
Short Note

A note on HEAPSORT

In The Computer Journal33 (3), 1990, Xunrang
and Yuzhang presented a new algorithm for
HEAPSORT to reduce the number of com-
parisons from 2n lg n comparisons to \n lg n in
the worst casef. By recursing on their technique
we show how the cost can be reduced to nlgn.
+ nlglgn comparisons. Combining this with
another known technique that has the same
complexity, we shall achieve the optimal sol-
ution for deleting the maximum element from a
heap. Using this for sorting we get slightly less
than nlgn + nlg*n comparisons.

Received October 1990, revised January 1991

1. Introduction
In 1964 Williams9 introduced a sorting al-
gorithm called HEAPSORT that sorted in
O(n lg n) time using only a constant amount of
extra storage. This is asymptotically optimal
for the sorting problem if we have a
comparison-based algorithm. In fact the mini-
mum number of comparisons to sort n
elements is n\gn + O(n), while Williams's al-
gorithm took 3nlgn. Later in 1964, Floyd6

reduced the cost for heap creation so that the
HEAPSORT algorithm runs in 2nlg« com-
parisons. This is also the version that can be
found in most text books. In 1987 Carlsson2

gave an algorithm that used only n\gn +
nlglgH comparisons. Gonnet and Munro7

showed that the crucial delete-max operation
can be performed in lg« + lg*« comparisons,
which will also affect the time for
HEAPSORT. lg*n is the iterative logarithm
denned as 0 if n ^ 1 and 1+lg*(lg«) otherwise.

In 1990 Xunrang and Yuzhang gave a
method to reduce the cost from 2 lg n to | lg n10.
This result is, of course, superseded by the
results of Carlsson and of Gonnet and Munro.
However, there are some ideas in their article
that help to explain the complexity of
HEAPSORT. In this note we will exploit the
ideas of Xunrang and Yuzhang and combine
them with another idea to achieve the optimal
algorithm. This presentation starts from a
conceptually simple idea, using comprehensive
transformations, to achieve a fairly compli-
cated algorithm. Hopefully, this will be easier
for the reader to understand than the original
papers.

2. Data Structure and Algorithms

The (max-) heap is a data structure that can be
viewed as a binary tree where all levels are full,
except maybe for the last one. In the last level
the leaves are stored as far to the left as
possible. The tree can be stored implicitly in
an array, where a node at position k has its
children at positions Ik and 2k+\, and its
parent at [k/2\. The height of such a heap is
[lgnj. Furthermore, any node has a key value
that is at least as big as its children and not
bigger than its parent. This fact makes all
paths from a leaf to the root into a sorted list
in which we can perform a binary search.
More details on heaps can be found in almost
all introductory text books on data structures
and algorithms cf.1

t In this paper lg n will denote log2 n.

A HEAPSORT algorithm starts by building
a heap from the elements that have to be
sorted. This is done by first considering the
last node that has a child. We can regard this
as a heap where the children of the root are
heaps, but the root itself might violate the
heap property. Restore the heap property of
the heap and repeat this for all elements that
have any children level by level. This heap
creation will take linear time. After that, the
maximum element, which is now at the root of
the heap, is swapped with the last leaf and the
heap property is restored in logarithmic time.
The extraction of the maximum element is
repeated until all elements are removed in
decreasing order. They will now be stored in
ascending order in the array. The crucial part
of the sorting is the restoring of the heap after
a deletion. This is done by first swapping the
largest element (the root) with the last element
in the array. The largest element is at this
point not at the root of the tree, so we
exchange the root with its largest child. Now
the heap property might be violated one level
further down in the heap, and we have to
determine if the element should stay or be
swapped with its largest child. This will in the
worst case give two comparisons on each level
of the heap, which gives a total of 21gn
comparisons.

In the algorithm of Xunrang and Yuzhang
they used the observation that it is not
necessary to do two comparisons on every
level. Instead, the children of the root are
compared, and the largest is moved up to the
root. This hole is filled by its largest child
recursively k times. Then we compare the last
leaf with the latest promoted element. If it is
larger, we perform an insertion in the heap
above this hole by repeatedly swapping it with
its smaller ancestors. If it is smaller, we use
Williams's algorithm for rearranging the heap
rooted at the hole on level k.

The cost for this is first k comparisons to
reach level k. If the last leaf goes in the top
part of the heap (above the hole), we have at
most k more comparisons. If the last leaf goes
in the bottom part of the heap the extra cost
will be at most 2 on each level, and there are
\gn — k levels. The worst-case cost for each
restructuring is thus not more than the
maximum of Ik and k + 2(lg n — k) = 2\gn—k,
which is minimized to flgn when fc = §lg«.
This is clearly better than the cost for using
Williams's algorithm.

