
Classical Logic: a Crash Course for Beginners

A. GALTON
Department of Computer Science, University of Exeter, Exeter EX4 4PT

No doubt every reader of this journal is aware that computer science is becoming infiltrated by a strange breed of
people called logicians, who try to convince computer people that their arcane symbolism and obscure terminology are
just what is needed to solve the software crisis, the hardware crisis, and any other difficulties that the computer world
finds itself facing. Unfortunately the symbolism and the jargon can be very off-putting to anyone who has not already
become immersed in formal logic; I have often met people who work with computers and are aware of how important
logic is claimed to be by its devotees, and who feel that they really ought one day to make an effort to penetrate its
mysteries, but who have not known how to set about doing so. This article and its sequel ('Logic as a Formal
Method') are intended as a fairly gentle initiation into what logic is about and what it has to offer computer scientists.
They are inevitably very sketchy and incomplete - more like the brochures that can be picked up at a travel agent's
than a proper guide-book — but it is to be hoped that some, at least, of my readers will come away with a clearer
picture of what lies in store for them if they decide to follow up the more detailed references.

The present article outlines the two systems which form the standard core of formal logic, the propositional calculus
and the predicate calculus. For a more detailed treatment, see my good Logic for Information Technology (Wiley,
1990). The second article looks at applications of these systems to computer science, and then expands the horizons by
looking at some of the non-standard logical systems that have developed from the standard core and which have found
application in a computational context.

Received May 1992

1. THE PROPOSITIONAL CALCULUS

Imagine a group of six people discussing which of them
will go to town that afternoon. Only Anne and Barbara
can drive, so one of them must go; Anne won't go
without one of her sons, Charles and David, to keep her
company. Charles would insist on taking his friends
Elizabeth and Fiona along; on the other hand, if Fiona
goes without David, then Elizabeth will insist on staying
to keep him company. It then transpires that David
cannot go, as he has too much homework to do. It
follows that Barbara will have to go.

One does not need formal logic to reach this
conclusion; but on the other hand it pays to be systematic,
and formalism is a good way of achieving this in many
cases. We express the data in terms of a set of primitive
(i.e. not further analysed) propositions. AnneGoes,
BarbaraGoes, and so on, and a few basic connectives
i f . . . then . . . , and, or, not:

AnneGoes or BarbaraGoes
if AnneGoes then (CharlesGoes or DavidGoes)
if CharlesGoes then (ElizabethGoes and FionaGoes)
if (FionaGoes and not DavidGoes) then not ElizabethGoes
not DavidGoes

with the desired conclusion

BarbaraGoes.
For conciseness we write

A V
A-+[
C->l
(F A

this

B
[C V
[E A

as

D)
F)

B
The system we are using is called the propositional

calculus. The primitive elements of the system are
('schematic') letters standing for propositions (e.g. C for
'Charles goes') together with various connectives (V , A ,
->, and -i) for linking them up to produce more complex
propositions.

Formal logic offers us several approaches to validating
the inference above. In classical logic, the guiding
principle is that the connectives in the inference are truth-
functional. This means that, for instance, whether or not
A A B is true depends only on whether or not A and B
are: specifically, A A B is true provided that both A and
B are true. Thus A corresponds to the use of the word
'and' in a sentence like 'Anne studies Physics and
Barbara studies French', which is true just so long as
both the sentences 'Anne studies Physics' and 'Barbara
studies French' are true. Sometimes 'and' points to a
more intimate connection between the sentences it joins:
in 'Anne opened the door and Barbara entered the
room' the word 'and' means something like 'and then as
a result of that'. The logical symbol A cannot be used to
record these additional components in the meaning of
'and'.

Similarly, A V B is true just so long as at least one of
A and B is true; and -*A is true so long as A is false. That
leaves A^-B: although an expression of the form 'if A
then B' normally suggests some sort of causal connection
between the antecedent A and the consequent B, in
classical logic we focus on the truth-functional core of its
meaning, which is that you won't have the antecedent
true as well as the consequent false: so we say that A-> B
is only false in the case that A is true and B is false. This
means that it is true so long as either A is false or B is
true. For example, the only situation in which the
statement 'if you drop that glass it will break' is clearly
false is one in which you drop the glass but it doesn't
break- so in any other situation, i.e., in any situation in
which either you don't drop the glass or it does break, the

424 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

CLASSICAL LOGIC: A CRASH COURSE FOR BEGINNERS

statement counts as true. (A fifth connective <-> is defined
so that A*-+B is equivalent to (A^B) A (B->A); it is
true just so long as A and B are either both true or both
false.)

