes. Each
semantic rule associated with a production rule P either
defines a synthesised attribute of the syntactic construct

named on the left-hand side (lhs) of P or defines an
inherited attribute of a syntactic construct on the right-
hand side (rhs) of P. Synthesised attributes may be
regarded as passing semantic data upwards towards the
root of the derivation tree. Inherited attributes may be
regarded as passing semantic data down the derivation
tree.

An example of a simple attribute grammar, involving
only synthesised attributes, is given in Fig. 1.

numb :

suiran :

aubtr :

comp :

O3T COmp !

expr :

:= "one"
VALfnumb = VAL 1

| etc

:= numb
VALfsumm = VALfnumb

| numb "plus" summ'
VALtsumm = VALfnumb + VALjsumm'

:= numb "minus" numb'
VAL|subtr = VALjnumb - VALfnumb'

:= subtr | summ

:= " (" comp ") "
VALjbr comp = VALjcomp

:= br comp
VALjexpr = VALfbr comp

| "minus" br comp
VALfexpr = - VALfbr comp

Figure 1. A simple attribute grammar.

• The bold text constitutes a context-free grammar for a
simple language of expressions. The notation used is
a variant of Backus-Naur form, in which terminal
symbols appear inside double quotes.

• An upward arrow signifies that the attribute is
synthesised. For example, VALfexpr should be read
as 'the VAL attribute that is synthesised for the
expression'.

• Each semantic rule indicates how the value of an
attribute associated with the syntactic construct on the
lhs of a production is obtained from attributes of

376 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

syntactic constructs on the rhs. For example, the fourth
rule states that the VAL attribute of a syntactic
construct of type s u b t r is obtained by subtracting
the VAL attribute of the numb construct that is its
third component from the VAL attribute of the numb
construct that is its first component.

2.1 Use of the attribute grammar formalism in
language engineering

Attribute grammars provide a formal yet intuitive
notation for specifying the static semantics of pro-
gramming languages and, consequently, they have been
used in various compiler generation systems. A com-
prehensive survey of this work is given in Deransart,
Jourdan and Lorho.8 In most of these systems, non-
executable specifications of attribute grammars are
compiled into code in some conventional host pro-
gramming language.

Attribute grammars have also been used for the
specification and automatic construction of language-
based editors. For example, the' Synthesiser Generator>28

constructs language-based editors from attribute gram-
mar descriptions of target languages.

2.2 Use of the attribute grammar formalism as a
general-purpose programming paradigm

Despite the substantial use of attribute grammars in the
automatic construction of language-processors, sur-
prisingly few attempts have been made to follow up on
Knuth's suggestion to use the attribute grammar for-
malism as a general-purpose programming paradigm. It
is not clear why this is. The following may be partial
reasons.

• Compilers are clearly language-processors and use of
the attribute grammar formalism in this problem
domain is quite natural. The fact that many other
programs are also language-processors may not be so
obvious.

• In most of the language-processor generators that use
attribute grammars, the specifications are pre-pro-
cessed and translated into code in some conventional
host language. The result is an increased indirection in
the programming environment. This may be tolerated
less in problem domains where the use, and the
advantages, of the attribute grammar formalism are
not so obvious.

• To avoid the pre-processing of attribute grammar
specifications, an appropriate host programming
language could be extended to include new 'attribute
grammar' constructs. However, adding new constructs
to most conventional programming languages is a
non-trivial task, and two additional problems derive
from the strict (i.e. non-lazy) evaluation order used in
most conventional languages:

(a) Executable attribute grammars that are driven by
top-down backtracking parsers are more modular
than those driven by alternative parsing strategies.
However, a good deal of unnecessary computation
of attributes occurs during backtracking if strict
evaluation is used.

(b) Implementation, in a strict language, of executable
attribute grammars that allow fully general attri-

bute dependencies requires either substantial
transformation or multi-pass evaluation.

The difficulties that are met in extending conventional
programming languages to accommodate executable
specifications of attribute grammars do not arise with
lazy, functional languages. New programming constructs
may be introduced as combinators (i.e. higher-order
functions) that are added to the language's standard
environment. Also, with lazy evaluation, no value is
computed until it is needed. Consequently, no un-
necessary attribute computation occurs when the top-
down parser of an executable attribute grammar is
backtracking. In addition, neither transformations nor
multiple evaluation passes are required to handle fully
general attribute dependencies.

In the next section we describe four combinators that
can be used by application programmers to glue together
parts of a specification of an attribute grammar such that
the result is a modular executable interpreter. One of the
combinators is expressed as an infix operator, so that the
visual appearance of the executable attribute grammar is
similar to the conventional formulation. The notation
that we use in discussion of the combinators, and in
examples of their use, requires only minor changes to run
in concrete lazy functional languages such as Miranda*31

or Haskell.15 The few textual replacements required to
convert the notation to executable Miranda code are
given at the end of the paper.

3. LAZY FUNCTIONAL PROGRAMMING
LANGUAGES AND EXECUTABLE
ATTRIBUTE GRAMMARS
A functional language is a language in which functions
are first-class objects with all the privileges and uses that
any other object has, for example they can be put in lists,
given as arguments, returned as results, etc. A pure
functional language is a language in which functions
provide the only control structure and no side-effects are
allowed (i.e. a function call can have no effect other than
to return a value).

There are two types of pure functional programming
language: strict languages in which all arguments to a
function are evaluated before the function body is
invoked, and lazy languages in which the evaluation of
arguments is delayed until required.

Interest in lazy functional languages has grown in
recent years, and they may now be regarded as an
established addition to the programmer's repertoire. A
discussion of the advantages and disadvantages of lazy
functional languages, together with descriptions of
applications and implementations, can be found in the
April 1989 special issue of The Computer Journal.3*

3.1 Supporting the attribute grammar programming
paradigm in a lazy functional language

The benefits of lazy evaluation of attributed derivation
trees were recognized in 1987.17 The led to the de-
velopment of an LR(1) parser generator, similar to Yacc,
producing programs in a lazy functional language.32

Functional languages have also been suggested as being
appropriate hosts for attribute transformation systems.23

• Miranda is a trademark of Research Software Ltd.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 377

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

attribute

numb

•limn

subtraction

compound

br_compound

expr

:= VAL num

» t e r m ("one" , [VAL 1])
| t e r m ("two" , [VAL 2])
I e t c

numb)
[rule 1.1 (VALflhs) <- same[VALfsl]]

V>(sl numb...s2 I"plus"...s3 sum)
[rule 1.2 (VAL|lhs) <- add[VALjsl,VAL|s3]]

numb...s2 !"minus"...s3 numb)
[rule 1.3 (VALflhs) <- sub[VAL|sl, VAL|s3] ;

subtraction | summ

! " (" . . . s 2 compound.
[r u l e 1.4 (VALjlhs) <-

. s3 ! ") ")
same[VAL|s2]]

(si br_compound)
[rule 1.5 (VALjlhs) <- same[VAL|sl]]

> (si ! "minus" . . . s2 br_compound)
[rule 1.6 (VALflhs) <- negate[VALTs2]]

same
add
sub
negate

[x]
[VAL
[VAL
[VAL

x,
x.
x]

VAL
VAL

y]
y]

= X
= VAL
= VAL
= VAL

(x
(x
(-

+ y)
- y)
X)

Example Use
e x p r [([] , [" m i n u s " , " (" , " o n e " , " p l u s " , " t w o " , ") " , " . "])]

=> [([VAL - 3] , [' I)]

Note : lists are written with square brackets and commas, tuples are written using parentheses and commas, and function application is denoted by
juxtaposition and is left associative. The combinator | is defined as an infix operator with a lower precedence than function application. The
detailed syntax of productions and attribute rules are discussed later.

