
Formal methods - Mathematics, Theory, Recipes or what?

J.COOKE
Department of Computer Studies, Loughborough University of Technology, Loughborough, LEI I 3TU, UK

The term 'Formal Methods' evokes may different reactions. To some it is seen as 'an unnecessary and over-
mathematical level of complication in the program development process' or something which 'is very nice but really has
nothing to do with the kind of programs we write'. For many in computing science it is regarded as being an important
step to establishing programming as a proper, well-founded engineering discipline, as opposed to the largely intuitive
cottage industry from whence it grew. In educational circles it is often, mistakenly, equated with theory and
occasionally, by the purists, as an activity which required rather tedious attention to detail but which no longer presents
an intellectual challenge — apart from the fact that many practitioners cannot actually apply the technology. This short
paper attempts to give some insight into the activities covered by the blanket phrase 'Formal Methods', to clarify some
of the terminology used and to place current technology in an evolutionary context.

Received June 1992

1. SCENARIO
The 'science' of computers and computing has grown
out of several diverse disciplines, notably mathematics,
electronics and information science. The associated
technology has developed at a phenomenal rate, and as
with most practical subjects a proper, reasoned basis for
computing did not start to emerge until after many
systems had been built and successful results achieved.
One consequence of these factors is that the subject is
plagued with clashes of terminology (and there are some
inconsistencies even across the papers to be found in this
issue*). There are also differences in the way that computer
users and professionals view the wide spectrum of
activities that fall within 'computing'. In particular their
perception of what is theory and what is practice or
application, and the understanding of what constitutes
Formal Methods, differs widely.

It is not so long ago that you were not regarded as a
real computer person unless you only wrote in machine
code, or maybe assembler, and produced long programs
that completely occupied a huge mainframe all night, or
better still, for several days. Today, computers are to be
found in almost every sphere of human activity. Indeed,
computer systems have become so powerful, and vary so
greatly, that very few systems are what they seem;
typically, the user only sees the outer layer of a hierarchy
of embedded systems. By way of analogy consider a child
building a house, or a car, or...(almost anything) out of
Lego, and a person operating a moulding machine
making Lego bricks. They are performing very different
tasks, but both could be regarded as Lego builders.
Extending the analogy one step further, suppose another
child was playing with a Lego car built by the first child.
It is the second child that is the analogue of the typical
computer user. Another analogy, which emphasises the
distinction between provider and user, concerns motor-
ing. Compare a computer, a small personal computer
say, with a private motor car. Many people can drive a
car. Some drivers, but relatively few, carry out periodic
maintenance of their car. Unless they also happened to
be involved with the motor industry none of these people
would regard himself as an automotive engineer. Indeed,

* This special issue occupies two physical issues, namely 35(5) and
35(6).

neither would many of those who actually work on the
assembly line at a car production plant. In marked
contrast the vast majority of personal computer owners
would claim, with some justification, that they can
program. It is then a small step to claiming to be
programmers (almost by definition) and then, taking a
deep breath, that they are software engineers (because
they build programs, i.e. software!).

Here is where we must make a stand and take issue
with such a claim. Building something for one's own use
(the child's Lego model, a small program for processing
household accounts, etc.) is completely different from the
production of an artifact which is sold to or used by a
'customer'. The question of quality, of fitness of purpose,
must be addressed. Within this scenario, given an
adequate statement of requirements, Formal Methods
can be used by the Software Engineer in the construction
of programs and systems. The preparation of initial
specifications is properly in the domain of requirements
engineering (although software engineering tools may be
used in this process). Poor specifications can hide or omit
essential aspects of the problem to be solved, and the use
of formalisms per se does not necessarily help in this
respect; indeed, the use of unsuitable notation may
inhibit clarity. Additionally, specifications should be
suitably abstract and free from factors which may
influence the mode of solution.

In this paper an attempt is made to present a consensus
of what exactly constitutes Formal Methods and to
clarify some of the terminology in common, though not
universal, usage.