We now turn to our inference, and consider just what
we mean by saying that the conclusion follows from the
premisses: it is that if the premisses are all true then the
conclusion must be true too. So one way of checking the
validity of the inference is to go through all the possible
combination of who goes and who doesn't, and check
that in every case in which the premisses are true, the
conclusion comes out true as well. To do this is to make
a truth table for the inference. Since there are six different
primitive propositions (A to F), and each of them can, in
principle, be true or false independently of the others,
this gives us 26 = 64 different combinations to check.

Instead, we take a short cut. We are only interested in
checking that the case of premisses true and conclusion
false never occurs. So let's look for such a case. For the
conclusion to be false we require that Barbara doesn't
go: B must be false. For the first premiss to be true we
need either A true or B true; so given that B is false that
means we must have A true. The second premiss will be
false if A is true and C V D is false, so the latter
proposition must be true too. That means that either C
or D (or both) must be true. But D is false, from the fifth
premiss, which means that C must be true. So by the
third premiss E and F must both be true too, otherwise
we would have C true and E A F false, which would make
the third premiss false. We now have F true, D false, and
E true: and this makes the fourth premiss false. What we
have shown is that if the conclusion (B) is false then at
least one of the premisses must be false as well. But this
is just to say that if all the premisses are true then the
conclusion must be true too: which is to say, the
inference is valid.

We mentioned above that a systematic enumeration
of all the possible combinations of truth and falsity of A,
B, ...,F would enable us to validate the inference. What
we did instead was to reason about what such a systematic
enumeration would look like without actually doing it.
All we need now is a systematic way of performing such
reasoning. Any such systematic method is called a proof
theory for the propositional calculus.

Proof theories come in two flavours. One type, called
derivation systems, enable one to validate an inference by
deriving the conclusion from the premisses in a series of
steps. The other type works more along the lines of our
reasoning above: we start by assuming that the con-
clusion is false and see if we can make all the premisses
true compatibly with this assumption. These are called
refutation systems because they allow us to prove that a
conclusion logically follows from some premisses by
refuting (i.e. proving false) the assumption that we can
have the conclusion false if the premisses are all true.

A proof theory is formalised by laying down in
advance exactly what reasoning steps are allowed. This
has to be done in terms of the form of the propositions
we are manipulating since while there is no limit to the
possible subject-matter or content the propositions may
have, we can specify exactly the range of possible forms,
namely, every proposition (in the propositional calculus,
of course) is either a primitive proposition or the negation
of a proposition or the conjunction (A), disjunction (V),
conditional (->), or biconditional (<-») of two

propositions. The propositional calculus can only be
used to validate those inferences which depend for their
validity on the truth-functional structure of their
component propositions.

The language of the propositional calculus can help us
to be systematic when talking about computer programs.
When a piece of program code is executed, the variables
which occur in it are transformed from some initial set of
values to a final set of values (when the execution is
completed). To determine whether the program meets
some previously given specification, we need to be able to
state precisely both what it actually does and what it is
supposed to do. Any system for doing this will benefit
from the clarity provided by the propositional calculus;
in addition, as explained below, the propositional
calculus lies at the heart of all the formalised systems of
reasoning procedures that we call logics, and it is to such
systems that we must turn if we want to describe in a
rigorous fashion what a program is intended to do, and
to prove that it actually does it.

Consider, for example, the Pascal fragment

z := 1
while x > 0

begin
x :=
z :=
end.

X

z

do

- 1 ;
*y

If executed with x = 3,y =4, z = 3 initially, this program
will terminate with x = 0, y = 4, z = 64, whereas if it is
executed with JC = — 4, y=6, z = 3 initially, it will
terminate with x = — 4, y = 6, z = 1. In general, if the
initial values are x = X, y = Y, z = Z, then if X ^ 0 then
the final values will be x = 0, y = Y, z = Y*, whereas if
X < 0 then the final values are x = X, y = Y, z = 1. Thus
the program effects a transformation from a state in
which the proposition

x=XAy=YAz=Z

is true to a state in which the proposition

{X> 0^(x = 0 A y = Y A z = Yx))
A
(X < 0-5- (x = X A y = Y A z = 1))

is true. It is possible that this is exactly what the
programmer intended, but the only way we can
meaningfully decide this is if we have a statement of the
programmer's intentions that is every bit as precise as the
statement we have just given of the program's actual
behaviour; for example, the intention might be to write
a piece of code that transforms the initial state

to the state

x = X Ay=Y Az =

= Y AZ= Yx)
= Y A Z =

The discrepancy between the program and its
specification is now clear.