Figure 2. Passage 1: a program constructed as an executable specification of an attribute grammar.

Despite these related developments, no one would appear
to have considered supporting the attribute grammar
programming paradigm in a lazy functional language.
This is surprising, since it is relatively easy to do so.

The attribute grammar paradigm can be supported in
a lazy functional programming language by the in-
troduction of four combinators (described in more detail
later) denoted by term, !, |, and y/. Fig. 2 illustrates how
these combinators can be used to construct a program as
an executable attribute grammar. (We shall refer to such
programs as passages from now on).

As can be seen, passage 1 is very similar in structure to
the attribute grammar given in Fig. 1; the difference is
that it is executable. Each 'production' defines an
interpreter that is driven by a top-down, recursive
syntax-directed parser.

3.2 Interpreters as functions

We choose to regard interpreters, such as expr, as
functions with the following type:

[([a t t r ibu te] , [terminal])]
->[([attribute], [terminal])]

That is, an interpreter is a function which maps a list of
pairs of type ([a t t r i b u t e] , [t e r m i n a l]) toa list
of pairs of the same type.

• Each pair (as , t s) that is in the list that is input to
an interpreter is such that the list of attributes as may
be regarded as a context, and t s as a sequence of
terminal symbols to be interpreted in that context. We
shall refer to such pairs as att-term_pairs.

• Each att_term_pair (a s ' , t s ') in the list that is
output by an interpreter is related to exactly one
att_term_pair (as, t s) in the input list such that: (i)
a s ' is a subset of the union of as and the
interpretation of some initial segment of t s , and (ii)
t s ' is a list of the remaining uninterpreted terminal
symbols in t s .

• Interpreters return lists of att_term_pairs because a
sequence of terminals may have more than one
interpretation.

• Interpreters are regarded as accepting lists of
att_term_pairs for a number of reasons, one being that
it simplifies their composition.

An example application of an interpreter is given at the

378 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

COMBINATOR TYPE

term (terminal, [attribute]) -> interpreter

terminal -> interpreter

interpreter -> interpreter -> interpreter

[(identifier, interpreter)] -> [attribute_rule] -> interpreter

NOTES If T is type, then [T] is the type of lists whose elements are of type T, if Tl to Tn are types,

then (Tl Tn) is the type of tuples with objects of these types as components, and if Tl and

T2 are types, then T1->T2 is the type of functions with arguments in Tl and results in T2.

Figure 3. The types of the attribute grammar combinators.

bottom of Fig. 2: applying expr to a list containing a
single att_term_pair whose first component is an empty
context [], and whose second component is the list of
terminals ["minus","(". etc., results in a list
containing a single att_term_pair whose first component
is [VAL — 3] and whose second component is the list of
uninterpreted terminals ["."] .

3.3 The attribute grammar combinators

Formal definitions of the combinators term, !, |, and
\ji are given later. Their types are given in Fig. 3.

3.3.1 The combinator term

The combinator term takes as argument a pair,
consisting of a single terminal symbol followed by a list
of attributes (the meaning of the terminal symbol), and
returns an interpreter for that terminal symbol.

Example use of term
us_bill = term ("billion", [VAL 10 "9,

DERIV "USA"])
uk_bill = term ("billion", [VAL 10*12,

DERIV "UK"])
Example application of interpreters
u s _ b i l l [([] , [" b i l l i o n " , " . "])]

=> [([VAL 1 0 * 9 , DERIV " U S A "] ,

u k _ b i l l [([] , [" t w o " , " . "])] => []

3.3.2 The combinator !

the combinator ! takes a single terminal symbol as
argument and returns an interpreter that recognises and
removes that terminal symbol but does not interpret it.
The attributes in the input to the interpreter, i.e. the
'inherited' context, are simply copied into the output
from the interpreter.

Example use of !
clbr= !") "
Example application of the interpreter
c l b r [([VAL 1 0] , [") " , " x x "])]

=> [([VAL 10] . ["xx"])]

Notice that contexts such as [VAL 10] 'pass
unchanged' through interpreters that are constructed
using !.

3.3.3 The combinator I

The combinator I takes two interpreters as argument and
returns an 'alternate' interpreter as result. This alternate
interpreter applies both of the component interpreters to
the input and appends their results.

Example use of I
us_or_uk_bill = us_bill |br_bill
Example application of the interpreter
us_or_uk_bill [([] , ["bi l l ion","xx"])]

=> [([VAL 10 "9, DERIV "USA"],
["xx"]),

([VAL 10*12, DERIV "UK"],
["xx"])]

3.3.4 The combinator y/

The combinator t// takes two arguments: (i) a
'production' that denotes the identity and order of
application of the component interpreters, and (ii) a list
of 'attribute rules' that state how to compute the
synthesised attributes of the interpreter on the lhs of the
production and the inherited attributes that are to be
used as context by the 'component' interpreters on the
rhs of the production. Use of if/ is illustrated in Fig. 4.

add two numb*
V> (si numb .

[rule 2.1

m

.. s2 numb
(VALjlhs)

context numb =
4> (si numb)

[rule 2.2

add_two_numbs'
iji (si numb .

[rule 2.3
rule 2.4

(VALTlhs)

=

1
<- add [VALTsl,

VALTs2]]

<- add [VALTsl,
VALjlhs]]

. s2 context numb)
(VALTlhs)
(VALis2)

<- same [VALTs2],
<- same [VALTsl]]

add [VAL x, VAL y] = VAL (x + y)
same [x] = X

Example application of j
add two numbs

context numb

[(0, ("1",
=>

([VAL 10],
=>

interpreters
"211,"."])]
[([VAL 3],["."})]

["2",-."])]
[([VAL 12],["."])]

Figure 4. Passage 2: example use of y/.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 379

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

The definitions in Fig. 4 may be read as follows:

• The interpreter add_two_numbs recognises a struc-
ture that consists of a sub-structure s i of'type' numb
followed by a sub-structure s2 of 'type' numb. By
semantic rule 2.1, the VAL attribute that is synthesised
(A) for the lhs (i.e. returned by add_two_numbs), is
equal to the result obtained by applying the attribute
function add to a list of attributes containing the VAL
attributes that were synthesised for the numbs s i and
s2.

• The interpreter context_numb recognises a structure
that consists of a structure s i of type numb. By
semantic rule 2.2, the VAL attribute that is synthesised
for the lhs (i.e. returned by context_numb), is equal
to the result of applying the attribute function add to
a list of attributes containing:

(a) the VAL attribute that was synthesised (f) for the
numb s i ,

(b) the VAL attribute that was passed down as context
(j.) to the interpreter context_numb.