2. MATHEMATICS AND THEORY
Associated with the natural (and indeed, the social)
sciences are theories which have been devised in attempts
to explain some of the phenomena which occur in these
various areas of study. In many cases these theories are
built on a conceptual model of reality, on a mathematical
idealisation; and hence the conclusions that follow from
the initial formulations are logical consequences within
the mathematical systems used. If the 'answers' do not
fit well enough with observation, the formulation is
modified and another derivation attempted. Almost

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 419

27-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/419/402196 by guest on 10 April 2024

J. COOKE

always the mathematics approximates reality (in the
sense that " or 3.141 ...approximates n). In computing
the situation is different. Computers are inherently
mathematical machines, they should behave in a precisely
defined fashion. If they do not then you call the engineer.
They are therefore their own mathematical model. Of
course there are models of computation - Turing ma-
chines, Unlimited Register Machines, etc. - but these
only differ in 'power' by virtue of real computers
running out of bits; they do not give inaccurate answers
in the same way as would result from using wrongly
calibrated measuring instruments, or an inappropriate
quadrature formula.

What computers (can) do is determined by math-
ematics. There are theories of computability, of finite
machines, etc., most of which show that certain things
cannot be done by computer. We know, at least in
principle, exactly what can be computed - given enough
time on a large enough machine - so there is nothing else
to do! Clearly this is not the case. Computers are well
understood, their use in solving problems is not. It is in
the area of problem solving that Formal Methods plays
its part; it concerns the logical link between a model of
the application and (a model of) the computer.

3. FORMAL METHODS
To keep our argument simple we restrict consideration to
the construction of a single program, rather than a suite
of programs or a system, although all that follows can be
generalized to deal with these situations as well. For the
program to be acceptable, be fit for its intended purpose,
it must satisfy its requirements.* In the past this has been
done by demonstrating that the program worked
successfully in a handful of cases (perhaps a large
handful but still a relatively insignificant proportion of
the total number of different computations possible for a
program of any real use).

Even the most experienced and optimistic programmer
will concede that the number of test cases that can be
demonstrated represents little more than a drop in the
ocean. They will recognise that in all probability the
'right' test cases-i.e. those that show that a wrong
calculation has been performed - will be missed. This
procedure is clearly not satisfactory even though for
many years it was the best we could do. To be able to
reason in a logical way about what a program actually
achieves and relate this to its requirements necessitates
that the specification should be formally expressed in
much the same way as programs are. There are
differences; a program is not normally acceptable as a
specification. Specifications are not generally thought of
as being executable, in the procedural sense, and ideally
should not include bias to any strategy that may be
adopted in designing an appropriate program. To be able
to make progress down this track we need the speci-
fication to be written in a formal way (which may not be
regarded as mathematical but, by virtue of it being
sufficiently clear and susceptible to logical reasoning,
could be 'encoded' into an appropriate mathematical
notation).

As already stated, the initial specification amounts to
a statement of the problem, in terms of some conceptual

* From what has been said earlier, these requirements have to be
those generated by requirements engineering.

model of the problem domain. Its construction, and its
validation, is properly part of requirements engineering.
Indeed, there is a very strong argument which says that
the drawing up of a complete, formal, specification is in
itself an important and worthwhile exercise even if it is
not then used directly in program construction. We
wholeheartedly agree, but stress that while such a
specification is necessary for Formal Methods to be
applied (or, arguably for any 'Software Engineering'
activity to begin) neither its existence nor its construction
constitutes a Formal Method. The formal specification
in effect provides an interface for the passing of
information from the requirements engineer to the
software engineer.

The term 'Formal Methods' alludes to the facility to
be able to reason formally (in a mathematically precise,
logical way) about properties of programs and systems.
It covers not only programming languages and the
common data types, their operators and their properties,
but also logic, particularly the notion of deduction - ' i f
something is true then something else is true'. Galton
gives an introduction to the logical concepts used to
reason about conventional programs.4

In the most common situation we envisage that a
software engineer is given a specification, he devises an
implementation, and then he provides justification,
ideally by means of a correctness proof, that his
implementation (his program) works, see for example
Ref. 7.

Program justification is not easy. Tools to aid
reasoning and the construction of proofs are becoming
available, but the complexity of such tools - and the
need to make them sufficiently easy to use - has been
greatly underestimated. These obstacles have motivated
investigations into an alternative direction from which to
attack this problem. The idea is to work directly with the
specification in an attempt to transform it into an
executable program - in the appropriate programming
paradigm - whilst preserving its essential logical inter-
dependencies.1

In both cases progress is being made, but it has to be
admitted that relatively little work has been done with
regard to operational requirements. This is in direct
contrast to the satisfaction of functional properties
which, in the eyes of many theorists and formalists, has
essentially been solved. However, the application of
existing theory, via the right CASE tools, is still not with
us. Nevertheless it is important to voice the opinion that
to boycott the use of any of the, albeit abstract (as yet
unimplemented?) technology until all the answers are
available is not a sensible course of action.