2. THE PREDICATE CALCULUS

The propositional calculus only gives us a very coarse-
grained view of the logical structure of a statement or an
inference. When we represent the statement 'If Fiona

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 425

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

A. GALTON

goes but David doesn't then Elizabeth won't go' by the
schema (FA ->D)-> -• E we are only representing the
structure that this statement has in common with a whole
host of other statements such as

If it's lunchtime but John isn't hungry then he won't
eat anything.

If you're a candidate in the election and nobody votes
for you, you won't get elected.

If all dogs eat meat and Fido doesn't eat meat then
Fido isn't a dog.

If X is prime and X 4= 2 then X is not even.

A more detailed account of the logical structure of these
sentences is provided by the predicate calculus.

The predicate calculus is a variety of formal logic that
can be used for formalizing discourse about domains
consisting of discrete objects which may be described in
terms of properties that are strictly bivalent, that is, a
property must be denned so that each object in the
domain either does or does not have it, with no 'grey
area' in between. It is important to note that everyday
discourse is often not like this, and to the extent that it
is not, the predicate calculus is an inappropriate tool for
formalizing it. Sometimes, however, one can get
acceptable results by pretending that an ill-defined
property is in fact sharply defined, by stipulating an
arbitrary 'cut-off' point between objects which have the
property and those which don't. For example, in the
domain of human beings, the property of being male is
strictly bivalent, in that every human being is either
definitely male or definitely not male, whereas the
property of being tall is not bivalent, since we cannot say
definitely how high someone has to be to count as tall;
but if we need to, we can arbitrarily lay down that
anyone over six feet tall, say, is to count as tall. Similarly,
in the domain of natural numbers, the properties of
being even, or prime, or greater than 100, are all strictly
bivalent, whereas the property of being large is vague in
the same way as being tall is with human beings; but
again, for some purposes it might be reasonable to define
a large number as one which is greater than a million,
say. Some other properties (on the domain of humans
again), which are ill-defined in various degrees, are being
a student, understanding logic, loving one's mother,
having published an article in Computer Journal, being at
school, and being awake.

In addition to unary properties such as maleness,
tallness, primality, and so on, which apply to single
objects, the Predicate Calculus also allows us to refer to
relational properties, which hold between objects taken
two at a time (binary relations), three at a time (ternary
relations), or quite generally n at a time (n-ary relations)
for any positive integer n. Examples of binary relations
on the domain of human beings are: one person's being
taller than, loving, speaking the same language as, or
living next door to another person. On the domain of
natural numbers we have such relations as one number's
being greater than, being a multiple of, having no factors
in common with, and being the square of another.

These examples show that we have a variety of
different ways of expressing properties and relations in
English. We can use nouns (as in 'being a student'), verbs
('loving one's mother'), adjectives ('being tall') or
prepositional phrases ('being at school'). In the predicate

calculus we circumvent this plethora of notational devices
by using a uniform way of referring to properties. The
standard way of ascribing a property to an object in the
predicate calculus is to place a predicate letter, generally
an upper-case letter such as P, Q, or R, to the left of a
pair of parentheses, and in the parentheses to place an
expression (called a term) denoting the object to which
we wish to ascribe the property. For example, if we
want to say that 7 is prime, we can stipulate that the
predicate letter P is to denote the property of primality
and that the term a is to denote the number 7, and write
P(a). And this same expression, with its constituents
interpreted differently, will do equally as representations
of the statements that Neil Kinnock is male, that Exeter
is a cathedral city, and that 1992 is a leap year.

To express relational properties we use exactly the
same method, except that if it is a binary relation we
must put two terms, separated by a comma, in the
brackets after the predicate letter - as for example R(a, b),
which might express that 4 is less than 9, that 9 is a factor
of 45, that Terry Waite is taller than John Major, or that
Cambridge is further east than Oxford - and in general
for an n-ary relation we must put n terms in the
parentheses.

A simple n-ary predicate simply consists of a predicate
letter together with n slots, or argument-places, into
which we can insert terms to make a simple statement (or
atomic formula). Thus the atomic formula P(a) is the
result of inserting the constant term a into the argument
place of the predicate /*(_). Once we have decided what
property the predicate-letter P stands for, and what
object a stands for, we then know how to assign a truth-
value to the formula P(a): it will be true just so long as
the object denoted by a has the property denoted by P.
In the so-called formal semantics of the predicate
calculus, though, we don't say anything about properties,
but content ourselves with the thought that any sharply
defined property will divide the domain neatly into two
mutually exclusive parts (or subsets), consisting of those
objects which have the property in question, and those
which do not. So instead of talking about properties, we
talk about subsets of the domain, in effect replacing a
property by the set of domain elements which have it. We
can now say that the formula P(a) is true just so long as
the object denoted by a is a member of the set denoted by
P.