• The interpreter add_two_numbs' recognises a struc-
ture that consists of a structure s i of type numb
followed by a structure s2 of type context_numb:

(a) By semantic rule 2.3, the VAL synthesised for the
lhs l h s (i.e. returned by add_two_numbs'), is
equal to the result of applying the attribute
function same_as to a list of attributes containing
the VAL attribute that was synthesised for the
context_numb s2.

(b) By semantic rule 2.4, the VAL attribute inherited as
context by the numb s2 is equal to the result of
applying the attribute function same to a list of
attributes containing the VAL attribute that was
synthesised for the numb s 1.

Note that in the use of the y/ combinator: (i) the
productions must not be left recursive, (ii) all attribute
functions are of type [a t t r i b u t e] -> a t t r i b u t e , i.e.
they are all functions from lists of attributes to a single
attribute, (iii) the order of the attribute rules within a
definition is irrelevant, and (iv) if the 'names' of the
synthesised and inherited attributes are disjoint, then f
and j can both be replaced by %, which is to be read as
'of.

reasons: (i) to illustrate the wider applicability of the
attribute grammar paradigm and the notion of solving
problems in terms of relevant structures; and (ii) to
illustrate certain aspects of the approach that we discuss
further in Section 5.

4.1 A simple numeric example

An initial segment of the fibonacci sequence is 1 1 2 3 5
8 13 21. A function for calculating the nth fibonacci
number, where n is given as argument, can be defined
intuitively in a functional language, as follows:

f i b n = l , i f n<2
f i b n = f i b (n - l) + f i b (n - 2) , i f n > = 2

This function has exponential complexity, but can be
transformed to a function with complexity O(n) (i.e.
linear complexity) by introducing a 'generalising' fun-
ction g:

fib n = first (g n)
where
first (a, b) =a
g n = (1, 1) , if n<2
g n = (x + y, x), if n>=2

where
(x, y)=g (n-1)

An attribute grammar solution, with complexity O(n),
can be obtained by making the primitive recursive
structure of the input explicit, for example the natural
number 4 is input as 'succ succ succ one'. Two
attributes are associated with each such number: FIB
standing for fibonacci value, and PFIB for the fibonacci
value of the predecessor of the number. The resulting
passage is given in Fig. 5.

4.2 A simple data-processing example

Construction of passages involves refinement through
five steps. We illustrate these steps with a simple data-
processing example.

Suppose that a program is required to calculate the
average number of entries per record in a file in which
each record consists of an initial field containing a
numeric identifier followed by one or more alphanumeric

4. EXAMPLES OF PROGRAMS
CONSTRUCTED AS EXECUTABLE
ATTRIBUTE GRAMMARS

Database query processors, natural language interpre-
ters, theorem provers, specification transformers, and
expression evaluators are immediate candidates for
application of the attribute grammar programming
paradigm. Examples of passages in each of these
categories have been constructed using the combinators
described in this paper.101118

With a little change in perspective, many other types of
programs may be regarded as interpreters and con-
structed as attribute grammars. In this section, we
consider three problems that may not generally be
recognised as language-processing problems. The first is
concerned with a simple numeric computation, the
second with file-processing, and the third with tree-
manipulation. These examples are presented for two

a t t r i b u t e : : = FIB num | PFIB num
numb =

V>(sl ! "one")
(rule 3.1 (FIBflhs) <- fib_l[],
rule 3.2 (PFIBflhs)<- pfib_O(]]

| ij> (si !"succ" ... s2 numb)

[rule 3.3 (FIBflhs) <- add[FIB|s2,PFIBTs2] ,
rule 3.4 (PFIBflhs)<- make_prev[FIB|s2]]
where
fib_l [] = FIB 1
pfib_O [] = PFIB 0
add [FIB x, PFIB y] = FIB (x + y)
make_prev [FIB x] = PFIB x

example application of interpreter
numb [([], ["succ","succ","succ","one"])]

=> [([FIB 3,PFIB 2],[])]

Figure S. Passage 3: calculating fibonacci numbers.

380 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

string entries. Records are separated by semicolons,
fields by commas, and end-of-file is signified by a period.
A solution to this problem, shown in Fig. 6, can be
obtained as follows.

Step 1. A grammar is denned for a language whose
expressions include the specified input structures. This
grammar is given in bold text in Fig. 6.

Step 2. Attributes that are relevant to the problem are
identified and their types specified in terms of the base
types num, t o o l , etc. The resulting formal introduction
of the attributes is shown at the top of Fig. 6.

Step 3. Appropriate attribute rules are specified. These
rules are numbered 4.1-4.10 in Fig. 6. Notice that rule
4.3 defines the average number of entries per record in a
file in terms of two other attributes of the file. The fact
that the file consists of a list of records is irrelevant to the
specification of this rule (we discuss this further in the
next section).

Step 4. Appropriate attribute functions are defined.
These include calc_average, etc.

An example application of the interpreter is given at
the bottom of Fig. 6.

4.3 A one-pass tree processor

The problem, in this example, is to construct a program
that accepts a binary tree as input and which returns as
result an equivalent tree except that all node values are
equal to the maximum value in the input tree.

If the attribute grammar combinators are defined to
allow inherited (context) attributes for an interpreter to
be calculated from synthesised attributes returned by
interpreters to its right in the production, then a passage
can be constructed which returns the required result in a
single pass over the input tree. Such a passage is given in
Fig. 7.

• Rule 5.1 states that the RESULT attribute that is
synthesised for a rooted tree is the same as the
RESULT attribute that is synthesised for the tree that
comprises it.

• Rule 5.2 states that the REPVAL attribute (i.e. the
replacement value) that is inherited by a tree which
comprises a rooted tree is obtained by converting the
type of the MAX attribute that is synthesised for the
tree.

attribute ::= 1

file

Ii8t_of_recs =

record =

list_of_ents =

calc average
const_one_rec
same as
incre num recs
add num ents
const one ent
incre num ents

WM_RECS num I NUM_ENTS num

i> (si
[rule
rule
rule

V- (si
[rule
rule

list
4 . 1
4 . 2
4 . 3

_of_rec8 . . . s2 !
(NUM_ENTSflhs) <-
(NUM_RECS|lhs) <-
(AV_ENTS | l h s) <-

record)
4 . 4
4 . 5

(NUM RECSflhs) <-
(NUM_ENTS|lhs) < -

| ij) (si record . . . s2 ! " ; "
[rule
rule

i> (si
[rule

V> (s i
[rule

I i> (»•
[rule

process d = f i le [([.

Example application
process "1234

Note : We assume that the

4 . 6
4 . 7

(NUM_RECS|lhs) <-
(NUM_ENTSTlhs) <-

identifier . . . s2 !" ,
4 . 8 (NUM_ENTSTlhs) <-

entry)
4 . 9

L ent
4 . 1 0

[NUM

[]
[x]
[NUM
[NUM

[]
[NUM

(NUM_ENTSTlhs) <-
ry . . . s2 ! " , " .