So 'Formal Methods' (only) provides a framework in
which programs can be developed in a justifiable way. It
does not dictate, or even advise, on how manipulations
should be applied. There is still a need for the program
developer to make decisions and to determine ap-
propriate programming strategies. The difference is that
now there is a logical harness in which designs can be
assessed.

4. EVOLUTION AND MATURITY
As theories mature and evolve into applicable technology
and engineering they become more widely known and, if
not challenged or superseded, are absorbed into the

420 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/419/402196 by guest on 10 April 2024

FORMAL METHODS-MATHEMATICS OR WHAT?

fabric of the discipline. Moreover, what was once
regarded as being very abstract and of little use now finds
application, the abstraction itself is regarded as a benefit,
encapsulating many detailed instances in a single simple
concept.

Taking some liberties we draw rough analogies between
mathematics, computing and car manufacture (again!).
Each field has many subdivisions but we shall only use
three large, and uneven, bounds within each field.

Firstly, Mathematics:
(1) Pure Mathematics
(2) Applied Mathematics
(3) Engineering Mathematics

Pure Mathematics (using the term in the University
context, so that much school pure mathematics, such as
ordinary calculus, may be viewed as applied mathematics)
is very abstract, being concerned with hypothetical
entities having strange properties and interrelationships
- and is often studied 'just for its own sake'. Put another
way one may view Pure Mathematics as the search for
abstraction, seeking common theories that describe
diverse phenomena. Much of this work has subsequently
found application in modelling situations that occur in
the natural sciences as well as more directly in, say,
dynamical systems as studied by the applied math-
ematician, who is quite happy to use the theorems
inherited from the pure mathematician and takes for
granted that their foundations are sound. One stage
further down the line is the engineer, who uses the
formulae presented to him by the applied mathematician,
again taking their validity on trust.

In a idealised computing context the hierarchy might
be:
(1) Theory
(2) Formalism
(3) Standard Practice
The formalists utilise theory, and suitably mature -
standard?-methods should be underpinned by formal
arguments. This is similar to the way that applications
programmers take for granted that the compilers they
use translate correctly; they certainly do not concern
themselves with the intricacies of how high-level program
constructs are realised in the relevant machine code.

Thirdly, car producers and users:
(1) Car Designer/Engineer
(2) Car Builder/Engineer
(3) Driver
Here there are additional contributions from the middle
player. The builder uses the innovations from prototypes,
etc. and applies his skill to mass produce a marketable
vehicle in which the eventual driver has implicit trust and
which reflects the aspirations of the designer. The driver
is usually unconcerned with details of engineering
principles, aerodynamics, fuel technology, etc.

Closer to home there has been rationalisation in the
way we view language technology. Back in 1960 BNF
was used to define/describe the loose syntax of Algol (60).
No doubt there were those who regarded such formalism
as totally unnecessary claiming that it was far too
complicated for programmers to appreciate and only
added an extra level of detail which in any case could
adequately be described in simple English. Today it is
almost taken for granted that the syntactic structure of a

programming language, is indicated by using BNF (or a
close variant), or the 'railway diagram' equivalent.
Unfortunately when the notation was first popularised
many people did not understand its limitations or its true
purpose. (In the 1960s every book on language theory
was almost without exception really a book on syntax.)
There are still those who try to use BNF in inappropriate
situations and then criticise it for failing. A collection of
BNF rules/productions merely defines the syntactic
structure of a context-free language, and very few aspects
of real programming languages are context free. Any
legal Pascal program satisfies the syntax rules laid down
in the standard, but an arbitrary string of symbols which
satisfies the rules is not necessarily a valid Pascal
program; extra conditions must be satisfied. Never-
theless, the technology has now advanced to the stage
where the parsing phase of a compiler can be routinely
generated from formal descriptions. No compiler writer
actually needs to write a parser from scratch (although
he should know about grammars) but we must guard
against the eventuality of nobody being able to.

On the other hand, BNF says absolutely nothing
about what a valid program actually means, its dynamic
semantics. Again there has been a tendency to run for the
' we use natural language' umbrella, despite the fact that
this aspect of programming language definition is perhaps
several orders of magnitude more involved than its
syntax. Today there exist several recognised notations
for the specification of programming language semantics,
but the associated technology for the generation of
compilers is not 'industrial strength'. Doubtless this will
come.