We do a similar kind of thing with relational predicates.
A binary predicate, for example, is intended to refer to a
relation on the set of domain objects. It is a commonplace
in mathematics that a binary relation can be represented
as a set of ordered pairs, so that a pair (x,y) is included
in the set just so long as x stands in that relation to y.
So we can now say that once we have decided which
objects a and b refer to, and which sets of ordered pairs
R refers to, the atomic formula R(a, b) will be true (under
this interpretation) just so long as the ordered pair
consisting of the objects denoted by a and b respectively
is a member of the set denoted by R.

In addition to predicates, a first-order language may
contain function symbols. These are expressions which
enable us to create new terms out of old. In ordinary
language we have expressions like 'the father of which
have just this role: for example, from the term 'John' we
may, by successive applications of this function ex-
pression, construct the complex terms 'the father of

426 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

CLASSICAL LOGIC: A CRASH COURSE FOR BEGINNERS

John', 'the father of the father of John', 'the father of
the father of the father of John', denoting the succession
of John's male ancestors along the paternal line.
Similarly, in mathematics we have notations like 'sin'
which enables us to construct the term 'sin^' from the
term in\ In addition we have binary functions such as
' + ' and ' / ' , enabling us to construct terms such as
'34 + 56' or 'TT/3'. In predicate calculus notation we
notate functional expressions uniformly by the use of
function symbols with argument places, exactly like
predicates except that (a) we use lower-case letters
instead of upper-case ones* and (b) the result of filling in
the argument places of a function symbol with terms is
not a formula but another term. Thus if we have a unary
predicate letter P, a unary function symbol /, and a
constant a, then a,J[a),AAa)), A/Wa)))>- are all
terms whereas P(a), P(J{a)), P{fU{a)% PUUUifl)))),
... are all formulae (you can think of them as saying
something like 'John is bald', 'John's father is bald',
'John's father's father is bald', and so on).

The formal semantics defines an interpretation of our
formal language to consist of

• a specification of some domain, represented as a set of
objects D,

• a specification of
1. what element of D each constant term of the

language is to stand for (the denotation of the
term),

2. what set of domain elements each unary predicate
letter is to stand for, what set of pairs of domain
elements each binary predicate letter is to stand for,
and in general what set of ^-tuples of domain
elements each n-ary predicate letter is to stand for
(the extensions of the predicates),

3. what function on the domain each function symbol
stands for (an «-ary function symbol will stand for
a function from domain n-tuples to domain
elements).

This specification can be represented by an interpret-
ation function / which maps each language element onto
the domain-related entity that it is to stand for.

We can then say that an atomic formula P{ax, a2, ...,an)
is satisfied by the interpretation (D, I) just so long as
the «-tuple (/(ax), I(a2),...,I(an)) of domain elements
denoted by the terms ava2, ...,an is a member of the set
of domain w-tuples /(/>) denoted by the predicate-letter
P. If a formula <f> is satisfied by an interpretation (D, I),
we write

(D,I)\=<f>

and say that (D, I) is a model for <j>.
All this may seem very trivial, and in a sense it is, but

it does for the predicate calculus what the truth-tables do
for the propositional calculus: it provides us with a crisp
formal definition of the notion of an interpretation, and
this in turn allows us to formulate precisely what we
mean by general logical notions such as truth, con-
sistency, and validity. Truth is represented by sat-
isfaction : to say that a statement is true is to say that the
formula representing it is satisfied by the interpretation
that corresponds to the meaning of the statement; a set
of statements is consistent so long as the set of formulae

• Warning: this is not an invariable convention.

representing them is satisfiable, that is, are all satisfied
together by some interpretation; and an inference is
defined to be valid just so long as every interpretation
which satisfies all the premisses also satisfies the
conclusion.

In fact we have not so far revealed anything like the
true power of the predicate calculus, which comes not
from the construction of atomic formulae which we have
outlined, but from the construction of complex formulae
from these atomic ones. The predicate calculus furnishes
us with two ways of constructing new formulae from old.
One is just the same as in the propositional calculus,
using the truth-functional connectives ->, A , V , ->, and
-. The other, which is really the distinctive feature of the
predicate calculus, makes use of two new symbols V and
3 known as quantifiers.