(NUM_ENTSTlhs)<-

_ENTS x, NUM_RECS

_RECS x]
_ENTS x, NUM_ENTS

_ENTS x]

,tokenise d)]

h e s s e l i n k , l e n s e n , j o n e s ; 2 3 4 5

1 AV_ENTS num

" . ")
same as
same as

calc average

const one rec
same as

[NUM_ENTS|sl] ,
[NUM_RECS|sl] ,
[NUM_ENTSTlhs, NUM_RECSTlhs]]

[NUM_ENTS|sl]]
. . . s3 list_of_recs)
incre num recs
add num ents

[NUM_RECS|s3] ,
[NUM_ENTSTsl, NUM_ENTS|s3]]

1 . . . s3 list_of_ents)
same as

const one ent
. . s3 list_of_«
incre num ents

y] = AV_ENTS
= NUM_RECS
= X

= NUM_RECS
y] = NUM ENTS

= NUM_ENTS
= NUM_ENTS

bauer,partsch,

[NUM_ENTS]Ts3]]

[]]
ants)
[NUM_ENTS|s3]]

(x/y)
1

(1 + x)
(x + y)
1
(1 + x)

sharir,morgan;5678,heath,11."
=>[([NUM_ENTS 9,NUM_RECS 3,AV_ENTS 3] , [])]

interpreters i d e n t i f i e r and en t ry have been defined elsewhere. The function t o k e n i s e converts the in-
put string to a list of terminals.

Figure 6. Passage 4: calculating average number of entries in records in a file.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 381

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

attribute ::= VAL num | RESULT [char] | MAX num I REPVAL num

numb
rooted tree

tree

as in passage 1
rp (si tree)

[rule 5.1 (RESULTflhs) <-
(REPVALJsl) <-rule 5.2

> (si !"-"
[rule 5.3
rule 5.4

same_as [RESULTtsl],
conver t [MAX|sl]]

(MAXTlhs) <- cons t_ze ro [] ,
(RESULTflhs) <- n u l l _ t r e e []]

if) (s i !" (" . . . s2 numb .
[r u l e 5 .5 (MAX|lhs) <-
r u l e 5.6 (RESULTTlhs) <-
r u l e 5.7 (REPVAL|s3) <-
r u l e 5.8 (REPVALJ.S4) <-

85 !")")
MAXTs4],

, s3 t r e e . . . s4 t r e e
maximum [VAL"fs2,

make_tree [REPVALJS2,RESULTTs2,RESULT|s3],
same_as [REPVAL^lhs],
same_as [REPVALj.lhs]]

same_as
convert
const_zero
null_tree
maximum
make tree

[x]
[MAX x]

[REPVAL x,MAX y,MAX z]
[REPVAL x,RESULT y,RESULT z]

x
REPVAL x
VAL 0
RESULT "-"
MAX (maximum_of [x,y,z])
RESULT ("<"++(show x)++" "++y++" "++z++")")

Example application
r o o t e d _ t r e e [([] , t o k e n i s e " (t h r e e (o n e (f o u r - -) (f i v e - -)) (t h r e e (f o u r - -) (two - -))) ")]

=> [(RESULT " (f i v e (f i v e (f i v e) (f i v e - -)) (f i v e (f i v e) (f i v e))) " , [])]

Note : We assume that the interpreters max imum_of and show have been denned appropriately elsewhere. The function maximum_of picks
the maximum from a list, and the function s h o w converts a number to character format.
Note : The definitions of the attribute grammar combinators given in Appendix II do not allow inherited (context) attributes for an interpreter to be
defined in terms of synthesized attributes returned by interpreters to its right in the production. Definitions of combinators that do allow such 'right
inheritance' can be constructed in a lazy functional language but are more complex than those given in Appendix II.

Figure 7. Passage 5: a one-pass tree processor.

• Rules 5.3 and 5.4 state that if a tree is a null tree then
two attributes are synthesised for it: MAX 0 and
RESULT " - " .

• Rule 5.5 states how the MAX attribute is to be
synthesised for a non-null tree.

• Rule 5.6 states how the RESULT attribute for a non-
null tree is to be synthesised from the REPVAL
attribute that is inherited from its context and the
RESULT attributes that are synthesised for its two sub-
trees.

• Rules 5.7 and 5.8 state that the REPVAL attribute that
is inherited by a tree is also inherited by its two sub-
trees.

Passage 5 illustrates how a lazy functional implemen-
tation of executable attribute grammars can be used to
obtain a nearly completely declarative program for a
problem that in many other programming environments
would require a procedural solution.

5. ADVANTAGES OF CONSTRUCTING
PROGRAMS AS EXECUTABLE
ATTRIBUTE GRAMMARS
The major advantage of constructing programs as
executable attribute grammars is the reasoned modular
declarative structure that results. This structure facilitates
various aspects of the software development process. In
particular, it facilitates the use of formal methods in the
analysis and construction of programs. It also facilitates
prototyping and requirements analysis. We discuss these
issues further in this and the next section.

5.1 Modularity of passages

Modular design is crucial to the development of 'good'
software. There are two important types of modularity.
The first is concerned with the decomposition of
programs into cleanly separated interacting components.
The second is concerned with the separation of structure
from content.

5.1.1 Lazy functional languages and modularity

Strong arguments have been made16 claiming that lazy
functional languages not only support the two types of
modularity mentioned above but also provide new types
of 'glue' (higher-order functions and lazy evaluation)
that allow programs to be modularised in ways that
are impossible using conventional programming lan-
guages. We do not reiterate the arguments here, but refer
interested readers to Hughes,16 where many examples are
given as illustration of the claims made.

5.1.2 Attribute grammars and modularity

The attribute grammar formalism is itself extremely
modular. Syntactic issues are cleanly separated from
semantic concerns, and the computation of attributes is
well structured. Executable attribute grammars reflect
this modularity - interpreters are distinct modules that
interact through well-defined interfaces.

Use of the attribute grammar programming paradigm
results in modular passages that are structured according

382 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

to the structure of the input data. The paradigm, thereby
provides guidance to programmers on how to structure
their programs. This reduction in the design space not
only facilitates subsequent modification of programs to
accommodate changes in requirements, but also the re-
use of components in other applications (we discuss this
further in Section 6).

If the attribute grammar programming paradigm is
supported in a language that allows user-defined higher-
order functions, the 'pattern of computation' that is
represented by the productions of the grammar can be
abstracted out and stored for re-use. (We also discuss
this further in Section 6.)

5.1.3 Top-down parsing, lazy evaluation and modularity

Top-down, fully backtracking parsers are more modular
than bottom-up parsers in the sense that parsers for
individual syntactic structures can be compiled, tested,
and used separately (provided that component interpre-
ters on which they depend are available). Executable
attribute grammars that are driven by top-down, fully
backtracking parsers are similarly more modular than
those driven by alternate parsing strategies. However,
there is a price to pay: parsing is less efficient and, if the
implementation language uses strict (non-lazy) evalu-
ation, a good deal of unnecessary recomputation of
attributes occurs during backtracking. The second
problem does not occur if the executable attribute
grammars are built in a lazy (non-strict) language owing
to the fact that attribute values are only computed if
required, and then only to the extent required.

5.2 Declarariveness of passages

Declarative programs are more easy to analyse, trans-
form and modify than their procedural counterparts. As
illustrated by the examples in Section 4, the lazy
functional implementation of the attribute grammar
programming paradigm can lead to programs that are
nearly completely declarative.