Still on the subject of programming languages;
although procedural programs are very familiar to most
of today's practising programmers, it is gradually being
accepted that they are unnecessarily complex entities;
functional programs are easier to construct from formal
specifications, and to reason about. Moreover, if
a procedural program is required - for reasons of
' efficiency' or whatever - it can be derived from a
functional form. To proceed in this direction is far more
logical, and circumvents the need to derive complex
expressions such as loop invariants which are required in
retrospective verification of procedural programs. Per-
haps we shall soon see a change here, unless something
better comes to light in the mean time.

5. STANDARDISED DEVELOPMENT

In the market place today there exist many so-called
methodologies (or methods* - we shall try to steer clear
of the need to define either term) each of which is
essentially a collection of step-by-step procedures for
analysing a problem and developing, in a rather rigid
fashion, a program or system that 'solves' the problem.
This sounds like a panacea, and for certain well-
understood, well-defined and simple classes of problem it
works. Indeed, it works so well that some rather
uncharitable people have described these methodologies
as 'programming for non-programmers'.

Being largely prescriptive, these methodologies allow

* The distinction to be made here is one of degree. Recall that
'VDM' is the 'Vienna Definition Method', but here 'method' only
characterises the stages of development. The developer has to input a
considerable amount of experience and invention.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 421

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/419/402196 by guest on 10 April 2024

J. COOKE

little variability and could, given time, be substantially
automated. Such a move can be interpreted either as
lifting the level of programming language or making
descriptions (specifications?) executable. In either case,
in order to ensure that adequate information was
available and could be extracted by the programming
system, the notations would have to become more formal
- not necessarily using weird symbols but at least
requiring the use of restricted natural language with
agreed meaning - and, consequent on automation, we
would need fewer programmers. Standard (structured)
methods give standard answers to standard problems.

Currently the applicability of these methodologies is
limited; they are not formally based and hence ambiguity
is possible, but formal reasoning is not. On the other
hand they are easy to use. Work is being done to make
their foundations secure, so perhaps a marriage between
the two camps may result, in well-founded, widely
applicable and usable methods.9 Perhaps this will help
circumvent the understandable difficulty that many have
in approaching Formal Methods in their current guise.
No matter how the link is achieved, the outcome may
well be that certain Formal Methods evolve into more
prescriptive, more specialised, standardised development
strategies supported by suites of CASE tools.

6. TERMINOLOGY AND SUMMARY

The use of Formal Methods in the derivation of programs
from formal specifications assists greatly in the identi-
fication of (a) errors that derive from the mis-com-
prehension of the original problem and (b) errors that are
introduced by the programmer. They are not merely
concerned with using a formal notation, although such
notations bridge an important gap between requirements
engineering and software engineering.

The creation of a formal specification is, of course, a
non-trivial exercise. A specification defines the external
characteristics of a program/system; it includes pre-
requisites demanded of the inputs, it gives the expected
relationships between outputs and inputs, it can be very
precise about any permitted degree of variability which
may be acceptable, it can include details of certain
situations which are never to occur and other which must
(eventually), it can even allow non-deterministic activity,
but the descriptions themselves must be unambiguous. In
expressing these requirements the specifier will almost
inevitably make explicit reference to abstract data types
to represent his model of the 'outside world'. These may
be such things as lists of integer values, and these objects
will also need proper definitions if any formal reasoning
is to be performed with them3. Specifications should not
include bias towards a particular form of solution - it
should permit the use of any appropriate programming
paradigm including logic(al), functional, parallel, object-
oriented programs, etc.

Validation of a specification, checking that the
intended system has been specified, can be greatly assisted
if the specification can be run, either by direct execution
or by translating it into a suitable logic programming
language (see e.g. Ref. 8). Such 'prototype' imple-
mentations must be capable of exhibiting all possible
functional behaviour allowed by the specification; they
are thus unlikely to be efficient enough for practical use
and will not satisfy operational requirements. Even if the

specification is not to be used in program derivation it
can be used in the generation of test data.6

The validation of a program (in contrast to its
verification, see below) is concerned with whether a
program satisfies the language definition - whether it is
acceptable to the compiler. This process can be carried
out by referring only to the rules of the programming
language which are, hopefully, faithfully represented in
the compiler.