First, we must introduce the notion of a complex
predicate. We have seen that a formula can be formed by
inserting terms into the argument places of a predicate.
But we can look at this the other way around too: we can
form a predicate by taking a formula and removing one
or more terms to leave argument places. For example,
given the atomic formula R(a, b), we can form two
complex unary predicates R{-,b) and R(a,J). If we
interpret R{a, b) to mean that 8 is factor of 96, then the
complex predicate R(-,b) will denote the property of
being a factor of 96, while the complex predicate R(a, _)
will denote the property of having 8 as a factor. We can
form complex predicates out of non-atomic formulae
too. For example, from the formula P{a) A Q(b) we can
form the complex binary predicate /»(_) A Q(...). But we
can also stipulate that two argument places are to be
filled by the same term; then the complex predicate
P(_) A Q{-) is actually a unary predicate, since although
it has two argument places, they are two copies of the
same argument place and hence must be filled by the
same term. So we can get P(a) A Q(a) from this predicate,
but not P(a) A Q{b). If P(_) denotes the property of
being even, and Q(J) denotes the property of being a
square, then />(_) A Q(_) denotes the property of being
an even square.

In general, a language does not have a name for each
of the objects that it wants to talk about. We might want
to talk about cows, but we do not have to have a name
for every individual cow. We can still make statements
which apply to every cow, for example, we can say 'All
cows eat grass'. If I say 'Some cows have horns', then
here too I am implicitly referring to every cow, since I'm
denying that every cow is hornless. In mathematics,
when we talk about the real numbers we are talking
about an indenumerable domain, and it is in principle
impossible for a finitely-definable language to have
indenumerably many names. So most real numbers
cannot be named at all; yet this doesn't stop us from
making general assertions about the totality of real
numbers - for example that every real number has a
square, or that between any two distinct real numbers
there is another that is distinct from either of them.

The quantifiers enable us to express general statements
like these in the predicate calculus. Take any unary
predicate P(-), simple or complex; then from it we can
form two formulae VxP(x) and 3xP(x). The former
counts as true under an interpretation (D, /) so long as
the extension of the predicate P(_) is the whole domain:
so this formula asserts that every domain element has the

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 427

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

A. GALTON

property denoted by /"(_). The latter is true under (D, I)
so long as the extension of /*(_) is non-empty: it asserts
that some domain element has the property denoted by
P(_). In these formulae the symbol x is a variable; it acts
as a link between the quantifier and one or more
argument places in the expression which follows. The
usual convention is to write variables as lower-case letters
from near the end of the alphabet, thereby distinguishing
them from constants, which are written as lower-case
letters from near the beginning of the alphabet.

Let us now see how we can use the predicate calculus
to formalise inferences. Consider the following, rather
curious inference:

Bob admires everyone who admires Carol
Carol admires herself
Therefore Bob admires himself

We shall use a binary predicate-letter A to represent
'admires', and constant terms b and c to stand for Bob
and Carol respectively. To formalize the first premiss we
note that what it says is that everyone has the following
complex property: if they admire Carol, then Bob
admires them. Hence we can formalize the inference as

A{c,c)
Therefore A(b, b)

Is this valid? We might argue the case as follows. The
first premiss states that the property denoted by the
complex predicate

is possessed by every element in the domain. (Under our
intended interpretation this is the property of either not
admiring Carol or being admired by Bob.) In particular,
it must, if the premiss is true, be possessed by the
individuals denoted by c and b. This means that we can
infer from the first premiss the two specific instances

A(c,c)-
A(b,c)-

A(b,c)
•A{b,b)

The first of these, together with the second premiss
(A(c, c)) implies A{b, c) and this, together with the second
formula above, implies A(b,b), which is the desired
conclusion.

The reasoning above was quite general: nothing in the
way we argued depends for its soundness on the particular
interpretation of the schematic letters we had in mind.
The predicate calculus is adapted to precisely this kind of
reasoning. A schematic inference is valid just so long as
its conclusion comes out true in every interpretation
which makes the premisses true. To demonstrate that an
inference is valid we can either ask what an interpretation
must be like if the premisses are to be true in it, and show
that in any such interpretation the conclusion comes out
true too (model-theoretic reasoning), or we can devise
rules which operate on the premisses and conclusion of
the inference itself, without reference to any
interpretations (proof-theoretic reasoning). Model-the-
oretic reasoning has primacy over proof-theoretic in the
sense that validity is ultimately defined in terms of
interpretations, not in terms of rules of proof; but on the
other hand model-theoretic reasoning tends to be rather
intractable, since in general there are far too many
different kinds of interpretations to consider. Hence we

have good reason to be interested in proof-theoretic
methods, just as with the propositional calculus, only
more so, since whereas in the latter the number of
relevantly different interpretations (i.e. truth-
assignments) is always finite for any finite set of premisses,
in the predicate calculus, there may be infinitely many
distinct types of interpretation. In order to reason model-
theoretically about them we cannot avoid devising rules
of proof, which already takes us towards the development
of a proof theory.