In general, the order of productions within a passage,
and the order of attribute rules within a production, is
irrelevant. If the names of the synthesised and inherited
attributes are disjoint, then the upward and downward
arrows in a passage can both be replaced by a single
symbol. The only procedurality that cannot be removed
from a passage is that which results from (i) the fact that
interpreters are applied in an order which is given on the
rhs of productions, and (ii) the fact that attribute rules
are used as right to left re-writes. However, it could be
argued that this procedurality is inherent in the problem
and cannot be avoided, but can be hidden to some extent
by encouraging programmers to think declaratively in
terms of data dependencies rather than procedurally in
terms of the order in which interpreters are applied and
attributes computed.

5.3 Passages and formal methods

Various formal methods have been proposed to facilitate
the construction of provably correct efficient programs.
These methods may be classified as being either 'analytic'
or 'constructive'. Analytic methods include those in
which programs are annotated with conditions stated in

some formal language. The correctness of the final
product is assured by verifying through formal proof
that the conditions remain satisfied after each stage of
refinement. Constructive methods include those in which
correct but inefficient programs are (i) derived from
proofs, or (ii) written as executable specifications and
then transformed to more efficient forms using
correctness-preserving transformations. Programs de-
veloped in this way are 'correct through construction'.

Papers presented and discussions held at the 1990
ACM International Workshop on Formal Methods in
Software Development27 suggest that the acceptance of
formal methods by the non-academic programming
community continues to be slower than anticipated. It
appears that one problem with analytic methods is that
the separation of verification from construction is not
conducive to the acceptance of such methods by the
majority of programmers, who find constructing pro-
grams more rewarding than proving them correct. A
problem with constructive methods is that program
transformation is extremely difficult and theories to
support this activity are relatively immature.

These problems are compounded by the fact that
conventional (i.e. procedural, imperative) languages
facilitate neither proof nor program transformation.
Recognition of this has stimulated interest in alternate
programming paradigms which better support these
activities. The lazy functional paradigm is one example
that is finding growing support for the following reasons:

• Lazy functional languages (LFLs) are referentially
transparent. The result of evaluating an expression is
independent of the order in which the evaluation is
carried out, since a variable or expression always
denotes the same value within a given scope. A
consequence of this is that we can always replace an
expression by one that is equal to it without changing
the value of the whole expression that contains it. This
property facilitates reasoning about programs and
helps in proofs of correctness and in program
transformation.

• LFLs that support user-defined higher-order functions
enable many related functions to be realised as specific
instances of one 'generic' function, resulting in shorter
programs, improved readability and re-use of proofs
and patterns of transformation.

• LFLs that allow partial application enable functions
to be defined as compositions of other functions with
no need to make parameters explicit. The result is
more natural and compact programs that are easier to
manipulate for the purpose of proof and trans-
formation.

These features of lazy functional languages are
complemented by those of the attribute grammar
formalism. In the following, we discuss how the
functional implementation of the attribute grammar
programming paradigm can facilitate application of
particular formal methods in the software development
process.

5.3.1 Passages and 'program analysis'

Not only does the referential transparency of the
functional host language facilitate proof, but also the
structure of passages is clearly suited to structural
inductive proof by cases.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 383

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

5.3.2 Passages and 'the derivation of programs from
proofs'

A comprehensive discussion of the technique of'deriving
programs from proofs' is given in Manber.25 For the
purpose of this paper, it is sufficient to illustrate the
technique with a simple example. Suppose that we want
to define a function r e v e r s e that reverses the order of
elements in a list. The required definition may be derived
from an ' inverted' structural inductive proof as follows:
the empty list, denoted by [] , is identified as an
appropriate base case and the first line of the definition
immediately follows. The inductive hypothesis is that the
recursive call of r e v e r s e applied to the tail of the input
list does what is required. The problem is thereby
reduced to defining a non-recursive function which we
name g in this particular example. The specification of g
follows immediately from an intuitive understanding of
what r e v e r s e is required to do. The resulting definition
is given below, where (e: e s) denotes a list with head e
and tail e s:

r e v e r s e [] = []
reverse (e:es)=g e (reverse es)

where
g e 1 = 1 ++ [e]

The technique described above can be generalised to
arbitrary inductive data structures and therefore to the
development of passages. The inductive hypotheses
would be that recursively defined interpreters return the
attributes that are required.

5.3.3 Passages and 'program transformation '

Various methods have been developed by which pro-
grams can be transformed to alternate forms that are
extensionally equivalent but more efficient.35 The fol-
lowing are examples of methods that have been developed
for transforming functional programs:

• Equations are derived from the original function
definitions through application of the Burstall and
Darlington (B&D)5 transformation rules of folding,
unfolding, instantiation, abstraction, and law appli-
cation. New definitions are obtained by selecting
adequate subsets of the derived equations.

• The original definition of a function f is modified to
obtain a definition of a more general function g. A
new definition of f, written in terms of the definition
of g, is then obtained through application of B&D
rules. An example of the result of applying this
technique was given in Section 4.1.

• One method of generalising a function definition is to
introduce an additional argument called an accumu-
lating parameter. As example, consider the definition
of r e v e r s e given above which has time complexity
O(n2) if the operator -I- + is linearly dependent on the
length of its left argument. This definition can be
generalized to a definition of a function rev by the
introduction of an accumulating parameter a which
accumulates the reversed list on the recursive descent.
A new definition of r e v e r s e with linear time
complexity can be written in terms of the definition of
rev :

reverse = rev []
where
rev a
rev a

[] =a
(e:es)=rev (e:a) es

A major difficulty with program transformation is that
it is often not at all obvious which method to apply when
given a new problem. Program transformation is non-
deterministic. Any heuristic that helps the programmer
to recognise when a method might be appropriate is
useful. An advantage of the functional attribute grammar
paradigm is that passages are structured in a highly
modular way to reflect the structure of the problem
domain and not some arbitrary structure that is imposed
by the programmer. It is possible that this structure will
facilitate the identification of appropriate transformation
strategies. At the very least, it will provide the pro-
grammer with a new way of looking at problems, and
with some new insights into the transformation strategies.
For example: (i) generalisation may be regarded as
increasing the number of attributes that are returned by
an interpreter, and (ii) the introduction of an accumu-
lating parameter may be regarded as the introduction of
an inherited attribute.

5.3.4 Passages and 'program calculation '

A number of constructive formal methods focus attention
on small collections of higher-order functions that
capture common patterns of computation. Programs are
expressed as combinations of partial applications of
these functions. Some of the higher-order functions may
be defined recursively, but once that is done further
explicit use of recursion and induction is avoided. The
approach results in variable-free or nearly variable-free
programs that may be transformed to more efficient
forms using algebraic identities associated with the
higher-order functions. Bird4 refers to this style of
program development as 'program calculation', and
Backus2 as 'function-level programming'. The following
5-step program development process illustrates the
notion of program calculation.

(1) An initial definition of a required function is
obtained using some formal method.

(2) Parameterisation is used to obtain a higher-order
function that captures the pattern of the specific function
from which it was derived.

(3) Algebraic identities associated with the higher-
order functions are proven and documented.