The cost can be further reduced by using
something better than Williams's algorithm in
the bottom part of the heap. Xunrang and
Yuzhang have devised such an algorithm, as
we showed above. This will give us a worst-
case cost for the delete max of max (2k, k +
f(lgn — k)). The minimum for this is fign for
it = flg/i. Again, we can apply this new al-
gorithm, recursively, to get an even better
bound. By the algorithm, where the same
algorithm is used recursively if the last leaf is
in the bottom part, a delete-max from a heap
of height h will cost at most:

procedure RESTORER, n: integer; x: element-

1\h) = 2 if/i = 1
max (2k, k + T(h - k) + 1) otherwise

If we select k to be h/2 the cost to insert an
element in the top part of the heap will be less
expensive than to restructure the bottom part.

vary, t, k: integer; stop: boolean;
begin

j:= 2*i; t:= 0; stop•: = false;
Levels: = [lg(n div i)\;
k:= Levels div 2;
while (j < n) and not stop do
begin

t:=t+\;
if field[j+ \}.key > = field\j\.key then

y: = 7+l;
if t < = Levels-k then
begin

fieldy div 2].key: = field[j\.key;
j-=2*r,

end
else begin

if field\J\.key < = x then stop:= true
else begin

fieldy div 2].key:=fieldy\.key;
j-=2*j;
k:=kdiv2;

end;
end;

end;
if (J = ri) and not stop then
fieldy div 2].key: = field\J\.key
else

j : = j div 2;
while j > i do

if x > fieldy div 2].key then
begin

fieldy\.key: = fieldy div 2].key;
j : = jdi\2

end
else

i- = j \
fieldy\.key:= x;

end; (***RESTORE***)
Procedure HEAPSORT(field: elementarray;
n: integer);
vari levels, height, bound .integer;

temp: elementtype;
begin

for i: = n div 2 downto 1 do
RESTORE(i,nfield[i\.key);

for i: = n—\ downto 2 do
begin

lemp:=field[i + i].key;
field[i +\\.key: = field[\].key;
RESTORE(I, i,temp)

end;
temp: = field[l].key;
field[\].key:=field[2].key;
field[2].key:= temp;

end; (*HEAPSORT*)

Fig. 1. The new efficient HEAPSORT
algorithm with a worst case of n lg n + n lg
lg n comparisons. The elements to be sorted
must be stored in an array at positions
1-/I, where the array and n are given
as parameters to HEAPSORT. In the
RESTORE procedure [\g{n div i)\ has to
be computed. The best way of doing this
is machine-dependent, and is left to the
implementer.

The cost is in that case given by:

!

2 if A = 1

—\-T(-)+\ otherwise

410 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/410/348263 by guest on 09 April 2024

SHORT NOTE

which is h + lgh + O(\). This gives a total cost
for sorting of n lg n + n lg lg n + O(n), which is
the same as for the algorithm by Carlsson.2

Carlsson, however, uses a different tech-
nique to achieve this bound. By observing that
each path from a leaf to the root is sorted, a
binary search can be used in such a path. The
algorithm, described in the terminology above,
is to let k = h but use a binary search upwards
to find the place to insert the last leaf. That is,
we find this special path of maximum children
all the way down to the leaves at a cost of h
and then a binary search is performed with the
last leaf, costing lg h. This gives a total cost of
lgn + lglgn + O(l) for the operation.

When both of these ideas are combined,
find the path k steps and perform a binary
search upwards, to give a cost that is at most:

1\h) = \ if/i=

y k+T(h-k)+l) otherwise

If we select k = h — lg h the cost for searching
upwards will be at most h, and thus the cost
will be given by:

i-lg/i+7Xlg/i)+l otherwise

which has a solution of h + lg* h + 0(1). This is
exactly the algorithm given by Gonnet and
Munro.7 This algorithm can be slightly refined
by balancing the costs for insertion and
rebalacing,4 but this will only affect the
constant term. Gonnet and Munro also
showed that this is the optimal cost for deleting
the maximum element in a heap.

It is interesting to note that for the average
case it is best to find the path of maximum
children all the way down to a leaf, and then
compare upwards using a linear search. For a

random heap the average cost for a delete-
max operation will be slightly less than h + 1.3
comparisons, as shown by Carlsson.3 When
this strategy is used for sorting, Carlsson also
showed results indicating an average number
of comparisons, that is, only nlgn + OAn.
Wegener showed that this algorithm has a
worst case of at most 1.5/ilgn comparisons,8

which has been proven tight by Fleischer.
As can be noted, the worst case for sorting

can be less than the sum of the worst cases for
all different sizes. This depends on the fact
that not all delete-max operations can be of
maximal cost.

3. Conclusion

In this paper we have taken the result of
Xunrang and Yuzhang for HEAPSORT and
improved on their ideas. It has yielded a new,
and hopefully more comprehensive, way to
describe the best algorithms already published
for the delete-max operation in a heap, and
also for sorting using repeated deletions from
a heap. One of the intermediate algorithms
had a worst-case complexity of n lg « + n lg lg n
without using an explicit binary search. It has
proved to be much faster on average than the
best previously presented algorithm with the
same worst case. They have been implemented
in PASCAL on a SUN-3/80 and the new
algorithm is approximately 2.5 times faster
than the old worst-case algorithm and only
50% slower than the best average-case al-
gorithm on the average (see Fig. 1).