Verification of a program requires a demonstration
that the program code (or a design for the program from
which the actual code can be routinely obtained) actually
satisfies the specification. This can either be done,
retrospectively, by proving an appropriate correctness
theorem, or implicitly by the use of transformation rules
which are known to 'preserve meaning'. The process of
moving, in stages, from a specification to the final code
is variously called refinement (purifying the abstract
specification to remove vagueness) or reification (making
more concrete, more directly implementable or execut-
able) see Refs 2 and 10. In mathematical terms we move
from the specification of a relation - which may allow
various different valid outcomes - to a function which
delivers a single result. To perform a non-trivial program
derivation in a fully formal way is likely to necessitate the
use of machine support, either to check the manipulations
or to actually carry them out. Until such support is
generally available we shall often have to be content with
rigorous arguments ('rigour', stiffness, meaning being
capable of logical proof). So, if a program is sufficiently
important to warrant the extra expenditure involved, a
rigorous derivation could be incrementally checked by
filling out the proof details until a completely formal
argument was produced.

Using Formal Methods therefore amounts to being
able to argue logically about the correctness of program
development. The process encourages formalisation
earlier in the programming activity rather than later. It
embodies the application of theory, such as in the
removal of recursion, and embodies the formalisation of
(verified) folklore. The topic is still maturing and
promises to make a substantial body of (suitably abstract)
theory accessible through a new generation of CASE
tools.

Most of the claims pertaining to the relatively high
cost of program development using Formal Methods,
and the difficulties in communicating the meaning of
formal specifications to clients have been refuted (see
Ref. 5), but it is true that a firm understanding of the
basic concepts involved and facility with the notation
only become established by regular use over a period of
time. Companies will (continue to) be disappointed if
they send selected employees on short courses on Z or
VDM and then expect them to apply Formal Methods
fully and expertly to significant projects upon their
return. Indeed, it is likely that widespread and routine
use of Formal Methods will not become common practice
until the educational sector produces not just Pascal,
Ada and C hackers but significant numbers of qualified
computing students for whom specification languages
are as natural as programming languages, and who can
put forward reasoned arguments that justify all the steps
taken during program construction. Formally engineered
programs are quality products, and their production
requires time and expertise.

422 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/419/402196 by guest on 10 April 2024

FORMAL METHODS - MATHEMATICS OR WHAT?

REFERENCES
1. E. A. Boiten, H. A. Partsch, D. Tuijnman and N. Volker,

How to produce correct software - an introduction to
formal specification and program development bv trans-
formation. To appear in Computer Journal 35 (6) (1992).

2. T. Clement, The role of data reification in program
refinement: origins, synthesis and appraisal. Computer
Journal 35 (5), 451-459 (1992).

3. H. Ehrig, B. Mahr, I. Classen and F. Orejas. Introduction
to algebraic specification, part 1: formal methods of
software development. Computer Journal 35 (5), 460-467
(1992).

4. A. Galton, Classical logic: a crash course for beginners.
Computer Journal 35 (5), 424-430 (1992).

5. A. Hall, Seven myths of formal methods. IEEE Software
7(5), 11-20(1990).

6. I. J. Hayes, Specification directed module testing, IEEE
Trans. SE 12(1), 124-133 (1986).

7. C. B. Jones, Software Development - A Rigorous Approach,
Prentice Hall, Hemel Hempstead (1980).

8. G. O'Neill, Automatic translation of VDM specifications
into standard ML programs. To appear in Computer
Journal 35 (6) (1992).

9. L. T. Semmens, R. B. France and T. W. G. Docker, Inte-
grating structured analysis and formal specification tech-
niques. To appear in Computer Journal 35 (6) (1992).

10. J. C. P. Woodcock, The rudiments of algorithm refinement.
Computer Journal 35 (5), 441^50 (1992).

Announcements

9-13 NOVEMBER 1992

1992 Joint International Conference and Sym-
posium of Logic Programming, Ramada
Renaissance Hotel, Washington, D.C., USA

Sponsored by the Association for Logic
Programming in cooperation with the Uni-
versity of Maryland Institute for Advanced
Computer Studies. Conference Chair: Jack
Minker, University of Maryland (minker-
@cs. umd. edu).

The 1992 Joint International conference on
Logic Programming is to be held in
Washington, D.C. It is the major forum for
the scientific exchange and presentations of
research, applications and implementations in
logic programming.