(4) Definitions of the original and of other functions
are obtained by partial application of the higher-order
functions.

(5) Programs that involve explicit or implicit use of
the higher-order functions are transformed using al-
gebraic identities that have been proven and documented
for the higher-order functions, together with other
identities such as those introduced in definitions.

The functional implementation of the attribute gram-
mar programming paradigm is well suited to program
calculation. Not only does the higher-order nature of the
host language support parameterisation and partial
application, the structure of passages lends itself well to
the notion of abstracting the 'pattern of computation'
out from function definitions - the application-depen-
dent pattern of computation is explicit in the 'grammar'

384 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

part of a passage. We illustrate this in the next section,
where we discuss the use of abstraction further.

6. PASSAGES AND PROTOTYPING

Application of formal methods, as discussed in Section
5, assumes the existence of some comprehensive set of
requirements against which a passage is judged (in
analytic methods), or from which a passage is derived (in
constructive methods). It is often the case, however, that
a potential user of software is unable to give a complete
and accurate specification of requirements until she or he
has had an opportunity to experiment with a prototype
implementation. Such experimentation frequently leads
to a more comprehensive specification of what is required.
In addition, the experience gained in building the
prototype often helps in the construction of the 'real
thing'. This role of prototyping has been recognised for
some time and there is a growing acceptance that it is an
essential part of the requirements analysis process.24

The prototyping activity is greatly facilitated if the
prototype is constructed in a modular form. In Section 5,
we discussed the question of modularity with respect to
the functional implementation of the attribute grammar
programming paradigm. We now expand on one type of
modularity supported by the paradigm that is particularly
relevant to prototyping.

6.1 Abstracting out patterns of computation

Functional languages that allow user-defined higher-
order functions and partial application enable ' patterns
of computation' to be abstracted out of functions and
'stored' in higher-order functions for subsequent re-use.
The abstraction process is clerical: constants that appear
on the rhs of a function definition may be replaced by
parameters whose values are passed in as arguments to
the new function. For example, parameterising [] and g
in the definition of r eve r se given earlier results in a
higher-order function fo ld r :

fo ld r u op [] =u
fo ld r u op (a : a s) = op a (fo ld r u op as)

A new definition of r eve r se and of other functions
with the same pattern can now be obtained by partial
application of fo ldr , e.g.:

sum_of_list = foldr 0 (+)
product_of_list =foldr 1 (*)
reverse =foldr [] put_on_end

where
put_on_end e 1 = 1+ + [e]

This technique can also be used to derive higher-order
functions from passages. For example, parameterisation
of the definitions of the interpreters in passage 1 gives the
higher-order functions shown in Fig. 8.

The higher-order function seqq takes four arguments:
two interpreters, a two_argument function and an
attribute constructor v. An interpreter is returned as
result. The original interpreter summ as well as new
interpreters with similar structure can be defined by
supplying appropriate arguments to seqq.

In addition to deriving higher-order functions from
complete interpreters, we can also derive them from
parts of interpreters. For example, the function ps

seqq intl int2 f

V>(sl intl)
[rule 100.1

IjMsl intl. . .s2

[rule 100.2

pair intl int2 g

V-(sl intl. . .s2
[rule 100.3

bracketed int v

V>(sl !"("...s2
[rule 100.4

v =

(vflhs) <-
int2

..s3 (seqq

(v|lhs) <-

v =
int2...s3

(vjlhs) <-

=

int...s3
(vjlhs) <-

s or_ps intl int2 h v =

iMsl intl)

[rule 100.5
1 V>(sl int2. . .s2

[rule 100.6

(vflhs) <-
intl)

(vTlhs) <-

same[v|sl]]

intl int2 f v))

f[vTsl,vTs3]]

intl)
g[vTsl,vTs3]]

same[Vfs2]]

same[vfsl]]

h[v|s2]]

Figure 8. Higher-order functions derived from passage 1.

standing for 'prefixed interpreter' can be derived from
the second alternative in the production for expr:

ps intl int2 j v =
y/(s intl. . . s2 int2)

[rule 100.7(vflhs) ^j[vfs2]]

The higher-order functions that are derived from
inadequate prototype passages can be used to implement
solutions to more comprehensive requirements that arise
from experimentation. For example, the higher-order
functions in Fig. 8 can be used to define an evaluator of
a larger class of numeric expressions as illustrated in
Fig. 9. The higher-order functions may also be used to
define interpreters in other domains, as illustrated in
Fig. 10.

The role of abstraction in the software development
process, as illustrated above, is related to a number of
techniques that have been proposed for use with other
programming paradigms, e.g. 'generic programming',13

use of'cliches',29 and the use of analogy.26 An advantage
of the functional attribute grammar paradigm is that
passages are structured in a highly modular way to reflect
the structure of the problem domain and not some
arbitrary structure that is imposed by the programmer.
This facilitates re-use of the patterns of computation that
are abstracted out into higher-order functions and re-use
of components that are held together by these patterns.

7. RELATED WORK

Hehner and Silverberg14 have described a method of
programming in which solutions to problems are
structured around several grammars interacting through
a communication graph. The approach differs from that
described in this paper in several respects. In particular,
it is proposed as an extension to the imperative
programming paradigm.

Johnsson17 has suggested that a new case-like construct
be added to lazy functional languages in order to express
attribute dependencies over data structures. No restric-
tions are placed on these dependencies except that they

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 385

CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

nexpr =
numb
I bracketed
1 negation
where
summ =
product =
subtr =
power =
negation =

mult [VAL x
raise[VAL x

Example use

(summI product IsubtrI power)VAL

seqq nexpr (!"plus") add
seqq nexpr (!"times") mult
pair nexpr (!"minus") sub
pair nexpr (!""") raise
ps (!"minus") nexpr negate

,VAL y] = VAL (x * y)
,VAL y] = VAL (x " y)

of the interpreter

VAL
VAL
VAL
VAL
VAL

nexpr[([],tokenise"(one plus (two " two)).")]

Note : the attribute
in passage* 1:

=> 1([VAL 5],["."])]
functions add, sub, and negate are defined as

Figure 9. Passage 6: an evaluator for arithmetic expressions.

bexpr =
boolean
1 bracketed (conj I disj
1 complement
where
boolean

conj
disj
implic =

= term ("t",[VAL
I term ("f",[VAL
= seqq bexpr (!"t

1 implic) VAL

1])
0])

.") 1 and
= seqq bexpr (!"or") 1 or
= pair bexpr (!">') l_implies

complement = ps (!"-") bexpr 1 neg

l_and
1 and

1 or
l_or
etc

Example i
bexpr [(

[VAL 1,VAL 1] =
[VAL x,VAL y] =

[VAL 0,VAL 0] =
[VAL x,VAL y] =

VAL 1
VAL 0

VAL 0
VAL 1

jse of the interpreters
),tokenise"-(t &

=> [([VAL
(f > f) & -
0], ["."])]

VAL
VAL
VAL
VAL

f).")]

Figure 10. Passage 7: an evaluator for boolean expressions.

should not be circular. However, Johnsson's approach
assumes the existence of a parse tree and is therefore
addressing a related but somewhat different problem
from that in this paper.