Proof theories for the predicate calculus can be
obtained from propositional calculus proof theories by
the addition of extra rules to cover the quantifiers, and
the resulting systems can be shown to be both sound (that
is, every inference which the system tells you is valid
really is valid) and complete (that is, every inference
which in fact is valid can be shown to be so using the
system).f

3. FIRST-ORDER THEORIES

The pure first-order predicate calculus described in the
previous section has such a high degree of generality that
it can be rather a cumbersome tool for practical inference.
Many inferences which we make in everyday life and
which are perfectly valid in an everyday sense become
invalid if translated directly into the predicate calculus.
An example is the simple inference

John is older than Mary
Therefore Mary is younger than John

This is certainly valid in the sense that the premiss can't
be true without the conclusion being true as well.
However, if we translate directly into predicate calculus
notation we obtain the schematic inference

P(a,b)
Therefore Q(b, a)

which is invalid. The problem is that this inference is
much more general than the original one. It allows
informal interpretations such as

John admires Mary
Therefore Mary is fatter than John

which are plainly invalid. What has happened is that
information has been lost in the transition from English
to predicate calculus. The validity of our original
inference depended on the meanings of the terms 'older'
and 'younger' and not just on the logical form of the
premiss and conclusion. In order to represent the
inference successfully in the predicate calculus we have to

t For the sake of completeness it must be mentioned here that the
predicate calculus has been shown (by Church and Turing in 1936) to
be undecidable: this means that there is no general algorithm for
deciding whether or not an arbitrary inference is valid. Thus although
we know that an inference is valid if and only if it can be proved to be
valid using one of the standard sound and complete proof systems,
there is no procedure by which we can be sure of telling whether it can
be so proved. Admittedly, if it can be proved valid, then we can be sure
of finding such a proof by means of a mechanical procedure (so we say
that the predicate calculus is semi-decidable); the problem arises for
inferences which are not valid - there is no procedure by which we can
assure ourselves that there is no proof. What happens is this: there is
a systematic procedure by which we can search for a proof, such that
if a proof exists we can be sure of finding it. But if there is no such
proof, then we may be condemned to searching for one forever!

428 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

CLASSICAL LOGIC: A CRASH COURSE FOR BEGINNERS

represent the relevant features of the meanings of those
terms in the form of extra premisses. In this case the
relevant property is that if one person is older than
another then the latter is younger than the former. By
adding a premiss which captures this property we obtain
the valid predicate calculus inference

P(a,b)
Therefore Q(b, a)

Of course, if we are going to do a lot of reasoning
involving 'older' and 'younger', then instead of adding
the extra premisses to each inference it would be better to
lay down appropriate formulae at the start as a fixed set
of background assumptions which capture the logical
properties of these terms. These background assumptions
are called axioms, and they define a first-order theory.
Using P and Q for 'older than' and 'younger than'
respectively, as above, we might for example lay down
the axioms:

(Al) V.x-./»(*,*)
(A2) VxVyVz(P(x,y) A P(y,z)-
(A3) VxVy(Q(x,y)<->P(y,x))

P(x,z))

The first two axioms state that 'older than' is an
irreflexive and transitive relation - in short, a strict
partial order-and the third axiom states that 'younger
than' is its converse.

One can prove from these axioms that' younger than'
must be a strict partial order as well. In everyday terms,
the axioms simply state that no-one is older than himself,
that if one person is older than another who is older than
a third then the first is older than the third, and that a
person is younger than another just so long as the latter
is older than the former. But this interpretation is only
one of many possible interpretations under which our
three axioms are satisfied: so that in general we may say
that the axioms define not so much the first-order theory
of 'older' and 'younger' as the first-order theory of an
arbitrary strict partial order and its converse. It applies
equally well to the relations < and > on the real
numbers, or to the relations c and => on sets.

The axioms given above have two very desirable
characteristics. First, they are consistent: this means that
they do not contain an implicit (or explicit) contradiction,
so that if we can infer a formula <j> from them then we
can't also infer -> (j>. This is obviously desirable, since if
we could infer both <f> and -i $ then there would be no
interpretations which satisfy all the axioms, and so the
axioms would be utterly useless. Second, the axioms are
complete: suppose (j> is any first-order formula containing
the predicates P and Q such that <f> is true of an arbitrary
strict partial order when P is interpreted as the relation
defining the order and Q is interpreted as its converse;
then <f> can be inferred from the axioms. In other words,
what the completeness and consistency of axioms
(A1)-(A3) amounts to is that they enable us to infer all
and only those formulae in P and Q that are true of an
arbitrary strict partial order when the predicates are
interpreted in the way suggested.