Logic programming is one of the most
promising steps towards declarative program-
ming. It forms the theoretical basis of the
programming language PROLOG and of
various extensions of it. Also, logic program-
ming is fundamental to work in artificial
intelligence, where it has been used for non-
monotonic and commonsense reasoning, ex-
pert systems implementation, deductive data-
bases and applications such as computer-
aided manufacturing. The program will in-
clude the following.

Keynote address by G. Mints;
invited lectures by K. M. Chandy on 'The
derivation of compositional programs', W. J.
Mitchell on 'The logic of architecture' and J.
Pearl on 'Empirical semantics for defeasible
databases';
advanced tutorials by S. Abiteboul on ' De-
ductive and object-oriented databases', M.
Fitting on ' Many-valued logics and their use
in logic programming', M. Hermenegildo on
'Practical aspects of abstract interpretations',
R. Overbeek on ' Logic programming and
genetic sequence analysis', E. Tick on 'Con-
current logic programming' and A. Troelstra
on 'Linear logic';
panel on 'Prolog applications' led by K.
Bowen;
and presentations of refereed papers.

For further information contact:

Professor Krzysztof R. Apt, Program Chair,
CWI, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands, apt@cwi.nl. fax: (+ 31-20)-
592-4199.

13-14 MAY 1993

First Joint IFIP WG8.3/WG8.5 Working
Conference on Decision Support in Public Ad-
ministration, Noordwijkerhout, The Nether-
lands

Conference theme

As new communication and transportation
technologies make the world grow smaller, the
problems faced by governments only become
larger and more complex. Economic growth
contends with care for our environment.
Frontiers are opened while economic and
social barriers are raised. Opportunities for
global investment and development are con-
founded by local political instabilities. In-
formation systems technologies allow for such
complicated legislation that the effect of
governing instruments becomes less and less
transparent.

The already vast flow of information to be
considered by policy makers and decision
makers is swelling, while tightened budgets
allow for less staff to process this information.
How to organize in order to maintain and
even increase decision-making capability with
limited resources? Specialized knowledge is
required, yet because of their multi-faceted
nature, problems require an interdisciplinary
approach in which information systems will
play an all-important role.

Against this background, a joint conference
of IFIP's working groups 8.3 (Decision Sup-
port Systems) and 8.5 (Governmental and
Municipal Information Systems) makes sense.
This conference provides a platform on which
problems in (inter)national as well as local
governments can be presented and discussed
from a decision-making and information
systems perspective. The conference aims at
increasing our understanding of these prob-
lems in order to better focus the efforts of
researchers and practitioners in applying in-
formation technology to increase the per-
formance of decision makers in public admin-
istration.

For further information contact:

Professor Dr Henk G. Sol, School of Systems
Engineering and Policy Analysis, P.O. Box
5015, NL-2600 GA Delft, The Netherlands.
Tel: +3115787100. Fax: +3115784811.
E-mail: sol@sepa.tudelft.nl.

29 MARCH TO 2 APRIL 1993

AISB '93 Conference: University of Birming-
ham. Announcement. Theme: Prospects for AI
as the General Science of Intelligence

The Society for the Study of Artificial In-
telligence and the Simulation of Behaviour
will hold its ninth bi-annual conference this
year at the University of Birmingham.

The theme for invited papers is 'Prospects
for AI as the general science of intelligence'.
So far the following professors have agreed to
give invited talks: David Hogg (Leeds),
'Prospects for computer vision'; Allan
Ramsay (Dublin), 'Prospects for natural
language processing by machine'; Glyn
Humphreys (Birmingham); 'Prospects for
connectionism — science and engineering';
Prof Ian Sommerville (Lancaster) 'Prospects
for AI in systems design'.

There will also be submitted papers and
poster sessions on a variety of topics in AI
and Cognitive Science. The proceedings will
be published in time for the conference.

Email:

• aisb93-delegates@cs. bham. bham .ac.uk
(for information on accommodation,
meals, programme, etc. as it becomes
available Q enquirers will be placed on a
mailing list)

Address: AISB '93(prog) or AISB ^(del-
egates), School of Computer Science, The
University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K. Tel: +44-(0)21-
414-3711. Fax: +44-(0)21-414-4281.

The Programme Chair is Aaron Sloman,
and the Local Arrangements Organiser is
Donald Peterson, both assisted by Petra
Hickey.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 423

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/419/402196 by guest on 10 April 2024