Uddeborg32 has built an LR(1) functional parser
generator 'FPG' which accepts a very general class of
attribute grammars. In doing so, Uddeborg has demon-
strated how lazy evaluation combines elegantly with
attribute grammar evaluation. The input to FPG is an
attribute grammar written in a syntax taken from Yacc,
the output is a program coded in LML,1 a lazy and
purely functional variant of ML developed at Chalmers
University of Technology.

Edupuganty and Bryant9 have shown how a two-level
grammar can be used as a programming language. The
objectives of their work would appear to be similar to
those expressed in this paper. However, the solution

proposed is disadvantaged on two counts: the TLG
language proposed is not referentially transparent, and
the approach would not appear to support an equivalent
notion to. inherited attributes.

In 1981 Katayama19 presented an approach to pro-
gramming based on attribute grammars, in which
programs are hierarchically decomposed into modules
that are characterised by their inputs and outputs. A set
of equations, associated with each decomposition,
specifies the relationships between the inputs and outputs
of the modules that participate in the decomposition.
Subsequently, Shinoda and Katayama30 developed this
work further and constructed an environment called
SAGE to support what they refer to as attribute grammar-
based programming in a language called AG. The
programming paradigm supported by SAGE is sub-
stantially different from that suggested here. In particular,
in SAGE there is no notion of parsing the input to a
program, neither is attribute evaluation lazy. SAGE
compiles programs written in AG into procedures in C.
One advantage of the SAGE approach is that it allows
recursive application of modules within attribute-evalu-
ation computations. Equivalent expressive power can
be achieved in the approach described in this paper by
applying an interpreter recursively to attributes syn-
thesised by a higher-level call of the interpreter. However,
doing this is not as elegant as it is in SAGE. One
disadvantage of SAGE is that the separation of syntactic
and semantic aspect of a problem is not as clean as it is
in the approach described in this paper.

There is a growing interest in the use of attribute
grammars in software engineering in East Europe. In
particular, Riedewald, Forbrig and Lammel of the
Information Section at the University of Rostock, and
Simon of the Research Group on Theory of Automata at
the Hungarian Acadamy of Sciences are working on
projects that have similar objectives to the work described
in this paper. A major difference is the programming
'styles' that are being integrated. Riedewald et al. are
investigating the relationship between attribute gram-
mars and logic programming, whereas Simon has
developed a language that combines the attribute
grammar paradigm with the imperative procedural
programming paradigm.

8. CONCLUDING COMMENTS

We have shown how the attribute grammar programming
paradigm may be readily supported by adding four
combinators to the standard environment of a lazy
functional programming langauge. We have given
examples of the use of these combinators and have
discussed the advantages of the resulting programming
style. Perhaps the most promising future development
would be an investigation of the role of passages in
program transformation.

Acknowledgements

The author acknowledges the assistance of N.S.E.R.C.
of Canada, and of Stephen Karamatos, Dimitris
Phoukas, and Walid Saba of the University of Windsor.

386 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

REFERENCES
1. L. Augustsson and T. Johnsson, The Chalmers Lazy ML

Compiler. The Computer Journal 32 (2), 127-141 (1989).
2. J. W. Backus, Can programming be liberated from the von

Neumann style? A functional style and its algebra of
programs. Comm. ACM 21 (8), 613-641 (1978).

3. F. L. Bauer, B. Moller, H. Partsch and P. Pepper, Formal
program construction by transformation - computer-
aided, intuition-guided programming. IEEE Trans.
Software Engineering 15 (2), 165-179 (1989).

4. R. S. Bird, Algebraic identities for program calculation.
The Computer Journal 32 (2), 123-126 (1989).

5. R. M. Burstall and J. Darlington, A transformation system
for developing recursive programs. JA CM 24,44—67 (1977).

6. P. Deransart, M. Jourdan and B. Lorho, A Survey of
Attribute Grammars. Part III - Classified Biographv. Re-
port 417, INRIA (1985).

7. P. Deransart, M. Jourdan and B. Lorho, A Survey of
Attribute Grammars. Part I-Main Results on Attribute
Grammars. Report 485, INRIA (1986).

8. P. Deransart, M. Jourdan and B. Lorho, A Survey of
Attribute Grammars. Part II - Review of Existing Systems.
Report 510, INRIA (1986).

9. B. Edupuganty and B. R. Bryant. Two-level grammar as a
functional programming language. The Computer Journal
32 (1), 36-44 (1989).

10. R. A. Frost, Constructing programs in a calculus of
interpreters. Proceedings of the 1990 ACM International
Workshop on Formal Methods in Software Development
(1990).

11. R. A. Frost and W. Saba, A database interface based on
Montague's approach to the interpretation of natural
language. International Journal of Man-Machine Studies
33, 149-176 (1990).

12. R. Giegerich, Composition and evaluation of attribute
coupled grammars. Acta Informatica 25, 355-423 (1988).

13. R. Gupta, W. H. Cheng, R. Gupta, I. Hardonag and A. A.
Breuer. An object oriented VLSI CAD Framework. IEEE
Computer 22 (5), 28-38 (1989).

14. E. C. R. Hehner and B. A. Silverberg, Programming with
grammars: an exercise in methodology-directed language
design. The Computer Journal 26 (3), 227-281 (1983).

15. P. Hudak and P. Wadler, Report on the Programming
Language Haskell. Version 1.0. Available from the Com-
puting Science Department at the University of Glasgow
(1990).

16. J. Hughes, Why functional programming matters. The
Computer Journal 32 (2), 123-126 (1989).

17. T. Johnsson, Attribute Grammars as a Functional Pro-
gramming Paradigm. Springer Lecture Notes in Computer
Science 274, 155-173 (1987).

18. G. A. Jullien, S. Bandyopadhyay, W. C. Miller and R. A.
Frost, A modulo bit level systolic compiler. Proceedings
IEEE International Symposium on Circuits and Systems,
Portland, Oregon, pp. 457-460 (May 1989).

19. T. Katayama, HFP: a hierarchical and functional pro-
gramming based on attribute grammars. Proceedings of the
5th International Conference on Software Engineering,
pp. 343-353 (1981).

20. D. E. Knuth, Semantics of context-free languages. Math-
ematical Systems Theory 2 (2), 127-145 (1968).

21. D. E. Knuth, Semantics of context-free languages: cor-
rection. Mathematical Systems Theory 5, 95-96 (1971).

22. D. E. Knuth, Examples of Formal Semantics. Springer
Lecture Notes in Computer Science 188, 212-235 (1971).

23. P. Lipps, U. Moncke and R. Wilhelm, OPTRAN-a
Language/System for the Specification of Program
Transformations: System Overview and Experiences
(Proceedings of the 2nd Workshop on Compiler Compilers
and High Speed Compilation, Berlin, 10-14 Oct. 1988), ed.
D. Hammer. Springer Lecture Notes in Computer Science,
371, 52-65 (1988).

24. Luqi, Software evolution through rapid prototyping. IEEE
Computer 22 (5), 13-27 (1989).

25. U. Manber, Using induction to design algorithms. Comm.
ACM 31 (11), 1300-1313(1988).

26. K. Miriyala and M. T. Harandi, Analogical Approach to
specification derivation. Proceedings ACM/IEEE Fifth
International Workshop on Software Specification and
Design, pp. 203-210 (1989).