S. CARLSSON
Department of Computer Science,
Lulea Technical University,
S-951 87 Lulea, Sweden

References
1. A. V. Aho, J. E. Hopcroft and J. D. UU-

man, Data Structures and Algorithms.
Addison-Wesley, Reading, Mass. (1983).

2. S. Carlsson, A variant of heapsort with
almost optimal number of comparisons.
Information Processing Letters 24 (1987),
247-250.

3. S. Carlsson, Average-case results on heap-
sort. BIT 27 (1987), 2-17.

4. S. Carlsson, An optimal algorithm for
deleting the root of a heap. Information
Processing Letters 37, 317-320 (1991).

5. R. Fleischer, A tight lower bound for the
worst case of Bottom-Up Heapsort. Pro-
ceedings 2nd International Symposium on
Algorithms, Tapei, Taiwan, Lecture Notes
in Computer Science 557, Springer-
Verlag, pp. 251-262 (1991).

6. R. W. Floyd, Algorithm 245 -Treesort 3.
Comm. ACM 7 (12), 701 (1964).

7. G. H. Gonnet and J. I. Munro, Heaps on
heaps. SIAM Journal on Computers 15
(4), 964-971 (1986).

8. I. Wegener, Bottom-up-Heap Sort, a new
variant of Heap Sort beating on average
Quick Sort. Proceedings, Mathematical
Foundations of Computer Science 1990,
Banska Bystrica, Czechoslovakia pp.
516-522 (1990).

9. J. W. J. Williams, Algorithm 232. CACM
7 (6) 347-348 (1964).

10. G. Xunrang and Z. Yuzhang, A new
HEAPSORT algorithm and the analysis
of its complexity. The Computer Journal
33 (3), 281-282 (1990).

Announcements

14-16 OCTOBER 1992

ICDT 92, International conference on Database
Theory, Berlin, Germany

ICDT 92 is the successor of two series of
conferences on theoretical aspects of databases
that were formed in parallel by different
scientific communities in Europe. The first
series, known as the International Conference
on Database Theory, was initiated in Rome in
1986, and continued in Bruges (1988) and
Paris (1990). The second series, known as the
Symposium on Mathematical Fundamentals
of Database Systems, was initiated in Dresden
in 1987, and continued in Visegrad (1989) and
Rostock (1991). The merger of these confer-
ences should enhance the exchange of ideas
and cooperation within a unified Europe and
between Europe and the other continents. In
the future, ICDT will be organised every two
years, alternating with the more practically
oriented series of conferences on Extending
Database Technology (EDBT). ICDT 92 is
organised by Fachausschuss 2.5 of the
Gesellschaft fur Informatik, in cooperation
with EATCS and ACM.

Topics

• Data models and design theory
Dependencies and constraints

Incomplete information
Deductive databases
Complex objects
Distributed and heterogeneous databases
Active database systems
Parallelism in databases

• Query languages
Updates and transactions
Database programming languages
Concurrency control and recovery
Complexity and optimisation
Data structures and algorithms for data-
bases
Fundamentals of security and privacy

For further information contact:

Joachim Biskup, ICDT 92, Institute fur Inf-
ormatik, Universitat Hildesheim, Samelson-
platz 1, D-W-3200 Hildesheim, Germany. Tel:
+ 49-5121-883 730. Fax: +49-5121-860475.
e_mail: biskup@infhil.uucp (mcsun!unido!-
infhil! biskup)

Richard Hull, ICDT 92, Computer Science
Department, University of Southern Cali-
fornia, Los Angeles, CA 90089-0782, USA.

Tel: +1-213-740-4523. Fax: + 1-213-740-
7285. e-mail:hull@cse.usc.edu.

As before, the proceedings of ICDT 92 will be
published by Springer-Verlag, and will be
available at the conference.

15, 16, 17 OCTOBER 1992

European Studies Conference, Omaha,
Nebraska

Plan to attend the 17th annual Euro-
pean Studies Conference, sponsored by the
University of Nebraska at Omaha's European
Studies Committee and College of Continuing
Studies. ECS 92 will be an interdisciplinary
meeting with sessions devoted to the scholarly
exchange of information, research methodo-
logies and pedagogical approaches.

For more information call the University of
Nebraska at Omaha - European Studies Con-
ference Program Coordinators: Professor
Bernard Kolasa (402) 554-3617, Professor
Patricia Kolasa (402) 554-3484; or write to:
University of Nebraska at Omaha, College of
Continuing Studies, UNO's Peter Kiewit
Conference Center, 1313 Farnam, Omaha,
Nebraska 68182-3061.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 411

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/4/410/348263 by guest on 09 April 2024