If we want to apply the predicate calculus to some
domain, what we have to do is to try to axiomatize the
logical truths about that domain. Our goal is a consistent
and complete axiomatization, though obviously if we
can't achieve both consistency and completeness the

former is more important than the latter. We can then
reason about the domain by performing valid inferences
in the first-order theory defined by our axiomatization.

An important first order theory is the predicate calculus
with identity. This is the theory of the identity relation,
which holds between each object and itself but between
no other pairs of objects. The usual symbol for this
relation is the ordinary 'equals' sign, ' = ', used as an
infix, i.e. it is placed between its arguments rather than
before them (so we write 'a = b' rather than ' = {a,by).
The axioms for equality are

Vx(x = x)

In the second axiom, the substitution axiom, the symbol
<1> can stand for any simple or complex predicate - so this
is an axiom schema, standing in for an infinite set of
substitution instances. For example, if we substitute
'_ = x' for <!>(_), we obtain the instance VxV)>(;c = x A
x = y-+y = x), which, given the first axiom, reduces to
VxVy(x = y-+y = x) which states that identity is a
symmetric relation. Again, if we put '_ = z' for '<!>(_)'
we obtain VxV>>Vz(x = z A JC = y->y = z), which asserts,
in effect, that identity is a transitive relation. J

The domain which above all others motivated the
development of first-order logic was mathematics. Most
branches of mathematics contain the arithmetic of the
natural numbers as their core, so that was a prime target
for axiomatization. The natural numbers can be
generated from the base element 0 by repeated
applications of the successor function s, which when
applied to an arbitrary natural number will give us the
next one in the series (thus the successor of 0 is 1, the
successor of 1 is 2, and so on). The fundamental principle
governing the natural numbers is mathematical in-
duction, which in effect says that there aren't any natural
numbers except those which you can reach by a finite
number of applications of the successor function,
beginning at 0. This principle is expressed in the axiom
schema

which says that if a predicate <I> applies to 0 and also
applies to the successor of anything it applies to, then it
applies to every natural number.

Addition and multiplication of natural numbers satisfy
the following axioms

Vx(x + 0 = x)
VxVy(x + s(y) = s(x+y))
Vx(x0 = 0)

and everything that we know how to prove about
addition and multiplication can be derived from these
axioms together with the axioms for equality and the
successor function. It is natural to suppose that all these
axioms taken together should constitute a complete and
consistent axiomatization of the arithmetic of the natural
numbers, but it was shown by Kurt Godel in 1931 that

{ Note that we have 'smuggled in' an extra quantifier, to bind z.
This reflects the fact that, for ease of understanding, we stated the
substitution axiom in a slightly oversimplified form, omitting to
mention that any extra variables in <D need to be universally quantified
in the axiom.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 429

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

A. GALTON

the natural numbers have such a rich structure that no
such axiomatization is possible. The trouble is that
arithmetic is rich enough for us to be able to use it to
simulate any first-order axiom system by representing the
language, rules of inference and axioms of that theory as
natural numbers, encoding the structure of each item by
means of the factorization patterns of the numbers. In
particular, given a consistent first-order axiomatization
of arithmetic, then that system too could be simulated
arithmetically, and what Godel showed, by following
through the details of such a simulation, was that one
could construct a formula which expresses a true theorem
of arithmetic but which could not be proved within the
system, making the system incomplete. It follows that the
axiom system we outlined above cannot be both complete
and consistent: if it is consistent then it is not complete
(that is, there are truths of arithmetic which it cannot be

used to prove), while if it is complete then it is not
consistent (so that we have no guarantee that anything
we prove using the system is a truth of arithmetic).

Godel's result shows us that formal logic has precisely
definable limitations. This does not mean, however, that
it is useless! Far from it: logical formalisms are of wide
application in areas where it is possible to formulate
sufficiently precisely what one wants to say. Such areas
abound in the domain of computation and computer-
related activities; an all-too-brief survey may be found in
the sequel to this article.

Acknowledgements

I should like to thank John Gooday, Brian Lings, and
three anonymous reviewers for their helpful remarks on
the first draft of this article.

Book Reviews

R. T. YEH (ed.). CASE Technology. Kluwer
Academic. £57.75. ISBN 0 7923 9189 6.

This book consists of a series of papers which
were taken from a special issue of the Journal
of Systems Integration. The title is a little
misleading: the reader expecting a series of
papers directly about CASE technology, de-
scribing tools such as designer and analyst
workbenches, will be disappointed. What this
book mainly contains is articles on many of
the subsidiary technologies which are asso-
ciated with CASE. This does not diminish the
importance of the book; indeed, it enhances it,
as there are probably too many works now
being published which assume that all you
need is a few tools to enhance your profits.
Yeh, Schlemmer and Mittermeir describe how
to model software processes in the context of
a case study involving a hypothetical company.
Johnson, Feather and Harris describe a trans-
formational approach to requirements analy-
sis whereby informal requirements are gradu-
ally transformed into exact specifications.
Humphrey describes his now famous process
maturity model applied to the implementation
of CASE technology. Acosta describes an
environment for prototyping parallel pro-
grams. Holtkamp and Weber describe the
concept of an object management machine.
Offutt describes an interesting automatic test
data generation system.