27. M. Moriconi, 1990 ACM International Workshop on
Formal Methods in Software Development. ACM
SIGSOFT (in the Press).

28. T. Reps and T. Teitelbaum, The Cornell program syn-
thesizer: a syntax-directed programming environment.
Comm. ACM 24 (9) 563-573 (1981).

29. H. B. Rubenstein and R. C. Waters, The requirements
apprentice: an initial scenario. Proceedings ACM/IEEE
Fifth International Workshop on Software Specification and
Design, pp. 211-218 (1989).

30. Y. Shinoda and T. Katayama, Attribute grammar based
programming and its environment. Proceedings, 21st
Hawaii International Conference on System Sciences, Kailu-
Kona, Hawaii, pp. 612-620 (1988).

31. D.Turner, A non-strict functional language with poly-
morphic types. Proceedings, IFIP International Conference
on Functional Programming Languages and Computer
Architecture, Nancy, France. Springer Lecture Notes in
Computer Science 201 (1985).

32. G. Uddeborg, A functional parser generator. Licentiate
Thesis, Chalmers University of Technology, Goteborg
(1988).

33. J. L. A. van de Snepscheut, Mathematics of Program
Construction. Springer Lecture Notes in Computer Science
375 (1989).

34. P. Wadler, The Computer Journal Special Issue on Lazy
Functional Programming 32 (2) (1989).

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 387

25-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

R. A. FROST

A P P E N D I X I Textual replacements to convert definitions in paper to executable Miranda code

The following textual replacements will convert all definitions given in the paper to executable Miranda code provided
that the definitions of the combinators given in Appendix II are available.

sx !"y"
1

T
1
<-

Note : The introduction of brackets

sx (uterm "y") eg si
$orelse
rstc
$u
$ d

EQ
when converting ! is owing to the fact that operators

!"&" becomes s i (uterm "&")

have i lower priority than function application.

Figure 11. Conversion to Miranda.

APPENDIX II Formal definitions of the combinators and ancillary functions in the programming language Miranda

terminal == [char]
interpreter == [([attribute], [terminal])]->[([attribute] , [terminal])]
att_direction ::= ATT_DIR [char]
att_id ' ::= ATID [char]
syntactic_sugar ::= EQ

fail :: interpreter
fail input = []

succeed :: interpreter
succeed input = input

term :: (terminal, [attribute]) -> interpreter
term pair = concat . (map (interp_term pair))

where
interp_term (t,atts) (inh, []) = []
interp_term (t,atts) (inh,(u:us)) = [(atts,us)], if u = t

= [] , otherwise
uterm x [] = []
uterm x ((atts, []) :rest> = (uterm x rest)
uterm x ((atts, (t :ts)): rest) = (atts, ts) : (uterm x rest), if t = x

= (uterm x rest) , otherwise

orelse : : interpreter -> interpreter -> interpreter
(pi $orelse p2) input = pi input ++ p2 input

Note : x == y introduces x as a synonym for the type y, i d : : t declares id to be of type t , the $ symbol indicates that the function is
defined as an infix operator, and '.' denotes function composition, ie (f . g) x = f (g x).

Figure 12. Formal definitions of the combinators term, uterm and o r e l s e .

388 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

CONSTRUCTING PROGRAMS AS EXECUTABLE ATTRIBUTE GRAMMARS

make_complex_interpreter name interp_ids syn_rules inh_rules (inh_atts, inp) =
res
where
res = [(applyrulestoself syn_rules inh_atts vvs, rest) I

(vvs,rest) <- hassparts interp_ids inh_rules ([inh_atts] ++ [[]]) inp]
where
apply_rules rules item = (apprule (syna,r,latts) item I (syna,r,latts) <- rules]
apprule (syna,r,latts) item = r (getitems latts item)
getitems attlist v = [pick attn (v ! int_pos) I (int_pos, attn) <- attlist]
pick attn list = [v|v <- list ; name v = attn] ! 0
hassparts interp_ids inhrs atts inp = apply_interps interp_ids inhrs atts inp

where
apply_interps [] x y inp = [([],inp)]
apply_interps ((obj,interp_id):interp_ids) (inhr:inhrs) atts inp =

[(vl:v2,res) I (vl,inpl)<- interp_id [((apply_rules inhr atts), inp)];
(v2,res) <- apply_interps interp_ids inhrs (atts ++ [vl]) inpl]

applyrulestoself syn_rules inh_atts vvs =

9
where
g = apply_rules syn_rules ([inh_atts ++ g] ++ [g] ++ vvs)

sort_out_rules_and_make_complex_interpreter name interp_ids rules =
concat . (map (make_complex_interpreter name interp_ids syn_rules inh_rules))
where
syn_rules = [((int_pos,attn),c,d) I ((int_pos,attn),c,d)<- newrules;

(intjpos = 1) \/ (int_pos = 0)]
(x:y:inh_rules) = update empty_inh_rules newrules
newrules = [((pos_of p ((lhs succeed)++interp_ids),attn),attf, change_all latts)

I ((p,attn) , attf,latts)<-rules]
change_all latts = [(pos_of p ((lhs succeed)++interp_ids),attn)|(p,attn)<-latts]
pos_of(p,updown)((obj,int):interp_ids) = 0, if (p = obj) & (updown = ATT_DIR "down")

= 1 , if (p = obj) & (updown = ATT_DIR "up")
= 0, if (p = obj) & (updown = ATT_DIR "of")
= -100,if * (member (map first interp_ids) p)
= (pos p interp_ids) + 1,otherwise
where
pos x ((obj,int):ys) = 1 ,if x = obj

= 1 + (pos x ys),otherwise
first (a,b) = a
empty_inh_rules = [] : empty_inh_rules
update x [] = x
update x (r:rs) = update (addrule x r) rs
addrule x ((int_pos,attn),c,d) = (upto int_pos x)

++ [((int_pos,attn),c,d) : (x!int_pos)]
++ (after int_pos x)

upto O x = []
upto n (x:xs) = x : (upto (n-1) xs)
after 0 (x:xs) = xs
after n (x:xs) = after (n-1) xs

rule num (pid,attn) eq f latts = ((pid,attn),f,latts)
(constructor $u obj) = ((pid,ATT_DIR "up"), name (constructor undef))

where [(pid,succeed)] = obj succeed
(constructor Sd obj) = ((pid,ATT_DIR "down"), name (constructor undef))

where [(pid,succeed)] = obj succeed
= [(-10,x)]

= [(2,x)]

= s o r t _ o u t _ r u l e s _ a n d _ m a k e _ c o m p l e x _ i n t e r p r e t e r name

Note : The funaion name is denned independently for each passage. For example, for passage#2. name would be defined as follows :
name (FIB x) = ATID " f i b "
name (PFIB x) = ATID " p f i b "
The function name is used by the attribute grammar combinators to identify attributes by type.

l h s
sO
s i
e t c
rstc

X

X

X

Figure 13. Formal definition of the combinator r s t c and of the associated operators r u l e , u, d, l h s sO, sO, etc.
THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 389

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/376/348233 by guest on 10 April 2024