The two key works in this collection are
both oriented more towards the practitioner
than the researcher. Yeh and his co-authors
have produced an excellent case study. It
describes the application of the emerging
discipline of process modelling to improve the
processes that make up the main components
of a manufacturing company. Process mod-
elling is definitely the flavour of the month in
the United Kingdom and the United States.
However, the literature is seriously flawed:
there have been few case studies published,
even hypothetical ones; many of the papers
seem to describe yet another notation for
describing process models: and there seem to
be too many publications which just say that
process modelling is a good thing without
proceeding any further.

The paper by Yeh and his authors is down-
to-earth, employs a simple notation and

attempts to provide a framework whereby the
trade-offs that occur in process improvement
can be detailed and taken into account.

The second key work is written by Watts
Humphrey. It was Humphrey, more than
anyone else, who brought to a wider audience
the key process-modelling ideas which had
been described by researchers such as Manny
Lehman in the seventies and eighties. Many of
the ideas are described in his excellent book
Managing the Software Process. This article,
which is partly based on material included in
the book, describes the implementation of
CASE technology in terms of Humphrey's
process maturity model. As well as examining
the planning and implementation issues of
CASE, the author also provides excellent
advice on developing an economic justification
for CASE.

The cost of this book is rather high. It is
very likely that individuals will not buy it, but
that it will become an academic library
purchase. If you do have funds for such a
purchase I would recommend that you buy
the book just for the Humphrey article alone.

D. INCE
Milton Keynes

MARC THORIN. Real-time Transaction Pro-
cessing, Macmillan Education Ltd, £14.99.
ISBN 0-333-55252-0.

As we all know, you can't judge a book by
looking at the cover. But should we judge a
book by looking at the title? I had reached
Chapter 3 of this book when I realised that I
had not yet encountered the author's definition
of 'transaction'. I turned to the index, but
there was no entry for 'transaction'. I then
worked through the book, which is 154 pages
long, looking for the first occurrence of the
word ' transaction'. Eventually, on page 117,1
found such an occurrence. On that page, the
author defines a transaction to be a 'series of
activities transposing (sic) items from one
consistent state into another'.

Still on page 117, the author turns his
attention to transaction scheduling: 'Sched-
uling amounting to a sequential execution of
transactions may be called serialization or

sequentialization'. Unless the reader is already
acquainted with serialisability as a correctness
criterion, he or she is unlikely to understand
what the phrase 'amounting to' means in this
context. The author describes serialisation as
follows: 'Serialisation is ensured when the
scheduler respects the inner order of activities
for each transaction and when, either these
only access information or each modifying
phase is developed in mutual exclusion' (pp.
117-118). Again, if you know nothing about
transaction processing and serialisability be-
fore you read this sentence, you will be none
the wiser afterwards. For example, it is not at
all clear that the problem is caused by
interference between independent transactions
rather than interference between the activities
of one transaction.

All of the above quotations are taken from
Chapter 3, 'Formal Presentation'. Far from
being formal, the author's presentation is
rather vague. To give another example, on
page 128 the author states that an atomic
transaction 'must be carried out thoroughly
on all sites, or cancelled everywhere'; 'carried
out thoroughly' does not strike me as
being a formal way to describe transaction
commitment.

Chapters 1 and 2 are informal and in-
troductory. Chapter 3 contains the 'formal'
presentation. Chapters 4 and 5 of the book
contain an extremely informal description of a
problem that has practically nothing to do
with either real-time systems or transaction
processing. On the back cover, the publisher's
description of the book states that 'Chapter 4
presents the practical example of the real-time
control of a library'. The reader will search in
vain for any treatment of genuine real-time
issues. Indeed, on page 139 the author states
that 'We have only outlined the solution as
our purpose is to enable the reader to make
out the real-time aspects whose mechanisms
are described in Chapter 3'.

The bibliography contains only nine refer-
ences. Indeed, the word 'references' seems
inappropriate because I could not find a single
place in the entire text where the author refers
to any of the nine items in the bibliography (or
any other bibliographical item for that matter).

P. THAINISCH
Edinburgh

430 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/424/402217 by guest on 09 April 2024

